Beneficial effect; Gut-organ axis; Host health; Intestinal barrier; Pathological effect; Short chain fatty acid; Food Animals; Animal Science and Zoology
Abstract :
[en] Short chain fatty acids (SCFA) exist in dietary foods and are produced by the fermentation of gut microbiota, and are considered an important element for regulating host health. Through blood circulation, SCFA produced in the gut and obtained from foods have an impact on the intestinal health as well as vital organs of the host. It has been recognized that the gut is the "vital organ" in the host. As the gut microbial metabolites, SCFA could create an "axis" connecting the gut and to other organs. Therefore, the "gut-organ axes" have become a focus of research in recent years to analyze organism health. In this review, we summarized the sources, absorption properties, and the function of SCFA in both gut and other peripheral tissues (brain, kidney, liver, lung, bone and cardiovascular) in the way of "gut-organ axes". Short chain fatty acids exert both beneficial and pathological role in gut and other organs in various ways, in which the beneficial effects are more pronounced. In addition, the beneficial effects are reflected in both preventive and therapeutic effects. More importantly, the mechanisms behinds the gut and other tissues provided insight into the function of SCFA, assisting in the development of novel preventive and therapeutic strategies for maintaining the host health.
Disciplines :
Food science Veterinary medicine & animal health
Author, co-author :
Gao, Yanan; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China ; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China ; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Yao, Qianqian ; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China ; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China ; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China ; Department of Food Science, Faculty of Veterinary Medicine, University of Liège, Liège 4000, Belgium
Meng, Lu ; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China ; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China ; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Wang, Jiaqi; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China ; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China ; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Zheng, Nan; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China ; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China ; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Language :
English
Title :
Double-side role of short chain fatty acids on host health via the gut-organ axes.
Publication date :
2024
Journal title :
Animal Nutrition
ISSN :
2405-6545
Publisher :
KeAi, China
Volume :
18
Pages :
322 - 339
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
This study was supported by the National Key R&D Program of China (2022YFD1600104), the earmarked fund for CARS (CARS-36), the Agricultural Science and Technology Innovation Program (ASTIP-IAS12).
Abdollahi-Roodsaz, S., Abramson, S.B., Scher, J.U., The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions. Nat Rev Rheumatol 12 (2016), 446–455.
Bai, Z.G., Zhang, Z.T., Ye, Y.J., Wang, S., Sodium butyrate induces differentiation of gastric cancer cells to intestinal cells via the pten/phosphoinositide 3-kinase pathway. Cell Biol Int 34 (2010), 1141–1145.
Bartolomaeus, H., Balogh, A., Yakoub, M., Homann, S., Marko, L., Hoges, S., Tsvetkov, D., Krannich, A., Wundersitz, S., Avery, E.G., Haase, N., Kraker, K., Hering, L., Maase, M., Kusche-Vihrog, K., Grandoch, M., Fielitz, J., Kempa, S., Gollasch, M., Zhumadilov, Z., Kozhakhmetov, S., Kushugulova, A., Eckardt, K.U., Dechend, R., Rump, L.C., Forslund, S.K., Muller, D.N., Stegbauer, J., Wilck, N., Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 139 (2019), 1407–1421.
Battson, M.L., Lee, D.M., Weir, T.L., Gentile, C.L., The gut microbiota as a novel regulator of cardiovascular function and disease. JNB (J Nutr Biochem) 56 (2018), 1–15.
Behary, J., Amorim, N., Jiang, X.T., Raposo, A., Gong, L., Mcgovern, E., Ibrahim, R., Chu, F., Stephens, C., Jebeili, H., Fragomeli, V., Koay, Y.C., Jackson, M., O'sullivan, J., Weltman, M., Mccaughan, G., El-Omar, E., Zekry, A., Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat Commun, 12, 2021, 14.
Bolognini, D., Tobin, A.B., Milligan, G., Moss, C.E., The pharmacology and function of receptors for short-chain fatty acids. Mol Pharmacol 89 (2016), 388–398.
Braden, B., Adams, S., Duan, L.P., Orth, K.H., Maul, F.D., Lembcke, B., Hor, G., Caspary, W.F., The c-13 acetate breath test accurately reflects gastric-emptying of liquids in both liquid and semisolid test meals. Gastroenterology 108 (1995), 1048–1055.
Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Toth, M., Korecka, A., Bakocevic, N., Ng, L.G., Kundu, P., Gulyas, B., Halldin, C., Hultenby, K., Nilsson, H., Hebert, H., Volpe, B.T., Diamond, B., Pettersson, S., The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med, 6, 2014, 11.
Bruning, J., Chapp, A., Kaurala, G.A., Wang, R.J., Techtmann, S., Chen, Q.H., Gut microbiota and short chain fatty acids: influence on the autonomic nervous system. Neurosci Bull 36 (2020), 91–95.
Burger-Van Paassen, N., Vincent, A., Puiman, P.J., Van Der Sluis, M., Bouma, J., Boehm, G., Van Goudoever, J.B., Van Seuningen, I., Renes, I.B., Regulation of the intestinal mucin muc 2 expression by short chain fatty acids: implications for epithelial protection. Faseb J, 23, 2009, 1.
Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A.M., Fava, F., Tuohy, K.M., Chabo, C., Waget, A., Delmee, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrieres, J., Tanti, J.F., Gibson, G.R., Casteilla, L., Delzenne, N.M., Alessi, M.C., Burcelin, R., Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56 (2007), 1761–1772.
Carley, A.N., Maurya, S.K., Fasano, M., Wang, Y., Selzman, C.H., Drakos, S.G., Lewandowski, E.D., Short-chain fatty acids outpace ketone oxidation in the failing heart. Circulation 143 (2021), 1797–1808.
Cavini, S., Iraira, S., Siurana, A., Foskolos, A., Ferret, A., Calsamiglia, S., Effect of sodium butyrate administered in the concentrate on rumen development and productive performance of lambs in intensive production system during the suckling and the fattening periods. Small Rumin Res 123 (2015), 212–217.
Chang, H.Y., Pan, W.H., Yeh, W.T., Tsai, K.S., Hyperuricemia and gout in taiwan: results from the nutritional and health survey in taiwan (1993-96). J Rheumatol 28 (2001), 1640–1646.
Chen, G.X., Ran, X., Li, B., Li, Y.H., He, D.W., Huang, B.X., Fu, S.P., Liu, J.X., Wang, W., Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a tnbs-induced inflammatory bowel disease mice model. EBioMedicine 30 (2018), 317–325.
Chen, R.Z., Xu, Y., Wu, P., Zhou, H., Lasanajak, Y., Fang, Y.Y., Tang, L., Ye, L., Li, X., Cai, Z., Zhao, J., Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol Res, 148, 2019, 12.
Chen, Y.J., Zhou, X.H., Han, B., Li, S.M., Xu, T., Yi, H.X., Liu, P., Zhang, L.W., Li, Y.Y., Jiang, S.L., Pan, J.C., Ma, C.H., Wang, B.C., Composition analysis of fatty acids and stereo-distribution of triglycerides in human milk from three regions of China. Food Res Int, 133, 2020, 8.
Chiu, Y.C., Lee, S.W., Liu, C.W., Lan, T.Y., Wu, L.S.H., Relationship between gut microbiota and lung function decline in patients with chronic obstructive pulmonary disease: a 1-year follow-up study. Respir Res, 23, 2022, 11.
Cong, J., Zhou, P., Zhang, R.Y., Intestinal microbiota-derived short chain fatty acids in host health and disease. Nutrients, 14, 2022, 15.
Cruz-Pereira, J.S., Rea, K., Nolan, Y.M., O'leary, O.F., Dinan, T.G., Cryan, J.F., Depression's unholy trinity: dysregulated stress, immunity, and the microbiome. Fiske, S.T., (eds.) Annual review of psychology, vol. 71, 2020, Annual Reviews, Palo Alto, 49–78.
Dai, X.Y., Yuan, T.L., Zhang, X.H., Zhou, Q., Bi, H.Y., Yu, R.Q., Wei, W., Wang, X.G., Short-chain fatty acid (scfa) and medium-chain fatty acid (mcfa) concentrations in human milk consumed by infants born at different gestational ages and the variations in concentration during lactation stages. Food Funct 11 (2020), 1869–1880.
Dalile, B., Van Oudenhove, L., Vervliet, B., Verbeke, K., The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 16 (2019), 461–478.
Dang, A.T., Marsland, B.J., Microbes, metabolites, and the gut-lung axis. Mucosal Immunol 12 (2019), 843–850.
Dangana, E.O., Omolekulo, T.E., Areola, E.D., Olaniyi, K.S., Soladoye, A.O., Olatunji, L.A., Sodium acetate protects against nicotine-induced excess hepatic lipid in male rats by suppressing xanthine oxidase activity. Chem Biol Interact, 316, 2020, 10.
De Vos, W.M., Tilg, H., Van Hul, M., Cani, P.D., Gut microbiome and health: mechanistic insights. Gut 71 (2022), 1020–1032.
De Wit, N., Derrien, M., Bosch-Vermeulen, H., Oosterink, E., Keshtkar, S., Duval, C., De Vogel-Van Den Bosch, J., Kleerebezem, M., Muller, M., Van Der Meer, R., Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol Gastrointest Liver Physiol 303 (2012), G589–G599.
Den Besten, G., Bleeker, A., Gerding, A., Van Eunen, K., Havinga, R., Van Dijk, T.H., Oosterveer, M.H., Jonker, J.W., Groen, A.K., Reijngoud, D.J., Bakker, B.M., Short-chain fatty acids protect against high-fat diet-induced obesity via a ppargamma-dependent switch from lipogenesis to fat oxidation. Diabetes 64 (2015), 2398–2408.
Den Besten, G., Van Eunen, K., Groen, A.K., Venema, K., Reijngoud, D.J., Bakker, B.M., The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. JLR (J Lipid Res) 54 (2013), 2325–2340.
Diao, H., Jiao, A.R., Yu, B., Mao, X.B., Chen, D.W., Gastric infusion of short-chain fatty acids can improve intestinal barrier function in weaned piglets. Genes and Nutrition, 14, 2019, 16.
Duncan, S.H., Barcenilla, A., Stewart, C.S., Pryde, S.E., Flint, H.J., Acetate utilization and butyryl coenzyme a (coa): acetate-coa transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 68 (2002), 5186–5190.
Fachi, J.L., Felipe, J.D., Pral, L.P., Da Silva, B.K., Correa, R.O., De Andrade, M.C.P., Da Fonseca, D.M., Basso, P.J., Camara, N.O.S., Souza, E., Martins, F.D., Guima, S.E.S., Thomas, A.M., Setubal, J.C., Magalhaes, Y.T., Forti, F.L., Candreva, T., Rodrigues, H.G., De Jesus, M.B., Consonni, S.R., Farias, A.D., Varga-Weisz, P., Vinolo, MaR., Butyrate protects mice from clostridium difficile-induced colitis through an hif-1-dependent mechanism. Cell Rep 27 (2019), 750–761.
Fan, Y., Pedersen, O., Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19 (2021), 55–71.
Farrell, G.C., Larter, C.Z., Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43 (2006), S99–S112.
Felizardo, R.J.F., Watanabe, I.K.M., Dardi, P., Rossoni, L.V., NOS, Camara, The interplay among gut microbiota, hypertension and kidney diseases: the role of short-chain fatty acids. Pharmacol Res 141 (2019), 366–377.
Forkosh, E., Ilan, Y., The heart-gut axis: new target for atherosclerosis and congestive heart failure therapy. Open Heart, 6, 2019, 6.
Foroutan, A., Guo, A.C., Vazquez-Fresno, R., Lipfert, M., Zhang, L., Zheng, J.M., Badran, H., Budinski, Z., Mandal, R., Ametaj, B.N., Wishart, D.S., Chemical composition of commercial cow's milk. J Agric Food Chem 67 (2019), 4897–4914.
Foster, J.A., Neufeld, KaM., Gut-brain: how the microbiome influences anxiety and depression. Trends Neurosci 36 (2013), 305–312.
Frost, G., Sleeth, M.L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., Anastasovska, J., Ghourab, S., Hankir, M., Zhang, S., Carling, D., Swann, J.R., Gibson, G., Viardot, A., Morrison, D., Thomas, E.L., Bell, J.D., The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun, 5, 2014, 11.
Gabel, G., Aschenbach, J.R., Muller, F., Transfer of energy substrates across the ruminal epithelium: implications and limitations. Anim Health Res Rev 3 (2002), 15–30.
Ganesh, B.P., Nelson, J.W., Eskew, J.R., Ganesan, A., Ajami, N.J., Petrosino, J.F., Bryan, R.M., Durgan, D.J., Prebiotics, probiotics, and acetate supplementation prevent hypertension in a model of obstructive sleep apnea. Hypertension 72 (2018), 1141–1150.
Gao, W., Wang, C., Yu, L., Sheng, T., Wu, Z., Wang, X., Zhang, D., Lin, Y., Gong, Y., Chlorogenic acid attenuates dextran sodium sulfate-induced ulcerative colitis in mice through MAPK/ERK/JNK pathway. BioMed Res Int, 2019, 2019.
Gao, Z.G., Yin, J., Zhang, J., Ward, R.E., Martin, R.J., Lefevre, M., Cefalu, W.T., Ye, J.P., Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58 (2009), 1509–1517.
Gaudier, E., Jarry, A., Blottiere, H.M., De Coppet, P., Buisine, M.P., Aubert, J.P., Laboisse, C., Cherbut, C., Hoebler, C., Butyrate specifically modulates muc gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol Gastrointest Liver Physiol 287 (2004), G1168–G1174.
Gaudier, E., Rival, M., Buisine, M.P., Robineau, I., Hoebler, C., Butyrate enemas upregulate muc genes expression but decrease adherent mucus thickness in mice colon. Physiol Res 58 (2009), 111–119.
Górka, P., Kowalski, Z.M., Pietrzak, P., Kotunia, A., Kiljanczyk, R., Flaga, J., Holst, J.J., Guilloteau, P., Zabielski, R., Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves. J Physiol Pharmacol 60 (2009), 47–53.
Górka, P., Kowalski, Z.M., Pietrzak, P., Kotunia, A., Jagusiak, W., Holst, J.J., Guilloteau, P., Zabielski, R., Effect of method of delivery of sodium butyrate on rumen development in newborn calves. J Dairy Sci 94 (2011), 5578–5588.
Górka, P., Kowalski, Z.M., Pietrzak, P., Kotunia, A., Jagusiak, W., Zabielski, R., Is rumen development in newborn calves affected by different liquid feeds and small intestine development?. J Dairy Sci 94 (2011), 3002–3013.
Hendry, P.O., Van Dam, R.M., Bukkems, S., Mckeown, D.W., Parks, R.W., Preston, T., Dejong, C.H.C., Garden, O.J., Fearon, K.C.H., Grp, E., Randomized clinical trial of laxatives and oral nutritional supplements within an enhanced recovery after surgery protocol following liver resection. Br J Surg 97 (2010), 1198–1206.
Hiltz, R.L., Laarman, A.H., Effect of butyrate on passive transfer of immunity in dairy calves. J Dairy Sci 102 (2019), 4190–4197.
Hoyles, L., Snelling, T., Umlai, U.K., Nicholson, J.K., Carding, S.R., Glen, R.C., Mcarthur, S., Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome, 6, 2018, 13.
Huang, W., Guo, H.L., Deng, X., Zhu, T.T., Xiong, J.F., Xu, Y.H., Xu, Y., Short-chain fatty acids inhibit oxidative stress and inflammation in mesangial cells induced by high glucose and lipopolysaccharide. Exp Clin Endocrinol Diabetes 125 (2017), 98–105.
Huang, X.Z., Li, Z.R., Zhu, L.B., Huang, H.Y., Hou, L.L., Lin, J., Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a caco-2 cell monolayer model. J Pediatr Gastroenterol Nutr 59 (2014), 264–269.
Hungate, R.E., The rumen and its microbes. 1966, Elsevier, Amsterdam, The Netherlands.
Huuskonen, J., Suuronen, T., Nuutinen, T., Kyrylenko, S., Salminen, A., Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol 141 (2004), 874–880.
Iraporda, C., Errea, A., Romanin, D.E., Cayet, D., Pereyra, E., Pignataro, O., Sirard, J.C., Garrote, G.L., Abraham, A.G., Rumbo, M., Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology 220 (2015), 1161–1169.
Jang, Y.O., Kim, O.H., Kim, S.J., Lee, S.H., Yun, S., Lim, S.E., Yoo, H.J., Shin, Y., Lee, S.W., High-fiber diets attenuate emphysema development via modulation of gut microbiota and metabolism. Sci Rep, 11, 2021, 11.
Jiminez, J.A., Uwiera, T.C., Abbott, D.W., Uwiera, R.R.E., Inglis, G.D., Butyrate supplementation at high concentrations alters enteric bacterial communities and reduces intestinal inflammation in mice infected with citrobacter rodentium. mSphere, 2, 2017, 21.
Jin, C.J., Sellmann, C., Engstler, A.J., Ziegenhardt, D., Bergheim, I., Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (nash). Br J Nutr 114 (2015), 1745–1755.
Jin, L., Shi, X.M., Yang, J., Zhao, Y.Y., Xue, L.X., Xu, L., Cai, J., Gut microbes in cardiovascular diseases and their potential therapeutic applications. Protein & Cell 12 (2021), 346–359.
Karoor, V., Strassheim, D., Sullivan, T., Verin, A., Umapathy, N.S., Dempsey, E.C., Frank, D.N., Stenmark, K.R., Gerasimovskaya, E., The short-chain fatty acid butyrate attenuates pulmonary vascular remodeling and inflammation in hypoxia-induced pulmonary hypertension. Int J Mol Sci, 22, 2021, 19.
Kato, S., Sato, K., Chida, H., Roh, S.G., Ohwada, S., Sato, S., Guilloteau, P., Katoh, K., Effects of Na-butyrate supplementation in milk formula on plasma concentrations of GH and insulin, and on rumen papilla development in calves. J Endocrinol 211 (2011), 241–248.
Kau, A.L., Ahern, P.P., Griffin, N.W., Goodman, A.L., Gordon, J.I., Human nutrition, the gut microbiome and the immune system. Nature 474 (2011), 327–336.
Kieffer, D.A., Piccolo, B.D., Vaziri, N.D., Liu, S.M., Lau, W.L., Khazaeli, M., Nazertehrani, S., Moore, M.E., Marco, M.L., Martin, R.J., Adams, S.H., Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am J Physiol Ren Physiol 310 (2016), F857–F871.
Koh, A., De Vadder, F., Kovatcheva-Datchary, P., Backhed, F., From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165 (2016), 1332–1345.
Kotlyarov, S., Role of short-chain fatty acids produced by gut microbiota in innate lung immunity and pathogenesis of the heterogeneous course of chronic obstructive pulmonary disease. Int J Mol Sci, 23, 2022, 23.
Kotlyarov, S., Kotlyarova, A., Molecular mechanisms of lipid metabolism disorders in infectious exacerbations of chronic obstructive pulmonary disease. Int J Mol Sci, 22, 2021, 25.
Kuzinski, J., Zitnan, R., Albrecht, E., Viergutz, T., Schweigel-Röntgen, M., Modulation of v H+-ATPase is part of the functional adaptation of sheep rumen epithelium to high-energy diet. Am J Physiol Regul Integr Comp Physiol 303 (2012), R909–R920 2012.
Lee, C., Kim, B.G., Kim, J.H., Chun, J., Im, J.P., Kim, J.S., Sodium butyrate inhibits the nf-kappa b signaling pathway and histone deacetylation, and attenuates experimental colitis in an il-10 independent manner. Int Immunopharm 51 (2017), 47–56.
Liu, J.M., Jin, Y.J., Ye, Y.L., Tang, Y.H., Dai, S.S., Li, M.F., Zhao, G.J., Hong, G.L., Lu, Z.Q., The neuroprotective effect of short chain fatty acids against sepsis-associated encephalopathy in mice. Front Immunol, 12, 2021, 13.
Liu, L., Fu, C.Y., Li, F.C., Acetate affects the process of lipid metabolism in rabbit liver, skeletal muscle and adipose tissue. Animals, 9, 2019, 12.
Liu, S.M., Li, E.Y., Sun, Z.Y., Fu, D.J., Duan, G.Q., Jiang, M.M., Yu, Y., Mei, L., Yang, P.C., Tang, Y.C., Zheng, P.Y., Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci Rep, 9, 2019, 9.
Liu, Y., Jin, X., Hong, H.G., Xiang, L.Y., Jiang, Q.Y., Ma, Y.C., Chen, Z.D., Cheng, L., Jian, Z.Y., Wei, Z.T., Ai, J.Z., Qi, S.Q., Sun, Q., Li, H., Li, Y., Wang, K.J., The relationship between gut microbiota and short chain fatty acids in the renal calcium oxalate stones disease. Faseb J 34 (2020), 11200–11214.
Loftus, E.V., Harewood, G.C., Loftus, C.G., Tremaine, W.J., Harmsen, W.S., Zinsmeister, A.R., Jewell, D.A., Sandborn, W.J., Psc-ibd: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut 54 (2005), 91–96.
Loomba, R., Sanyal, A.J., The global nafld epidemic. Nat Rev Gastroenterol Hepatol 10 (2013), 686–690.
Lucas, S., Omata, Y., Hofmann, J., Bottcher, M., Iljazovic, A., Sarter, K., Albrecht, O., Schulz, O., Krishnacoumar, B., Kronke, G., Herrmann, M., Mougiakakos, D., Strowig, T., Schett, G., Zaiss, M.M., Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun, 9, 2018, 10.
Luise, D., Motta, V., Salvarani, C., Chiappelli, M., Fusco, L., Bertocchi, M., Mazzoni, M., Maiorano, G., Costa, L.N., Van Milgen, J., Bosi, P., Trevisi, P., Long-term administration of formic acid to weaners: influence on intestinal microbiota, immunity parameters and growth performance. Anim Feed Sci Technol 232 (2017), 160–168.
Lyu, L.C., Hsu, C.Y., Yeh, C.Y., Lee, M.S., Huang, S.H., Chen, C.L., A case-control study of the association of diet and obesity with gout in taiwan. Am J Clin Nutr 78 (2003), 690–701.
Ma, J.Y., Piao, X.S., Mahfuz, S., Long, S.F., Wang, J., The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Animal Nutrition 9 (2022), 159–174.
Ma, X., Fan, P.X., Li, L.S., Qiao, S.Y., Zhang, G.L., Li, D.F., Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J Anim Sci 90 (2012), 266–268.
Machado, M.G., Sencio, V., Trottein, F., Short-chain fatty acids as a potential treatment for infections: a closer look at the lungs. Infect Immun, 89, 2021, 14.
Machado, R.A., Constantino, L.D., Tomasi, C.D., Rojas, H.A., Vuolo, F.S., Vitto, M.F., Cesconetto, P.A., De Souza, C.T., Ritter, C., Dal-Pizzol, F., Sodium butyrate decreases the activation of nf-kappa b reducing inflammation and oxidative damage in the kidney of rats subjected to contrast-induced nephropathy. Nephrol Dial Transplant 27 (2012), 3136–3140.
Macia, L., Tan, J., Vieira, A.T., Leach, K., Stanley, D., Luong, S., Maruya, M., Mckenzie, C.I., Hijikata, A., Wong, C., Binge, L., Thorburn, A.N., Chevalier, N., Ang, C., Marino, E., Robert, R., Offermanns, S., Teixeira, M.M., Moore, R.J., Flavell, R.A., Fagarasan, S., Mackay, C.R., Metabolite-sensing receptors gpr43 and gpr109a facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun, 6, 2015, 15.
Madan, J.C., Koestler, D.C., Stanton, B.A., Davidson, L., Moulton, L.A., Housman, M.L., Moore, J.H., Guill, M.F., Morrison, H.G., Sogin, M.L., Hampton, T.H., Karagas, M.R., Palumbo, P.E., Foster, J.A., Hibberd, P.L., O'toole, G.A., Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. mBio, 3, 2012, 10.
Magzal, F., Even, C., Haimov, I., Agmon, M., Asraf, K., Shochat, T., Tamir, S., Associations between fecal short-chain fatty acids and sleep continuity in older adults with insomnia symptoms. Sci Rep, 11, 2021, 8.
Malhi, M., Gui, H., Yao, L., Aschenbach, J.R., Gäbel, G., Shen, Z., Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion. J Dairy Sci 96 (2013), 7603–7616.
Mao, J.W., Tang, H.Y., Zhao, T., Tan, X.Y., Bi, J., Wang, B.Y., Wang, Y.D., Intestinal mucosal barrier dysfunction participates in the progress of nonalcoholic fatty liver disease. Int J Clin Exp Pathol 8 (2015), 3648–3658.
Marques, F.Z., Nelson, E., Chu, P.Y., Horlock, D., Fiedler, A., Ziemann, M., Tan, J.K., Kuruppu, S., Rajapakse, N.W., El-Osta, A., Mackay, C.R., Kaye, D.M., High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135 (2017), 964–977.
Mcnabney, S.M., Henagan, T.M., Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients, 9, 2017, 28.
Medina-Gomez, C., Bone and the gut microbiome: a new dimension. Journal of Laboratory and Precision Medicine, 3, 2018, 96.
Mentschel, J., Leiser, R., Mülling, C., Pfarrer, C., Claus, R., Butyric acid stimulates rumen mucosa development in the calf mainly by a reduction of apoptosis. Arch Anim Nutr 55 (2001), 85–102.
Mikami, D., Kobayashi, M., Uwada, J., Yazawa, T., Kamiyama, K., Nishimori, K., Nishikawa, Y., Nishikawa, S., Yokoi, S., Kimura, H., Kimura, I., Taniguchi, T., Iwano, M., Short-chain fatty acid mitigates adenine-induced chronic kidney disease via ffa2 and ffa3 pathways. Biochim Biophys Acta Mol Cell Biol Lipids, 1865, 2020, 8.
Mills, K.T., Stefanescu, A., He, J., The global epidemiology of hypertension. Nat Rev Nephrol 16 (2020), 223–237.
Mirmonsef, P., Zariffard, M.R., Gilbert, D., Makinde, H., Landay, A.L., Spear, G.T., Short-chain fatty acids induce pro-inflammatory cytokine production alone and in combination with toll-like receptor ligands. Am J Reprod Immunol 67 (2012), 391–400.
Mirzaei, R., Bouzari, B., Hosseini-Fard, S.R., Mazaheri, M., Ahmadyousefi, Y., Abdi, M., Jalalifar, S., Karimitabar, Z., Teimoori, A., Keyvani, H., Zamani, F., Yousefimashouf, R., Karampoor, S., Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed Pharmacother, 139, 2021, 23.
Miyamoto, J., Kasubuchi, M., Nakajima, A., Irie, J., Itoh, H., Kimura, I., The role of short-chain fatty acid on blood pressure regulation. Curr Opin Nephrol Hypertens 25 (2016), 379–383.
Morrison, D.J., Preston, T., Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microb 7 (2016), 189–200.
Mouzaki, M., Comelli, E.M., Arendt, B.M., Bonengel, J., Fung, S.K., Fischer, S.E., Mcgilvray, I.D., Allard, J.P., Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 58 (2013), 120–127.
Murashige, D., Jang, C., Neinast, M., Edwards, J.J., Cowan, A., Hyman, M.C., Rabinowitz, J.D., Frankel, D.S., Arany, Z., Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370 (2020), 364–368.
Murugesan, S., Nirmalkar, K., Hoyo-Vadillo, C., Garcia-Espitia, M., Ramirez-Sanchez, D., Garcia-Mena, J., Gut microbiome production of short-chain fatty acids and obesity in children. Eur J Clin Microbiol Infect Dis 37 (2018), 621–625.
Naeem, A., Drackley, J.K., Stamey, J., Loor, J.J., Role of metabolic and cellular proliferation genes in ruminal development in response to enhanced plane of nutrition in neonatal Holstein calves. J Dairy Sci 95 (2012), 1807–1820.
Natarajan, N., Hori, D., Flavahan, S., Steppan, J., Flavahan, N.A., Berkowitz, D.E., Pluznick, J.L., Microbial short chain fatty acid metabolites lower blood pressure via endothelial g protein-coupled receptor 41. Physiol Genom 48 (2016), 826–834.
Nicolas, G.R., Chang, P.V., Deciphering the chemical lexicon of host-gut microbiota interactions. Trends Pharmacol Sci 40 (2019), 430–445.
Niwińska, B., Hanczakowska, E., Arciszewski, M.B., Klebaniuk, R., Review: exogenous butyrate: implications for the functional development of ruminal epithelium and calf performance. Animal 11 (2017), 1522–1530.
O'hara, E., Kelly, A., Mccabe, M.S., Kenny, D.A., Guan, L., Waters, S.M., Effect of a butyrate-fortified milk replacer on gastrointestinal microbiota and products of fermentation in artificially reared dairy calves at weaning. Sci Rep, 8, 2018, 11.
Oh, J., Hume, I., Torell, D., Development of microbial activity in the alimentary tract of lambs. J Anim Sci 35 (1972), 450–459.
O'mahony, S.M., Clarke, G., Borre, Y.E., Dinan, T.G., Cryan, J.F., Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277 (2015), 32–48.
Onyszkiewicz, M., Gawrys-Kopczynska, M., Konopelski, P., Aleksandrowicz, M., Sawicka, A., Kozniewska, E., Samborowska, E., Ufnal, M., Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signaling and gpr41/43 receptors. Pflueg Arch Eur J Physiol 471 (2019), 1441–1453.
Onyszkiewicz, M., Gawrys-Kopczynska, M., Salagaj, M., Aleksandrowicz, M., Sawicka, A., Kozniewska, E., Samborowska, E., Ufnal, M., Valeric acid lowers arterial blood pressure in rats. Eur J Pharmacol, 877, 2020, 10.
Palm, C.L., Nijholt, K.T., Bakker, B.M., Westenbrink, B.D., Short-chain fatty acids in the metabolism of heart failure - rethinking the fat stigma. Frontiers in Cardiovascular Medicine, 9, 2022, 9.
Park, J., Goergen, C.J., Hogenesch, H., Kim, C.H., Chronically elevated levels of short-chain fatty acids induce t cell-mediated ureteritis and hydronephrosis. J Immunol 196 (2016), 2388–2400.
Pathak, M., Mandal, G.P., Patra, A.K., Samanta, I., Pradhan, S., Haldar, S., Effects of dietary supplementation of cinnamaldehyde and formic acid on growth performance, intestinal microbiota and immune response in broiler chickens. Anim Prod Sci 57 (2017), 821–827.
Pestana, J.M., Gennari, A., Monteiro, B.W., Lehn, D.N., Souza, C.F.V., Effects of pasteurization and ultra-high temperature processes on proximate composition and fatty acid profile in bovine milk. Am J Food Technol 10 (2015), 265–272.
Petrache, I., Petrusca, D.N., The involvement of sphingolipids in chronic obstructive pulmonary diseases. Handb Exp Pharmacol, 2013, 247–264.
Prentice, P.M., Schoemaker, M.H., Vervoort, J., Hettinga, K., Lambers, T.T., Van Tol, EaF., Acerini, C.L., Olga, L., Petry, C.J., Hughes, I.A., Koulman, A., Ong, K.K., Dunger, D.B., Human milk short-chain fatty acid composition is associated with adiposity outcomes in infants. J Nutr 149 (2019), 716–722.
Ragaa, N.M., Korany, R.M.S., Mohamed, F.F., Effect of thyme and/or formic acid dietary supplementation on broiler performance and immunity. Agriculture and Agricultural Science Procedia 10 (2016), 270–279.
Ragsdale, S.W., Pierce, E., Acetogenesis and the wood-ljungdahl pathway of co2 fixation. Biochim Biophys Acta Protein Proteonomics 1784 (2008), 1873–1898.
Rahman, M.M., Kukita, A., Kukita, T., Shobuike, T., Nakamura, T., Kohashi, O., Two histone deacetylase inhibitors, trichostatin a and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. Blood 101 (2003), 3451–3459.
Richards, L.B., Li, M., Folkerts, G., Henricks, PaJ., Garssen, J., Van Esch, B., Butyrate and propionate restore the cytokine and house dust mite compromised barrier function of human bronchial airway epithelial cells. Int J Mol Sci, 22, 2021, 16.
Rogler, G., Rosano, G., The heart and the gut. Eur Heart J 35 (2014), 426–430.
Rufting, S., Xenaki, D., Malouf, M., Horvat, J.C., Wood, L.G., Hansbro, P.M., Oliver, B.G., Short-chain fatty acids increase tnf alpha-induced inflammation in primary human lung mesenchymal cells through the activation of p38 mapk. Am J Physiol Lung Cell Mol Physiol 316 (2019), L157–L174.
Saleri, R., Borghetti, P., Ravanetti, F., Cavalli, V., Ferrari, L., De Angelis, E., Andrani, M., Martelli, P., Effects of different short-chain fatty acids (scfa) on gene expression of proteins involved in barrier function in ipec-j2. Porcine Health Management, 8, 2022, 13.
Scott, K.P., Martin, J.C., Campbell, G., Mayer, C.D., Flint, H.J., Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium "roseburia inulinivorans". J Bacteriol 188 (2006), 4340–4349.
Silva, Y.P., Bernardi, A., Frozza, R.L., The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol, 11, 2020, 14.
Singh, N., Gurav, A., Sivaprakasam, S., Brady, E., Padia, R., Shi, H.D., Thangaraju, M., Prasad, P.D., Manicassamy, S., Munn, D.H., Lee, J.R., Offermanns, S., Ganapathy, V., Activation of gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40 (2014), 128–139.
Stinson, L.F., Gay, M.C.L., Koleva, P.T., Eggesb, M., Johnson, C.C., Wegienka, G., Du Toit, E., Shimojo, N., Munblit, D., Campbell, D.E., Prescott, S.L., Geddes, D.T., Kozyrskyj, A.L., Human milk from atopic mothers has lower levels of short chain fatty acids. Front Immunol, 11, 2020, 9.
Sun, Y.Y., Zhou, C.X., Chen, Y.M., He, X.Z., Gao, F., Xue, D., Quantitative increase in short-chain fatty acids, especially butyrate protects kidney from ischemia/reperfusion injury. J Invest Med 70 (2022), 29–35.
Tan, P., Fu, H.Y., Ma, X., Design, optimization, and nanotechnology of antimicrobial peptides: from exploration to applications. Nano Today, 39, 2021, 41.
Tang, G., Du, Y., Guan, H.C., Jia, J.S., Zhu, N., Shi, Y.P., Rong, S., Yuan, W.J., Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and ffa2-mediated pi3k/akt/mtor signals. Br J Pharmacol 179 (2022), 159–178.
Teng, F., Wang, P., Yang, L., Ma, Y., Day, L., Quantification of fatty acids in human, cow, buffalo, goat, yak, and camel milk using an improved one-step gc-fid method. Food Anal Methods 10 (2017), 2881–2891.
Trapecar, M., Communal, C., Velazquez, J., Maass, C.A., Huang, Y.J., Schneider, K., Wright, C.W., Butty, V., Eng, G., Yilmaz, O., Trumper, D., Griffith, L.G., Gut-liver physiomimetics reveal paradoxical modulation of ibd-related inflammation by short-chain fatty acids. Cell Systems 10 (2020), 223–239.
Trompette, A., Gollwitzer, E.S., Pattaroni, C., Lopez-Mejia, I.C., Riva, E., Pernot, J., Ubags, N., Fajas, L., Nicod, L.P., Marsland, B.J., Dietary fiber confers protection against flu by shaping ly6c(-) patrolling monocyte hematopoiesis and cd8(+) t cell metabolism. Immunity 48 (2018), 992–1005.
Trompette, A., Gollwitzer, E.S., Yadava, K., Sichelstiel, A.K., Sprenger, N., Ngom-Bru, C., Blanchard, C., Junt, T., Nicod, L.P., Harris, N.L., Marsland, B.J., Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20 (2014), 159–166.
Tuohy, K.M., Fava, F., Viola, R., 'The way to a man's heart is through his gut microbiota' - dietary pro- and prebiotics for the management of cardiovascular risk. Proc Nutr Soc 73 (2014), 172–185.
Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., Gordon, J.I., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 (2006), 1027–1031.
Vaziri, N.D., Liu, S.M., Lau, W.L., Khazaeli, M., Nazertehrani, S., Farzaneh, S.H., Kieffer, D.A., Adams, S.H., Martin, R.J., High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS One, 9, 2014, 15.
Venegas, D.P., De La Fuente, M.K., Landskron, G., Gonzalez, M.J., Quera, R., Dijkstra, G., Harmsen, H.J.M., Faber, K.N., Hermoso, M.A., Short chain fatty acids (scfas)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol, 10, 2019, 1 10, 277, 2019.
Vieira, A.T., Galvao, I., Macia, L.M., Sernaglia, E.M., Vinolo, MaR., Garcia, C.C., Tavares, L.P., Amaral, F.A., Sousa, L.P., Martins, F.S., Mackay, C.R., Teixeira, M.M., Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice. J Leukoc Biol 101 (2017), 275–284.
Vieira, A.T., Macia, L., Galvao, I., Martins, F.S., Canesso, M.C.C., Amaral, F.A., Garcia, C.C., Maslowski, K.M., De Leon, E., Shim, D., Nicoli, J.R., Harper, J.L., Teixeira, M.M., Mackay, C.R., A role for gut microbiota and the metabolite-sensing receptor gpr43 in a murine model of gout. Arthritis Rheumatol 67 (2015), 1646–1656.
Villa, C.R., Ward, W.E., Comelli, E.M., Gut microbiota- bone axis. Crit Rev Food Sci Nutr 57 (2017), 1664–1672.
Vourakis, M., Mayer, G., Rousseau, G., The role of gut microbiota on cholesterol metabolism in atherosclerosis. Int J Mol Sci, 22, 2021, 20.
Waghulde, H., Cheng, X., Galla, S., Mell, B., Cai, J.W., Pruett-Miller, S.M., Vazquez, G., Patterson, A., Kumar, M.V., Joe, B., Attenuation of microbiotal dysbiosis and hypertension in a crispr/cas9 gene ablation rat model of gper1. Hypertension 72 (2018), 1125–1132.
Wall, R., Ross, R.P., Shanahan, F., O'mahony, L., O'mahony, C., Coakley, M., Hart, O., Lawlor, P., Quigley, E.M., Kiely, B., Fitzgerald, G.F., Stanton, C., Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am J Clin Nutr 89 (2009), 1393–1401.
Wang, D., Day, E.A., Townsend, L.K., Djordjevic, D., Jorgensen, S.B., Steinberg, G.R., Gdf15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat Rev Endocrinol 17 (2021), 592–607.
Wang, S.Q., Lv, D., Jiang, S.H., Jiang, J.P., Liang, M., Hou, F.F., Chen, Y., Quantitative reduction in short-chain fatty acids, especially butyrate, contributes to the progression of chronic kidney disease. Clin Sci 133 (2019), 1857–1870.
Welch, C.B., Ryman, V.E., Pringle, T.D., Lourenco, J.M., Utilizing the gastrointestinal microbiota to modulate cattle health through the microbiome-gut-organ axes. Microorganisms, 10, 2022, 21.
Wenzel, T.J., Gates, E.J., Ranger, A.L., Klegeris, A., Short-chain fatty acids (scfas) alone or in combination regulate select immune functions of microglia-like cells. Mol Cell Neurosci, 105, 2020, 10.
Wigg, A.J., Roberts-Thomson, I.C., Dymock, R.B., Mccarthy, P.J., Grose, R.H., Cummins, A.G., The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 48 (2001), 206–211.
Wong, R.J., Cheung, R., Ahmed, A., Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the u. S. Hepatology 59 (2014), 2188–2195.
Wright, J.L., Cosio, M., Churg, A., Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 295 (2008), L1–L15.
Xi, Y., Sun, W., Ding, L.K., Yan, M., Sun, C., Zhang, M., Li, S.Y., Qian, X., Ma, J., Wu, L., Three important short-chain fatty acids (scfas) attenuate the inflammatory response induced by 5-fu and maintain the integrity of intestinal mucosal tight junction. BMC Immunol, 23, 2022, 13.
Xu, J.M., Chen, X., Yu, S.Q., Su, Y., Zhu, W.Y., Effects of early intervention with sodium butyrate on gut microbiota and the expression of inflammatory cytokines in neonatal piglets. PLoS One, 11, 2016, 20.
Yang, F., Chen, H.W., Gao, Y.H., An, N., Li, X.Y., Pan, X.D., Yang, X.Y., Tian, L., Sun, J.H., Xiong, X.J., Xing, Y.W., Gut microbiota-derived short-chain fatty acids and hypertension: mechanism and treatment. Biomed Pharmacother, 130, 2020, 15.
Yao, J., Chen, Y., Xu, M., The critical role of short-chain fatty acids in health and disease: a subtle focus on cardiovascular disease-nlrp3 inflammasome-angiogenesis axis. Clin Immunol, 238, 2022, 11.
Ye, J.Z., Lv, L.X., Wu, W.R., Li, Y.T., Shi, D., Fang, D.Q., Guo, F.F., Jiang, H.Y., Yan, R., Ye, W.C., Li, L.J., Butyrate protects mice against methionine-choline-deficient diet-induced non-alcoholic steatohepatitis by improving gut barrier function, attenuating inflammation and reducing endotoxin levels. Front Microbiol, 9, 2018, 16.
Yoshida, H., Ishii, M., Akagawa, M., Propionate suppresses hepatic gluconeogenesis via gpr43/ampk signaling pathway. Arch Biochem Biophys, 672, 2019, 13.
Zeng, H.W., Umar, S., Rust, B., Lazarova, D., Bordonaro, M., Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int J Mol Sci, 20, 2019, 19.
Zhang, H.Y., Qin, S.M., Zhu, Y., Zhang, X.L., Du, P.F., Huang, Y.Q., Michiels, J., Zeng, Q.F., Chen, W., Dietary resistant starch from potato regulates bone mass by modulating gut microbiota and concomitant short-chain fatty acids production in meat ducks. Front Nutr, 9, 2022, 16.
Zhang, L., Ko, C.Y., Zeng, Y.M., Immunoregulatory effect of short-chain fatty acids from gut microbiota on obstructive sleep apnea-associated hypertension. Nat Sci Sleep 14 (2022), 393–405.