Arabidopsis thaliana root responses to Cd exposure: insights into root tip-specific changes and the role of HY5 in limiting Cd accumulation and promoting tolerance
Richtmann, Ludwig; Prochetto, Santiago Daniel; Thiébaut, Noémieet al.
metal homeostasis; cadmium; RNA sequencing; flavonoids; ICP; ELONGATED HYPOCOTYL 5; Arabidopsis thaliana; root tip
Abstract :
[en] Cadmium (Cd) is a major environmental pollutant with high toxicity. While Cd exposure reduces root growth, its specific impact on the root meristem and differentiating parts remains poorly understood. This study investigates the spatial and temporal responses of Arabidopsis thaliana roots to Cd stress by dividing roots into root tips (RT) and remaining roots (RR) and employing transcriptomic, ionomic, and metabolomic analyses. Cd exposure altered mineral profiles, with RT accumulating less Cd but showing distinct changes in other elements compared to RR. Metabolomic analysis revealed root part-specific changes in phytochelatins, flavonoids, and glucosinolates. Transcriptomic data highlighted constitutive differences between RT and RR, reflecting functional specialization. Also, they revealed Cd-induced root part-specific and time-dependent transcriptional responses, including modulation of Fe-related genes. Phenotypic validation identified ELONGATED HYPOCOTYL 5 as a key regulator limiting Cd accumulation and promoting tolerance, as hy5 mutants exhibited increased Cd sensitivity and accumulation. Additionally, mutants of genes regulated by HY5, such as xyloglucan endotransglucosylase/hydrolase genes (XTH) and MYB12, also showed altered root growth under Cd stress, implicating cell wall remodeling and flavonoid biosynthesis in Cd responses. This study provides a spatially and temporally resolved understanding of Cd's impact on root growth, and highlights HY5's role in Cd tolerance, thereby advancing our knowledge of plant responses to trace metal excess.
Richtmann, Ludwig ✱; Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany ; Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
Prochetto, Santiago Daniel ✱; Université de Liège - ULiège > Département des sciences de la vie > Biologie végétale translationnelle ; Laboratory of Plant Physiology and Molecular Genetics, Universit e Libre de Bruxelles, Brussels, Belgium ; InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium
Thiébaut, Noémie ✱; Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium ; InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium,
Sarthou, Manon ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS) ; InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium,
Boutet, Stéphanie; Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, Versailles, France
Hanikenne, Marc ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS) ; InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Belgium,
Clemens, Stephan; Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
Verbruggen, Nathalie; Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
✱ These authors have contributed equally to this work.
Language :
English
Title :
Arabidopsis thaliana root responses to Cd exposure: insights into root tip-specific changes and the role of HY5 in limiting Cd accumulation and promoting tolerance
Abel, S. (2017) Phosphate scouting by root tips. Current Opinion in Plant Biology, 39, 168–177.
Agati, G., Brunetti, C., Dos Santos Nascimento, L.B., Gori, A., Lo Piccolo, E. & Tattini, M. (2025) Antioxidants by nature: an ancient feature at the heart of flavonoids' multifunctionality. New Phytologist, 245, 11–26.
An, X., Totozafy, J.-C., Peaucelle, A., Jones, C.Y., Willats, W.G.T., Höfte, H. et al. (2023) Contrasting Cd accumulation of Arabidopsis halleri populations: a role for (1→4)-β-galactan in pectin. Journal of Hazardous Materials, 445, 130581. Available from: https://doi.org/10.1016/j.jhazmat.2022.130581
Anders, S., Pyl, P.T. & Huber, W. (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics, 31, 166–169.
Bahmani, R., Kim, D., Modareszadeh, M. & Hwang, S. (2022) Cadmium enhances root hair elongation through reactive oxygen species in Arabidopsis. Environmental and Experimental Botany, 196, 104813.
Blum, R., Meyer, K.C., Wünschmann, J., Lendzian, K.J. & Grill, E. (2010) Cytosolic action of phytochelatin synthase. Plant Physiology, 153, 159–169.
Boelaert, J., Ollion, E. & Sodoge, J. (2021) aweSOM: Interactive self-organizing maps [dataset]. In: CRAN: Contributed packages. The R Foundation. Available from: https://doi.org/10.32614/cran.package.awesom
Bolger, A.M., Lohse, M. & Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England), 30, 2114–2120.
Boutet, S., Barreda, L., Perreau, F., Totozafy, J.-C., Mauve, C., Gakière, B. et al. (2022) Untargeted metabolomic analyses reveal the diversity and plasticity of the specialized metabolome in seeds of different Camelina sativa genotypes. The Plant Journal: For Cell and Molecular Biology, 110, 147–165.
Bruno, L., Pacenza, M., Forgione, I., Lamerton, L.R., Greco, M., Chiappetta, A. et al. (2017) In Arabidopsis thaliana cadmium impact on the growth of primary root by altering SCR expression and auxin-cytokinin cross-talk. Frontiers in Plant Science, 8, 1323.
Buckhout, T.J., Yang, T.J. & Schmidt, W. (2009) Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses. BMC Genomics, 10, 147.
Burko, Y., Seluzicki, A., Zander, M., Pedmale, U.V., Ecker, J.R. & Chory, J. (2020) Chimeric activators and repressors define HY5 activity and reveal a light-regulated feedback mechanism. The Plant Cell, 32, 967–983.
Bursch, K., Toledo-Ortiz, G., Pireyre, M., Lohr, M., Braatz, C. & Johansson, H. (2020) Identification of BBX proteins as rate-limiting cofactors of HY5. Nature Plants, 6, 921–928.
Chen, W., Zhao, L., Liu, L., Li, X., Li, Y., Liang, G. et al. (2021) Iron deficiency-induced transcription factors bHLH38/100/101 negatively modulate flowering time in Arabidopsis thaliana. Plant Science, 308, 110929.
Chen, X., Yao, Q., Gao, X., Jiang, C., Harberd, N.P. & Fu, X. (2016) Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Current Biology, 26, 640–646.
Cheng, C.-Y., Krishnakumar, V., Chan, A.P., Thibaud-Nissen, F., Schobel, S. & Town, C.D. (2017) Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. The Plant Journal, 89, 789–804.
Cheng, Z., Wang, C., Tang, F., Zhou, Y., Zhu, C. & Ding, Y. (2025) The cell wall functions in plant heavy metal response. Ecotoxicology and Environmental Safety, 299, 118326. Available from: https://doi.org/10.1016/j.ecoenv.2025.118326
Clemens, S., Aarts, M.G.M., Thomine, S. & Verbruggen, N. (2013) Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science, 18, 92–99.
Connolly, E.L., Fett, J.P. & Guerinot, M.L. (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. The Plant Cell, 14, 1347–1357.
Corso, M., Schvartzman, M.S., Guzzo, F., Souard, F., Malkowski, E., Hanikenne, M. et al. (2018) Contrasting cadmium resistance strategies in two metallicolous populations of Arabidopsis halleri. New Phytologist, 218, 283–297.
Cui, W., Wang, H., Song, J., Cao, X., Rogers, H.J., Francis, D. et al. (2017) Cell cycle arrest mediated by Cd-induced DNA damage in Arabidopsis root tips. Ecotoxicology and Environmental Safety, 145, 569–574.
Cui, Y., Cao, W., He, Y., Zhao, Q., Wakazaki, M., Zhuang, X. et al. (2019) A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells. Nature Plants, 5, 95–105.
Dello Ioio, R., Linhares, F.S., Scacchi, E., Casamitjana-Martinez, E., Heidstra, R., Costantino, P. et al. (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Current Biology, 17, 678–682.
Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S. et al. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21.
Elbourne, L.D.H., Tetu, S.G., Hassan, K.A. & Paulsen, I.T. (2016) TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Research, 45(D1), D320–D324. Available from: https://doi.org/10.1093/nar/gkw1068
Fan, S.K., Fang, X.Z., Guan, M.Y., Ye, Y.Q., Lin, X.Y., Du, S.T. et al. (2014) Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Frontiers in Plant Science, 5, 721.
Gaddam, S.R., Sharma, A., Bhatia, C. & Trivedi, P.K. (2024) A network comprising ELONGATED HYPOCOTYL 5, microRNA397b, and auxin-associated factors regulates root hair growth in Arabidopsis. Plant Physiology, 196(2), 1460–1474. Available from: https://doi.org/10.1093/plphys/kiae301
Gangappa, S.N. & Botto, J.F. (2016) The multifaceted roles of HY5 in plant growth and development. Molecular Plant, 9, 1353–1365.
Genschik, P., Marrocco, K., Bach, L., Noir, S. & Criqui, M.-C. (2014) Selective protein degradation: a rheostat to modulate cell-cycle phase transitions. Journal of Experimental Botany, 65, 2603–2615.
Gollhofer, J., Timofeev, R., Lan, P., Schmidt, W. & Buckhout, T.J. (2014) Vacuolar-iron-transporter1-like proteins mediate iron homeostasis in Arabidopsis. PLoS One, 9, e110468.
Gong, F., Yao, Z., Liu, Y., Sun, M. & Peng, X. (2021) H2O2 response gene 1/2 are novel sensors or responders of H2O2 and involve in maintaining embryonic root meristem activity in Arabidopsis thaliana. Plant Science, 310, 110981.
Grau, J. & Franco-Zorrilla, J.M. (2022) TDTHub, a web server tool for the analysis of transcription factor binding sites in plants. The Plant Journal, 111(4), 1203–1215. Available from: https://doi.org/10.1111/tpj.15873
Grillet, L., Lan, P., Li, W., Mokkapati, G. & Schmidt, W. (2018) IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nature Plants, 4, 953–963.
Guan, M., Chen, M. & Cao, Z. (2021) NRT2.1, a major contributor to cadmium uptake controlled by high-affinity nitrate transporters. Ecotoxicology and Environmental Safety, 218, 112269.
Guo, Z., Xu, J., Wang, Y., Hu, C., Shi, K., Zhou, J. et al. (2021) The phyB-dependent induction of HY5 promotes iron uptake by systemically activating FER expression. EMBO Reports, 22, e51944.
Haider, F.U., Liqun, C., Coulter, J.A., Cheema, S.A., Wu, J., Zhang, R. et al. (2021) Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887.
Hanikenne, M., Esteves, S.M., Fanara, S. & Rouached, H. (2021) Coordinated homeostasis of essential mineral nutrients: a focus on iron. Journal of Experimental Botany, 72, 2136–2153.
Hantzis, L.J., Kroh, G.E., Jahn, C.E., Cantrell, M., Peers, G., Pilon, M. et al. (2018) A program for iron economy during deficiency targets specific Fe proteins. Plant Physiology, 176, 596–610.
Harari-Steinberg, O., Ohad, I. & Chamovitz, D.A. (2001) Dissection of the light signal transduction pathways regulating the two early light-induced protein genes in Arabidopsis. Plant Physiology, 127, 986–997.
Hayami, N., Sakai, Y., Kimura, M., Saito, T., Tokizawa, M., Iuchi, S. et al. (2015) The responses of Arabidopsis early light-induced Protein2 to ultraviolet B, high light, and cold stress are regulated by a transcriptional regulatory unit composed of two elements. Plant Physiology, 169, 840–855.
He, L., Ma, H., Song, W., Zhou, Z., Ma, C. & Zhang, H. (2023) Arabidopsis COPT1 copper transporter uses a single histidine to regulate transport activity and protein stability. International Journal of Biological Macromolecules, 241, 124404.
Hollmann, F., Weber, M., Aarts, M.G.M. & Clemens, S. (2025) Engineering of nicotianamine synthesis enhances cadmium mobility in plants and results in higher seed cadmium concentrations. The Plant Journal, 122(2), e70181. Available from: https://doi.org/10.1111/tpj.70181
Howden, R., Goldsbrough, P.B., Andersen, C.R. & Cobbett, C.S. (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiology, 107, 1059–1066.
Huybrechts, M., Cuypers, A., Deckers, J., Iven, V., Vandionant, S., Jozefczak, M. et al. (2019) Cadmium and plant development: an agony from seed to seed. International Journal of Molecular Sciences, 20, 3971.
Inzé, D. & Veylder, L.D. (2006) Cell cycle regulation in plant development. Annual Review of Genetics, 40, 77–105.
Ishimaru, Y., Takahashi, R., Bashir, K., Shimo, H., Senoura, T., Sugimoto, K. et al. (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Scientific Reports, 2, 286.
Ismael, M.A., Elyamine, A.M., Moussa, M.G., Cai, M., Zhao, X. & Hu, C. (2019) Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 11, 255–277.
Jia, Z., Giehl, R.F.H., Hartmann, A., Estevez, J.M., Bennett, M.J. & von Wirén, N. (2023) A spatially concerted epidermal auxin signaling framework steers the root hair foraging response under low nitrogen. Current Biology, 33, 3926–3941e5.
Kaiser, S. & Scheuring, D. (2020) To lead or to follow: contribution of the plant vacuole to cell growth. Frontiers in Plant Science, 11, 553.
Kanno, S., Arrighi, J.-F., Chiarenza, S., Bayle, V., Berthomé, R., Péret, B. et al. (2016) A novel role for the root cap in phosphate uptake and homeostasis. eLife, 5, e14577.
Kim, S.A., LaCroix, I.S., Gerber, S.A. & Guerinot, M.L. (2019) The iron deficiency response in Arabidopsis thaliana requires the phosphorylated transcription factor URI. Proceedings of the National Academy of Sciences of the United States of America, 116, 24933–24942.
Kumar, S., Kumar, S. & Mohapatra, T. (2021) Interaction between macro- and micro-nutrients in plants. Frontiers in Plant Science, 12, 665583.
Lee, B., Koprivova, A. & Kopriva, S. (2011) The key enzyme of sulfate assimilation, adenosine 5′-phosphosulfate reductase, is regulated by HY5 in Arabidopsis. The Plant Journal, 67, 1042–1054.
Leonardo, B., Emanuela, T., Letizia, M.M., Antonella, M., Marco, M., Fabrizio, A. et al. (2021) Cadmium affects cell niches maintenance in Arabidopsis thaliana post-embryonic shoot and root apical meristem by altering the expression of WUS/WOX homolog genes and cytokinin accumulation. Plant Physiology and Biochemistry, 167, 785–794.
Lešková, A., Giehl, R.F.H., Hartmann, A., Farga¡ová, A. & von Wirén, N. (2017) Heavy metals induce iron deficiency responses at different hierarchic and regulatory levels. Plant Physiology, 174, 1648–1668.
Li, J., Zeng, J., Tian, Z. & Zhao, Z. (2024) Root-specific photoreception directs early root development by HY5-regulated ROS balance. Proceedings of the National Academy of Sciences, 121, e2313092121.
Li, Y., Jin, K., Bunker, E., Zhang, X., Luo, X., Liu, X. et al. (2018) Structural basis of the phosphorylation-independent recognition of cyclin D1 by the SCFFBXO31 ubiquitin ligase. Proceedings of the National Academy of Sciences of the United States of America, 115, 319–324.
Lin, Y.-F. & Aarts, M.G.M. (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cellular and Molecular Life Sciences, 69, 3187–3206.
Love, M.I., Huber, W. & Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.
Lux, A., Martinka, M., Vaculík, M. & White, P.J. (2011) Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany, 62, 21–37.
Mankotia, S., Dubey, A., Jakhar, P., Shikha, D., Koolath, V., Kumar, A. et al. (2025) ELONGATED HYPOCOTYL 5 (HY5) and POPEYE (PYE) regulate intercellular iron transport in plants. Plant, Cell & Environment, 48, 2647–2661.
Mankotia, S., Jakhar, P. & Satbhai, S.B. (2024) HY5: a key regulator for light-mediated nutrient uptake and utilization by plants. New Phytologist, 241, 1929–1935.
Mankotia, S., Singh, D., Monika, K., Kalra, M., Meena, H., Meena, V. et al. (2023) ELONGATED HYPOCOTYL 5 regulates BRUTUS and affects iron acquisition and homeostasis in Arabidopsis thaliana. The Plant Journal, 114, 1267–1284.
Marrocco, K., Bergdoll, M., Achard, P., Criqui, M.-C. & Genschik, P. (2010) Selective proteolysis sets the tempo of the cell cycle. Current Opinion in Plant Biology, 13, 631–639.
Mase, K. & Tsukagoshi, H. (2021) Reactive oxygen species link gene regulatory networks during Arabidopsis root development. Frontiers in Plant Science, 12, 660274.
Mehrtens, F., Kranz, H., Bednarek, P. & Weisshaar, B. (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiology, 138, 1083–1096.
Mitreiter, S. & Gigolashvili, T. (2021) Regulation of glucosinolate biosynthesis. Journal of Experimental Botany, 72, 70–91.
Müller, J., Toev, T., Heisters, M., Teller, J., Moore, K.L., Hause, G. et al. (2015) Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability. Developmental Cell, 33, 216–230.
Oyama, T., Shimura, Y. & Okada, K. (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes & Development, 11, 2983–2995.
Perilli, S., Di Mambro, R. & Sabatini, S. (2012) Growth and development of the root apical meristem. Current Opinion in Plant Biology, 15, 17–23.
Perilli, S., Moubayidin, L. & Sabatini, S. (2010) The molecular basis of cytokinin function. Current Opinion in Plant Biology, 13, 21–26.
Pischke, E., Barozzi, F., Colina Blanco, A.E., Kerl, C.F., Planer-Friedrich, B. & Clemens, S. (2022) Dimethylmonothioarsenate is highly toxic for plants and readily translocated to shoots. Environmental Science & Technology, 56, 10072–10083.
Prochetto, S., Reinheimer, R. & Stegmayer, G. (2024) evolSOM: an R package for analyzing conservation and displacement of biological variables with self-organizing maps. Bioinformatics Advances, 4, vbae124.
Rahim, H.U., Akbar, W.A. & Alatalo, J.M. (2022) A comprehensive literature review on cadmium (Cd) status in the soil environment and its immobilization by biochar-based materials. Agronomy, 12, 877.
Rai, V., Sanagala, R., Sinilal, B., Yadav, S., Sarkar, A.K., Dantu, P.K. et al. (2015) Iron availability affects phosphate deficiency-mediated responses, and evidence of cross-talk with auxin and zinc in Arabidopsis. Plant and Cell Physiology, 56, 1107–1123.
Rajniak, J., Giehl, R.F.H., Chang, E., Murgia, I., von Wirén, N. & Sattely, E.S. (2018) Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nature Chemical Biology, 14, 442–450.
Ren, M., Li, Y., Zhu, J., Zhao, K., Wu, Z. & Mao, C. (2023) Phenotypes and molecular mechanisms underlying the root response to phosphate deprivation in plants. International Journal of Molecular Sciences, 24, 5107.
Riaz, N. & Guerinot, M.L. (2021) All together now: regulation of the iron deficiency response. Journal of Experimental Botany, 72, 2045–2055.
Robe, K., Conejero, G., Gao, F., Lefebvre-Legendre, L., Sylvestre-Gonon, E., Rofidal, V. et al. (2021) Coumarin accumulation and trafficking in Arabidopsis thaliana: a complex and dynamic process. New Phytologist, 229, 2062–2079.
Robe, K., Stassen, M., Chamieh, J., Gonzalez, P., Hem, S., Santoni, V. et al. (2021) Uptake of Fe-fraxetin complexes, an IRT1 independent strategy for iron acquisition in Arabidopsis thaliana. bioRxiv. Available from: https://doi.org/10.1101/2021.08.03.454955
Růžička, K., Šimášková, M., Duclercq, J., Petrášek, J., Zažímalová, E., Simon, S. et al. (2009) Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proceedings of the National Academy of Sciences, 106, 4284–4289.
Sánchez-Calderón, L., López-Bucio, J., Chacón-López, A., Cruz-Ramírez, A., Nieto-Jacobo, F., Dubrovsky, J.G. et al. (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant and Cell Physiology, 46, 174–184.
Shahan, R., Hsu, C.W., Nolan, T.M., Cole, B.J., Taylor, I.W., Greenstreet, L. et al. (2022) A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Developmental Cell, 57, 543–560.e9.
Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L. & Jin, B. (2022) Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383, 132531.
Spielmann, J., Ahmadi, H., Scheepers, M., Weber, M., Nitsche, S., Carnol, M. et al. (2020) The two copies of the zinc and cadmium ZIP6 transporter of Arabidopsis halleri have distinct effects on cadmium tolerance. Plant, Cell & Environment, 43, 2143–2157.
Stracke, R., Favory, J.-J., Gruber, H., Bartelniewoehner, L., Bartels, S., Binkert, M. et al. (2010) The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant, Cell & Environment, 33, 88–103.
Tabata, R., Kamiya, T., Imoto, S., Tamura, H., Ikuta, K., Tabata, M. et al. (2022) Systemic regulation of iron acquisition by Arabidopsis in environments with heterogeneous iron distributions. Plant and Cell Physiology, 63, 842–854.
Tao, L., Zhu, H., Luo, X., Li, J., Ru, Y., Lv, J. et al. (2024) Manganese toxicity elicits the degradation of auxin transport carriers to restrain Arabidopsis root growth. Environmental and Experimental Botany, 225, 105863.
Thiébaut, N., Richtmann, L., Sarthou, M., Persson, D.P., Ranjan, A., Schloesser, M. et al. (2025) Specific redox and iron homeostasis responses in the root tip of Arabidopsis upon zinc excess. bioRxiv. Available from: https://doi.org/10.1101/2024.08.29.610234 (Accepted with minor revision in New Phytologist).
Trofimov, K., Mankotia, S., Ngigi, M., Baby, D., Satbhai, S.B. & Bauer, P. (2025) Shedding light on iron nutrition: exploring intersections of transcription factor cascades in light and iron deficiency signaling. Journal of Experimental Botany, 76, 787–802.
Tsukagoshi, H., Busch, W. & Benfey, P.N. (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell, 143, 606–616.
Vandepoele, K., Raes, J., De Veylder, L., Rouzé, P., Rombauts, S. & Inzé, D. (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. The Plant Cell, 14, 903–916.
Vélez-Bermúdez, I.C. & Schmidt, W. (2022) How plants recalibrate cellular iron homeostasis. Plant and Cell Physiology, 63, 154–162.
Vélez-Bermúdez, I.C. & Schmidt, W. (2023) Plant strategies to mine iron from alkaline substrates. Plant and Soil, 483, 1–25.
Veneklaas, E.J., Lambers, H., Bragg, J., Finnegan, P.M., Lovelock, C.E., Plaxton, W.C. et al. (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytologist, 195, 306–320.
Verbruggen, N., Hermans, C. & Schat, H. (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12, 364–372.
Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M.L., Briat, J.-F. et al. (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell, 14, 1223–1233.
von der Mark, C., Ivanov, R., Eutebach, M., Maurino, V.G., Bauer, P. & Brumbarova, T. (2020) Reactive oxygen species coordinate the transcriptional responses to iron availability in Arabidopsis. Journal of Experimental Botany, 72, 2181–2195.
Wang, H.-Q., Xuan, W., Huang, X.-Y., Mao, C. & Zhao, F.-J. (2021) Cadmium inhibits lateral root emergence in rice by disrupting OsPIN-mediated auxin distribution and the protective effect of OsHMA3. Plant and Cell Physiology, 62, 166–177.
Wang, R., Fei, Y., Pan, Y., Zhou, P., Adegoke, J.O., Shen, R. et al. (2023) IMA peptides function in iron homeostasis and cadmium resistance. Plant Science: An International Journal of Experimental Plant Biology, 336, 111868.
Ward, J.T., Lahner, B., Yakubova, E., Salt, D.E. & Raghothama, K.G. (2008) The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiology, 147, 1181–1191.
Wu, H., Chen, C., Du, J., Liu, H., Cui, Y., Zhang, Y. et al. (2012) Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiology, 158, 790–800.
Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z. et al. (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. The Innovation, 2, 100141.
Yuan, H.-M. & Huang, X. (2016) Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant, Cell & Environment, 39, 120–135.
Zhai, Z., Gayomba, S.R., Jung, H., Vimalakumari, N.K., Piñeros, M., Craft, E. et al. (2014) OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. The Plant Cell, 26, 2249–2264.
Zhang, H., He, H., Wang, X., Wang, X., Yang, X., Li, L. et al. (2011) Genome-wide mapping of the HY5 -mediated genenetworks in Arabidopsis that involve both transcriptional and post-transcriptional regulation. The Plant Journal, 65, 346–358.
Zhang, T., Zhu, J., Liu, Y., Pei, Y., Pei, Y., Wei, Z. et al. (2025) The E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 and transcription factors ELONGATED HYPOCOTYL 5 and ROOT HAIR DEFECTIVE6 integrate light signaling and root hair development. Plant Physiology, 197, kiae618.
Zhang, Y., Wang, C., Xu, H., Shi, X., Zhen, W., Hu, Z. et al. (2019) HY5 contributes to light-regulated root system architecture under a root-covered culture system. Frontiers in Plant Science, 10, 1490.
Zhou, M., Zhang, L.L., Ye, J.Y., Zhu, Q.Y., Du, W.X., Zhu, Y.X. et al. (2021) Knockout of FER decreases cadmium concentration in roots of Arabidopsis thaliana by inhibiting the pathway related to iron uptake. Science of the Total Environment, 798, 149285.