Odeh M Godeneli K Li E Tangirala R Zhou H Zhang X Zhang Z-H Sipahigil A 2025 Nat. Phys. 21 406 10.1038/s41567-024-02740-5
Martin A Guerreiro T Tiranov A Designolle S Fröwis F Brunner N Huber M Gisin N 2017 Phys. Rev. Lett. 118 110501 10.1103/PhysRevLett.118.110501
Erhard M Krenn M Zeilinger A 2020 Nat. Rev. Phys. 2 365 10.1038/s42254-020-0193-5
Wang Y Hu Z Sanders B C Kais S 2020 Front. Phys. 8 589504 10.3389/fphy.2020.589504
Awschalom D et al 2021 Phys. Rev. X Quantum 2 017002 10.1103/PRXQuantum.2.017002
Ecker S et al 2019 Phys. Rev. X 9 041042 10.1103/PhysRevX.9.041042
Cerf N J Bourennane M Karlsson A Gisin N 2002 Phys. Rev. Lett. 88 127902 10.1103/PhysRevLett.88.127902
Sheridan L Scarani V 2010 Phys. Rev. A 82 030301 (R) 10.1103/PhysRevA.82.030301
Huber M Pawłowski M 2013 Phys. Rev. A 88 032309 10.1103/PhysRevA.88.032309
Bouchard F et al 2017 Optica 4 1429 10.1364/OPTICA.4.001429
Shlyakhov A R Zemlyanov V V Suslov M V Lebedev A V Paraoanu G S Lesovik G B Blatter G 2018 Phys. Rev. A 97 022115 10.1103/PhysRevA.97.022115
Vértesi T Pironio S Brunner N 2010 Phys. Rev. Lett. 104 060401 10.1103/PhysRevLett.104.060401
Grassl M Kong L Wei Z Yin Z-Q Zeng B 2018 IEEE Trans. Inf. Theory 64 4674 10.1109/TIT.2018.2790423
Zheng H Li Z Liu J Strelchuk S Kondor R 2023 Phys. Rev. X Quantum 4 020327 10.1103/PRXQuantum.4.020327
Kok P Munro W J Nemoto K Ralph T C Dowling J P Milburn G J 2007 Rev. Mod. Phys. 79 135 10.1103/RevModPhys.79.135
Reimer C et al 2019 Nat. Phys. 15 148 10.1038/s41567-018-0347-x
Erhard M Fickler R Krenn M Zeilinger A 2018 Light Sci. Appl. 7 17146 10.1038/lsa.2017.146
Willner A E Pang K Song H Zou K Zhou H 2021 Appl. Phys. Rev. 8 041312 10.1063/5.0054885
Schrader D Dotsenko I Khudaverdyan M Miroshnychenko Y Rauschenbeutel A Meschede D 2004 Phys. Rev. Lett. 93 150501 10.1103/PhysRevLett.93.150501
Henriet L Beguin L Signoles A Lahaye T Browaeys A Reymond G-O Jurczak C 2020 Quantum 4 327 10.22331/q-2020-09-21-327
Low P J White B M Cox A A Day M L Senko C 2020 Phys. Rev. Res. 2 033128 10.1103/PhysRevResearch.2.033128
Ringbauer M Meth M Postler L Stricker R Blatt R Schindler P Monz T 2022 Nat. Phys. 18 1053 10.1038/s41567-022-01658-0
Kasper V González-Cuadra D Hegde A Xia A Dauphin A Huber F Tiemann E Lewenstein M Jendrzejewski F Hauke P 2022 Quantum Sci. Technol. 7 015008 10.1088/2058-9565/ac2d39
Cervera-Lierta A Krenn M Aspuru-Guzik A Galda A 2022 Phys. Rev. Appl. 17 024062 10.1103/PhysRevApplied.17.024062
Bradley C E Randall J Abobeih M H Berrevoets R C Degen M J Bakker M A Markham M Twitchen D J Taminiau T H 2019 Phys. Rev. X 9 031045 10.1103/PhysRevX.9.031045
Moreno-Pineda E Godfrin C Balestro F Wernsdorfer W Ruben M 2018 Chem. Soc. Rev. 47 501 10.1039/C5CS00933B
Sawant R Blackmore J A Gregory P D Mur-Petit J Jaksch D Aldegunde J Hutson J M Tarbutt M R Cornish S L 2020 New J. Phys. 22 013027 10.1088/1367-2630/ab60f4
Lin G-D Yelin S F 2012 Phys. Rev. A 85 033831 10.1103/PhysRevA.85.033831
Norcia M A Thompson J K 2016 Phys. Rev. X 6 011025 10.1103/PhysRevX.6.011025
Norris L M Trail C M Jessen P S Deutsch I H 2012 Phys. Rev. Lett. 109 173603 10.1103/PhysRevLett.109.173603
Lee T E Chan C-K Yelin S F 2014 Phys. Rev. A 90 052109 10.1103/PhysRevA.90.052109
Chase B A Geremia J M 2008 Phys. Rev. A 78 052101 10.1103/PhysRevA.78.052101
Xu M Tieri D A Holland M J 2013 Phys. Rev. A 87 062101 10.1103/PhysRevA.87.062101
Shammah N Ahmed S Lambert N De Liberato S Nori F 2018 Phys. Rev. A 98 063815 10.1103/PhysRevA.98.063815
Gegg M Richter M 2016 Sci. Rep. 7 16304 10.1038/s41598-017-16178-8
Gegg M Richter M 2016 New J. Phys. 18 043037 10.1088/1367-2630/18/4/043037
Huybrechts D 2021 PhD Thesis Universiteit Antwerpen, Faculteit Wetenschappen, Departement Fysica
Reina J H Quiroga L Johnson N F 2002 Phys. Rev. A 65 032326 10.1103/PhysRevA.65.032326
Kirton P Keeling J 2017 Phys. Rev. Lett. 118 123602 10.1103/PhysRevLett.118.123602
White A D Trivedi R Narayanan K Vučković J 2022 ACS Photonics 9 2467 72 2467-72 10.1021/acsphotonics.2c00581
Sukharnikov V Chuchurka S Benediktovitch A Rohringer N 2023 Phys. Rev. A 107 053707 10.1103/PhysRevA.107.053707
Verstraelen W Huybrechts D Roscilde T Wouters M 2023 PRX Quantum 4 030304 10.1103/PRXQuantum.4.030304
Baragiola B Q Chase B A Geremia J M 2010 Phys. Rev. A 81 032104 10.1103/PhysRevA.81.032104
Damanet F Braun D Martin J 2016 Phys. Rev. A 94 033838 10.1103/PhysRevA.94.033838
Zhang Y Zhang Y-X Mølmer K 2018 New J. Phys. 20 112001 10.1088/1367-2630/aaec36
Huybrechts D Minganti F Nori F Wouters M Shammah N 2020 Phys. Rev. B 101 214302 10.1103/PhysRevB.101.214302
Shankar A Reilly J T Jäger S B Holland M J 2021 Phys. Rev. Lett. 127 073603 10.1103/PhysRevLett.127.073603
Lentrodt D 2021 PhD Thesis Heidelberg University Library
Yadin B Morris B Brandner K 2023 Phys. Rev. Res. 5 033018 10.1103/PhysRevResearch.5.033018
Nakajima S 1958 Prog. Theor. Phys. 20 948 10.1143/PTP.20.948
Zwanzig R 1960 J. Chem. Phys. 33 1338 10.1063/1.1731409
Hall M J W Cresser J D Li L Andersson E 2014 Phys. Rev. A 89 042120 10.1103/PhysRevA.89.042120
Lindblad G 1976 Commun. Math. Phys. 48 119 10.1007/BF01608499
Breuer H-P Pettruccione F 2002 The Theory of Open Quantum Systems Oxford University Press
Schaller G Brandes T 2008 Phys. Rev. A 78 022106 10.1103/PhysRevA.78.022106
Tscherbul T V Brumer P 2015 J. Chem. Phys. 142 104108 10.1063/1.4908130
Mozgunov E Lidar D 2020 Quantum 4 227 10.22331/q-2020-02-06-227
Nathan F Rudner M S 2020 Phys. Rev. B 102 115109 10.1103/PhysRevB.102.115109
Trushechkin A 2021 Phys. Rev. A 103 062226 10.1103/PhysRevA.103.062226
Davidović D 2022 J. Phys. A: Math. Theor. 55 455301 10.1088/1751-8121/ac9f30
Merkli M 2022 Quantum 6 615 10.22331/q-2022-01-03-615
The individual qudit basis states are here denoted by | 0 ⟩, …, | d − 1 ⟩
Toth G Guhne O 2009 Phys. Rev. Lett. 102 170503 10.1103/PhysRevLett.102.170503
The action of the permutation operator P ^ σ on the computational basis states | i 1, …, i N ⟩ ( i k = 0, …, d − 1 for k = 1, …, N ) is standardly defined by P ^ σ | i 1, …, i N ⟩ = | i σ − 1 ( 1 ), …, i σ − 1 ( N ) ⟩
Ceccherini-Silberstein T Scarabotti F Tolli F 2010 Representation Theory of the Symmetric Groups, The Okounkov-Vershik Approach, Character Formulas and Partition Algebras Cambridge University Press
The product of two PI operators is PI and so is the Hermitian conjugate of a PI operator: the commutant L S N ( H ) is a ∗ -algebra of operators on H
As a reminder, the Hermitian conjugate of a superoperator L is the unique superoperator L † such that Tr ( A ^ † L † [ B ^ ] ) = Tr ( L [ A ^ ] † B ^ ), for all A ^, B ^ ∈ L ( H )
Within the formalism of the superoperators of permutation P σ, a PI operator A ^ PI is an operator that satisfies P σ [ A ^ PI ] = A ^ PI, ∀ σ
This means that each superoperator P σ defines a ∗ -isomorphism on the Liouville space L ( H )
Indeed, ∀ σ, n, and local operator X ^, we have P σ [ X ^ ( n ) ] = X ^ ( σ ( n ) ), which implies { P σ [ X ^ ( n ) ] } = { X ^ ( σ ( n ) ) } = { X ^ ( n ) } and P σ [ X ^ c ] = X ^ c
The commutant L S N ( H ) is the subspace of PI operators, i.e., of operators A ^ PI that satisfy P σ [ A ^ PI ] = A ^ PI, ∀ σ [68]. It is therefore nothing but the symmetric subspace of ( L ( H d ) ) ⊗ N ≅ L ( H d ⊗ N ) = L ( H )
Bacon D Chuang I L Harrow A W 2006 Phys. Rev. Lett. 97 170502 10.1103/PhysRevLett.97.170502
Goodman R Wallach N R 2010 Symmetry, Representations and Invariants Springer
The irreducible representations of the symmetric group S N are indexed by the partitions ν of N . A partition ν of an integer N ≥ 0 is a sequence of integers ( ν 1, …, ν l ), with ν 1 ≥ ν 2 ≥ … ≥ ν l > 0 and ∑ i = 1 l ν i = N . We write in this case ν ⊢ N . The numbers ν i are called the parts of ν and the number l of parts is the length of ν, denoted by l ( ν ) . The weight of ν is the sum of its parts, N, also denoted by | ν | . A partition of an integer N of at most d parts ( d > 0 ) is a partition ν with l ( ν ) ≤ d . We write in this case ν ⊢ ( N, d ) . The case N = 0 is particular and only counts the so-called empty partition of length 0. The irreducible representations of the general linear group GL(d) are indexed by so-called highest weights ν ≡ ( ν 1, …, ν d ), with ν 1 ≥ ⋯ ≥ ν d and ν i ( i = 1, …, d ) positive or negative integers. In the context of the Schur-Weyl duality, only GL(d) irreps of highest weights ν with positive parts play a role, in which case ν identifies to a partition of at most d parts (including the empty partition of length 0). The irreducible representations of the unitary group U(d) are indexed similarly.
The dimension of the irreducible representation S ν is given by the elegant hook length formula: f ν = N ! / ∏ ( i, j ) ∈ ν h ( i, j ), where the product runs over the hook length h ( i, j ) of each box (i, j) of the diagram ν [103]. The historical Frobenius-Young determinantal formula [104, 105] can also be used instead: for ν ≡ ( ν 1, …, ν l ), f ν = N ! ∏ i < j ( l i − l j ) / ∏ i l i ! with l i = ν i + l ( ν ) − i and l ( ν ) the length of partition ν. In particular, for ν = ( N ), f ν = 1, and for ν ≡ ( ν 1, ν 2 ) ⊢ ( N, 2 ), f ν = ( ν 1 − ν 2 + 1 ) ( N ν 2 ) / ( ν 1 + 1 ) . This also allows one to express the ratio [100] r ν ν − τ ≡ N f ν − τ / f ν in the form r ν ν − τ = l τ ∏ i ≠ τ ( l i − l τ + 1 ) / ( l i − l τ )
The dimension of the irreducible representation U ν ( d ) reads f ν ( d ) = ∏ 1 ⩽ i < j ⩽ d ( ν i − ν j + j − i ) / ( j − i ), with ν i ≡ 0, ∀ i > l ( ν i ) (Weyl dimension formula). In particular, f ( . ) ( d ) = 1 [(.) is the empty partition of length 0 and U ( . ) ( d ) is the trivial representation], f ( 1 ) ( d ) = d, and f ( N ) ( d ) = ( N + d − 1 N ), ∀ N > 0 . The number f ν ( d ) can also be expressed in the form f ν ( d ) = s ν ( 1, …, 1 ), where ( 1, …, 1 ) is a d-uple and s ν ( x 1, …, x d ) is the Schur’s polynomial in the d variables x 1, …, x d associated to partition ν (an homogeneous symmetric polynomial of degree | ν |, with | ν | the weight of ν) [65]
The irreps of the subgroups Si ( 1 ⩽ i < N ) a Schur basis vector | ν, T ν, W ν ⟩ belongs to are given by the shapes of the SYT Tν restricted to only boxes 1 to i. Similarly, the irreps of the subgroups U(k) ( 1 ⩽ k < d ) the vector | ν, T ν, W ν ⟩ belongs to are given by the shapes of the SWT Wν restricted to only boxes 0 to k − 1
Vilenkin N J Klimyk A U 1992 Representation of Lie Groups and Special Functions vol 1-3 Kluwer Academic Publishers
f ν P σ [ F ^ ν ( W ν, W ν ′ ) ] = ∑ λ, T λ, W λ ∑ λ ′, T λ ′ ′, W λ ′ ′ ∑ T ν | λ, T λ, W λ ⟩ ⟨ λ, T λ, W λ | P ^ σ | ν, T ν, W ν ⟩ ⟨ ν, T ν, W ν ′ | P ^ σ † | λ ′, T λ ′ ′, W λ ′ ′ ⟩ ⟨ λ ′, T λ ′ ′, W λ ′ ′ | = ∑ ν, T ν, T ν ′, T ν | ν, T ν, W ν ⟩ ⟨ T ν | σ ^ | T ν ⟩ ⟨ T ν | σ ^ † | T ν ′ ⟩ ⟨ ν, T ν ′, W ν ′ | = f ν F ^ ν ( W ν, W ν ′ ), with σ ^ and | T ν ⟩ the representation operators and GT-basis states in the S ν -irrep of the symmetric group SN, respectively
Hence, replacing F ^ ν ( W ν, W ν ′ ) and F ^ ν ( W ν ′, W ν ) by ( F ^ ν ( W ν, W ν ′ ) + F ^ ν ( W ν ′, W ν ) ) / 2 and i ( F ^ ν ( W ν, W ν ′ ) − F ^ ν ( W ν ′, W ν ) ) / 2, ∀ ν ⊢ ( N, d ), W ν, W ν ′ ∈ W ν : W ν ≠ W ν ′, yields together with the operators F ^ ν ( W ν, W ν ) an orthonormal basis of PI Hermitian operators in the commutant L S N ( H ) . In addition, having Tr [ F ^ ν ( W ν, W ν ′ ) ] = f ν δ W ν, W ν ′, an orthogonal basis in the subspace of traceless PI Hermitian operators is straightfowardly obtained by further replacing all but one operators F ^ ν ( W ν, W ν ) by traceless linear combinations of them
The structure constant of the commutant operator algebra follows immediately: F ^ λ ( W λ, W λ ′ ) F ^ μ ( W μ, W μ ′ ) = ∑ ν, W ν, W ν ′ c λ, W λ, W λ ′; μ, W μ, W μ ′ ν, W ν, W ν ′ F ^ ν ( W ν, W ν ′ ), with f λ c λ, W λ, W λ ′; μ, W μ, W μ ′ ν, W ν, W ν ′ = δ λ, μ δ λ, ν δ W λ ′, W μ δ W λ, W ν δ W μ ′, W ν ′
The product of two ν-type operators is a ν-type operator and so is the Hermitian conjugate of a ν-type operator: each operator subspace L ν ( H ) is a ∗ -algebra of operators on H and a subalgebra of the commutant L S N ( H )
The diagram or shape of a partition ν ≡ ( ν 1, …, ν l ) ⊢ N is an array of N boxes arranged on l left-justified rows, with row i ( 1 ⩽ i ⩽ l ) containing νi boxes. The shape of a partition ν is usually denoted by the same symbol ν. An inner corner of a shape ν is a box ∈ ν whose removal leaves us with a valid partition shape. An outer corner of ν is a box ∉ ν whose addition produces a valid partition shape
Having ∑ λ − f λ − = f λ, we get in particular K 1 ^ ( λ, W λ, W ~ λ ) = N δ W λ, W ~ λ, so that equation (32) yields as expected from definition K 1 ^, 1 ^ [ F ^ ν ( W ν, W ν ′ ) ] = N F ^ ν ( W ν, W ν ′ ) . A similar expression as equation (32) is also directly obtained for the operator K 1 ^, Y ^ [ F ^ ν ( W ν, W ν ′ ) ] using the equality K 1 ^, Y ^ [ F ^ ν ( W ν, W ν ′ ) ] = K Y ^, 1 ^ [ F ^ ν ( W ν ′, W ν ) ] †
For any operator L ^, D L ^ † [ ρ ^ ] = L ^ † ρ ^ L ^ − 1 2 L ^ † L ^ ρ ^ − 1 2 ρ ^ L ^ † L ^, so that if L ^ is Hermitian, then D L ^ † = D L ^
Riera-Campeny A Moreno-Cardoner M Sanpera A 2020 Quantum 4 270 10.22331/q-2020-05-25-270
Passarelli G Lucignano P Fazio R Russomanno A 2022 Phys. Rev. B 106 224308 10.1103/PhysRevB.106.224308
Lewis-Swan R J Safavi-Naini A Bollinger J J Rey A M 2019 Nat. Commun. 10 1 10.1038/s41467-019-09436-y
Jin J Biella A Viyuela O Mazza L Keeling J Fazio R Rossini D 2016 Phys. Rev. X 6 031011 10.1103/PhysRevX.6.031011
Nagy A Savona V 2019 Phys. Rev. Lett. 122 250501 10.1103/PhysRevLett.122.250501
Hartmann M J Carleo G 2019 Phys. Rev. Lett. 122 250502 10.1103/PhysRevLett.122.250502
Vicentini F Biella A Regnault N Ciuti C 2019 Phys. Rev. Lett. 122 250503 10.1103/PhysRevLett.122.250503
Li B Ahmed S Saraogi S Lambert N Nori F Pitchford A Shammah N 2022 Quantum 6 630 10.22331/q-2022-01-24-630
Wesenberg J Mølmer K 2002 Phys. Rev. A 65 062304 10.1103/PhysRevA.65.062304
Campos-Gonzalez-Angulo J A Yuen-Zhou J 2022 J. Chem. Phys. 156 194308 10.1063/5.0087234
Pérez-Sánchez J B Koner A Stern N P Yuen-Zhou J 2023 Proc. Natl Acad. Sci. 120 e23002811 20 10.1073/pnas.2300281120
Sierant P Chiriacò G Surace F M Sharma S Turkeshi X Dalmonte M Fazio R Pagano G 2022 Quantum 6 638 10.22331/q-2022-02-02-638
Fulton W Harris J 2004 Representation Theory Springer
Gelfand I M Tsetlin M L 1950 Dokl. Akad. Nauk SSSR 71 825-828, 1017 20 825-828, 1017-20
For any partition ν, ν ∓ τ denotes the partition obtained by the removal [addition] of the inner [outer] corner of ν at row τ. We have μ = ν ± τ ⇔ ν = μ ∓ τ, so that μ ∈ { ν ± } ⇔ ν ∈ { μ ∓ }
For any partition ν ∓, the row at which the removal [addition] of the inner [outer] corner of ν occurs is denoted by τ ν − / ν [ τ ν + / ν ]. We have τ ν ± / ν = τ ν / ν ±
The trace is invariant under cyclic permutations, so that Tr ( P σ [ A ^ ] ) = Tr ( A ^ ) . As a result, we get Tr ( A ^ PI † B ^ ) = Tr ( P σ [ A ^ PI † B ^ ] ) = Tr ( P σ [ A ^ PI † ] P σ [ B ^ ] ) = Tr ( A ^ PI † P σ [ B ^ ] ), ∀ σ . Alternatively, we can also write Tr ( A ^ PI † P σ [ B ^ ] ) = Tr ( P σ † [ A ^ PI ] † B ^ ) = Tr ( P σ − 1 [ A ^ PI ] † B ^ ) = Tr ( A ^ PI † B ^ )
Frame J S Robinson G D B Thrall R M 1954 Can. J. Math. 6 316 10.4153/CJM-1954-030-1
Frobenius G 1900 Uber die Charaktere der symmetrischen Gruppe Gesammelte Abhandlung III Sitzber. Akad. Wiss. pp 516 34 pp 516-34
Frobenius G 1903 Uber die Charakterische Einheiten der symmetrischen Gruppe Gesammelte Abhandlung III Sitzber. Akad. Wiss. pp 328 58 pp 328-58
Young A 1902 Proc. Lond. Math. Soc. 34 361 97 361-97