[en] Texenomycins are a family of linear lipopeptaibols with a long polyketide side chain at the N-terminus and 21 amino acid residues at the C-terminus, presenting demonstrated potential as antibiotics against plant fungal pathogens. In this study, texenomycins were identified and isolated from the fungus Mariannaea elegans strain TTI-0396 and showed effective antifungal properties against two plant pathogens Colletotrichum lagenarium and Botrytis cinerea. Through analysis of the whole-genome data of M. elegans strain TTI-0396, we discovered a hybrid PKS-NRPS system with the polyketide synthase (PKS: TexQ), thioesterase (TexO), acyl-CoA ligase (TexI), and three nonribosomal peptide synthetases (NRPSs: TexG, TexJ, TexV) in the tex gene cluster that were proposed to be responsible for the biosynthesis of texenomycins and another related lipopeptaibol, lipohexin. The functions of six key genes (texQ, texO, texI, texG, texJ, and texV) in the hybrid PKS-NRPS system were verified by gene deletion experiments, and five genes (texQ, texO, texI, texG, and texV) were confirmed to be responsible for the biosynthesis of texenomycins, while four genes (texQ, texO, texI, and texJ) were involved in the biosynthesis of lipohexin. Furthermore, the function of one transcription factor gene (texR), which enhanced the production of texenomycins by regulating the key genes in the tex gene cluster, was also demonstrated through gene deletion and overexpression experiments. Finally, a hypothetical scheme for texenomycins and lipohexin biosynthesis assembly is proposed. The elucidation of this intricate hybrid PKS-NRPS system has significantly deepened our comprehension of the mechanisms underlying the generation and chemical diversity of fungal lipopeptaibol natural products, offering a promising avenue for future research and potential applications in fungicidal disease control in agriculture.
Disciplines :
Agriculture & agronomie
Auteur, co-auteur :
Jiao, Yang; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China ; School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 653003, Henan, China
Ling, Jian; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Khan, Raja Asad Ali ; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Luo, Ning; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China ; College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, Gansu, China
Li, Zixin ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Li, Zeyu ; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Yang, Yuhong; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Zhao, Jianlong; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Mao, Zhenchuan; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Bills, Gerald F ; Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
Xie, Bingyan ; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Li, Yan ; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Langue du document :
Anglais
Titre :
Genome Mining Reveals Biosynthesis of the Antifungal Lipopeptaibols, Texenomycins, through a Hybrid PKS-NRPS System, in the Fungus Mariannaea elegans.
NSCF - National Natural Science Foundation of China NIGMS - National Institute of General Medical Sciences
Subventionnement (détails) :
This biosynthesis work was supported by grants from the National Key R&D Program of China (2022YFD1400700), the National Natural Science Foundation of China (32272630), and the discovery phase was initiated with support from the National Institutes of Health (R01GM121458). We are also grateful to Wenzhao Wang from Institute of Microbiology Chinese Academy of Sciences for assistance with the LC-MS analysis.
Savary, S.; Ficke, A.; Aubertot, J. N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 2012, 4, 519- 537, 10.1007/s12571-012-0200-5
Lombard, L.; van der Merwe, N. A.; Groenewald, J. Z.; Crous, P. W. Generic concepts in Nectriaceae. Stud. Mycol. 2015, 80, 189- 245, 10.1016/j.simyco.2014.12.002
Pereira-Dias, L.; Oliveira-Pinto, P. R.; Fernandes, J. O.; Regalado, L.; Mendes, R.; Teixeira, C.; Mariz-Ponte, N.; Gomes, P.; Santos, C. Peptaibiotics: Harnessing the potential of microbial secondary metabolites for mitigation of plant pathogens. Biotechnol. Adv. 2023, 68, 108223 10.1016/j.biotechadv.2023.108223
Gavryushina, I. A.; Georgieva, M. L.; Kuvarina, A. E.; Sadykova, V. S. Peptaibols as potential antifungal and anticancer antibiotics: current and foreseeable development (Review). Appl. Biochem. Microbiol. 2021, 57, 556- 563, 10.1134/S0003683821050070
Balázs, D.; Marik, T.; Szekeres, A.; Vágvölgyi, C.; Kredics, L.; Tyagi, C. Structure-activity correlations for peptaibols obtained from clade Longibrachiatum of Trichoderma: A combined experimental and computational approach. Comput. Struct. Biotechnol. J. 2023, 21, 1860- 1873, 10.1016/j.csbj.2023.02.046
Marik, T.; Tyagi, C.; Racić, G.; Rakk, D.; Szekeres, A.; Vágvölgyi, C.; Kredics, L. New 19-residue peptaibols from Trichoderma Clade Viride. Microorganisms 2018, 6 ( 3), 85 10.3390/microorganisms6030085
Alfaro-Vargas, P.; Bastos-Salas, A.; Muñoz-Arrieta, R.; Pereira-Reyes, R.; Redondo-Solano, M.; Fernández, J.; Mora-Villalobos, A.; López-Gómez, J. P. Peptaibol production and characterization from Trichoderma asperellum and their action as biofungicide. J. Fungi 2022, 8 ( 10), 1037 10.3390/jof8101037
Bolzonello, A.; Morbiato, L.; Tundo, S.; Sella, L.; Baccelli, I.; Echeverrigaray, S.; Musetti, R.; De Zotti, M.; Favaron, F. Peptide Analogs of a Trichoderma Peptaibol Effectively Control Downy Mildew in the Vineyard. Plant Dis. 2023, 107 ( 9), 2643- 2652, 10.1094/PDIS-09-22-2064-RE
Khare, E.; Kumar, S.; Kim, K. Role of peptaibols and lytic enzymes of Trichoderma cerinum Gur1 in biocontrol of Fusraium oxysporum and chickpea wilt. Environ. Sustainability 2018, 1, 39- 47, 10.1007/s42398-018-0001-7
Sella, L.; Govind, R.; Caracciolo, R.; Quarantin, A.; Vu, V. V.; Tundo, S.; Nguyen, H. M.; Favaron, F.; Musetti, R.; De Zotti, M. Transcriptomic and ultrastructural analyses of Pyricularia oryzae treated with fungicidal peptaibol analogs of Trichoderma Trichogin. Front. Microbiol. 2021, 12, 753202 10.3389/fmicb.2021.753202
Grigoriev, P. A.; Berg, A.; Schlegel, B.; Heinze, S.; Grafe, U. Formation of anion-selective membrane pores by texenomycin A, a basic lipopeptaibol antibiotic. J. Antibiot. 2002, 55 ( 9), 826- 828, 10.7164/antibiotics.55.826
Heinze, S.; Ritzau, M.; Ihn, W.; Hulsmann, H.; Schlegel, B.; Dornberger, K.; Fleck, W. F.; Zerlin, M.; Christner, C.; Gräfe, U.; Küllertz, G.; Fischer, G. Lipohexin, a new inhibitor of prolyl endopeptidase from Moeszia lindtneri (HKI-0054) and Paecilomyces sp. (HKI-0055; HKI-0096). I. Screening, isolation and structure elucidation. J. Antibiot. 1997, 50 ( 3), 379- 383, 10.7164/antibiotics.50.379
Fernando, K.; Reddy, P.; Guthridge, K. M.; Spangenberg, G. C.; Rochfort, S. J. A metabolomic study of Epichloe endophytes for screening antifungal metabolites. Metabolites 2022, 12 ( 1), 37 10.3390/metabo12010037
Koren, S.; Walenz, B. P.; Berlin, K.; Miller, J. R.; Bergman, N. H.; Phillippy, A. M. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27 ( 5), 722- 736, 10.1101/gr.215087.116
Jurka, J.; Kapitonov, V. V.; Pavlicek, A.; Klonowski, P.; Kohany, O.; Walichiewicz, J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 2005, 110 ( 1-4), 462- 467, 10.1159/000084979
Burge, C.; Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 1997, 268 ( 1), 78- 94, 10.1006/jmbi.1997.0951
Korf, I. Gene finding in novel genomes. BMC Bioinf. 2004, 5, 59 10.1186/1471-2105-5-59
Majoros, W. H.; Pertea, M.; Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 2004, 20 ( 16), 2878- 2879, 10.1093/bioinformatics/bth315
Stanke, M.; Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 2003, 19, ii215- ii225, 10.1093/bioinformatics/btg1080
Ashburner, M.; Ball, C. A.; Blake, J. A.; Botstein, D.; Butler, H.; Cherry, J. M.; Davis, A. P.; Dolinski, K.; Dwight, S. S.; Eppig, J. T.; Harris, M. A.; Hill, D. P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J. C.; Richardson, J. E.; Ringwald, M.; Rubin, G. M.; Sherlock, G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25 ( 1), 25- 29, 10.1038/75556
Bairoch, A.; Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000, 28 ( 1), 45- 48, 10.1093/nar/28.1.45
Finn, R. D.; Coggill, P.; Eberhardt, R. Y.; Eddy, S. R.; Mistry, J.; Mitchell, A. L.; Potter, S. C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; Salazar, G. A.; Tate, J.; Bateman, A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016, 44 ( D1), D279- 285, 10.1093/nar/gkv1344
Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32, D277- D280, 10.1093/nar/gkh063
Tatusov, R. L.; Fedorova, N. D.; Jackson, J. D.; Jacobs, A. R.; Kiryutin, B.; Koonin, E. V.; Krylov, D. M.; Mazumder, R.; Mekhedov, S. L.; Nikolskaya, A. N.; Rao, B. S.; Smirnov, S.; Sverdlov, A. V.; Vasudevan, S.; Wolf, Y. I.; Yin, J. J.; Natale, D. A. The COG database: an updated version includes eukaryotes. BMC Bioinf. 2003, 4, 41 10.1186/1471-2105-4-41
Petersen, T. N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8 ( 10), 785- 786, 10.1038/nmeth.1701
Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S. J.; Marra, M. A. Circos: an information aesthetic for comparative genomics. Genome Res. 2009, 19 ( 9), 1639- 1645, 10.1101/gr.092759.109
Emms, D. M.; Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015, 16 ( 1), 157 10.1186/s13059-015-0721-2
Katoh, K.; Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013, 30 ( 4), 772- 780, 10.1093/molbev/mst010
Nguyen, L. T.; Schmidt, H. A.; von Haeseler, A.; Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32 ( 1), 268- 274, 10.1093/molbev/msu300
Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25 ( 4), 402- 408, 10.1006/meth.2001.1262
Bok, J. W.; Keller, N. P. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryotic Cell 2004, 3 ( 2), 527- 535, 10.1128/EC.3.2.527-535.2004
Li, G.; Li, R.; Liu, Q.; Wang, Q.; Chen, M.; Li, B. A highly efficient polyethylene glycol-mediated transformation method for mushrooms. FEMS Microbiol. Lett. 2006, 256 ( 2), 203- 208, 10.1111/j.1574-6968.2006.00110.x
Grigoriev, P. A.; Schlegel, B.; Kronen, M.; Berg, A.; Hartl, A.; Grafe, U. Differences in membrane pore formation by peptaibols. J. Pept. Sci. 2003, 9 ( 11-12), 763- 768, 10.1002/psc.502
Vogt, E.; Field, C. M.; Sonderegger, L.; Künzler, M. Genome sequences of Rhizopogon roseolus, Mariannaea elegans, Myrothecium verrucaria, and Sphaerostilbella broomeana and the identification of biosynthetic gene clusters for fungal peptide natural products. G3: Genes, Genomes, Genet. 2022, 12 ( 7), jkac095 10.1093/g3journal/jkac095
Bode, H. B.; Bethe, B.; Hofs, R.; Zeeck, A. Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 2002, 3 ( 7), 619- 627, 10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-9
Chen, L.; Li, Y.; Yue, Q.; Loksztejn, A.; Yokoyama, K.; Felix, E. A.; Liu, X.; Zhang, N.; An, Z.; Bills, G. F. Engineering of new pneumocandin side-chain analogues from Glarea lozoyensis by mutasynthesis and evaluation of their antifungal activity. ACS Chem. Biol. 2016, 11 ( 10), 2724- 2733, 10.1021/acschembio.6b00604
Sørensen, J. L.; Sondergaard, T. E.; Covarelli, L.; Fuertes, P. R.; Hansen, F. T.; Frandsen, R. J.; Saei, W.; Lukassen, M. B.; Wimmer, R.; Nielsen, K. F.; Gardiner, D. M.; Giese, H. Identification of the biosynthetic gene clusters for the lipopeptides fusaristatin A and W493 B in Fusarium graminearum and F. pseudograminearum. J. Nat. Prod. 2014, 77 ( 12), 2619- 2625, 10.1021/np500436r
Gacek-Matthews, A.; Chromikova, Z.; Sulyok, M.; Lucking, G.; Barak, I.; Ehling-Schulz, M. Beyond toxin transport: novel role of ABC transporter for enzymatic machinery of cereulide NRPS assembly line. mBio 2020, 11 ( 5), e01577-20 10.1128/mBio.01577-20
Liao, X. G.; Fang, W. G.; Zhang, Y. J.; Fan, Y. H.; Wu, X. W.; Zhou, Q.; Pei, Y. Characterization of a highly active promoter, PBbgpd, in Beauveria bassiana. Curr. Microbiol. 2008, 57 ( 2), 121- 126, 10.1007/s00284-008-9163-3
Ehling-Schulz, M.; Fricker, M.; Grallert, H.; Rieck, P.; Wagner, M.; Scherer, S. Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol. 2006, 6, 20 10.1186/1471-2180-6-20
Hahn, M.; Stachelhaus, T. Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains. Proc. Natl. Acad. Sci. U.S.A. 2004, 101 ( 44), 15585- 15590, 10.1073/pnas.0404932101
Degenkolb, T.; Berg, A.; Gams, W.; Schlegel, B.; Grafe, U. The occurrence of peptaibols and structurally related peptaibiotics in fungi and their mass spectrometric identification via diagnostic fragment ions. J. Pept. Sci. 2003, 9 ( 11-12), 666- 678, 10.1002/psc.497
Degenkolb, T.; Kirschbaum, J.; Bruckner, H. New sequences, constituents, and producers of peptaibiotics: an updated review. Chem. Biodiversity 2007, 4 ( 6), 1052- 1067, 10.1002/cbdv.200790096
Röhrich, C. R.; Jaklitsch, W. M.; Voglmayr, H.; Iversen, A.; Vilcinskas, A.; Nielsen, K. F.; Thrane, U.; von Döhren, H.; Brückner, H.; Degenkolb, T. Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species. Fungal Diversity 2014, 69 ( 1), 117- 146, 10.1007/s13225-013-0276-z
Bills, G. F.; Gloer, J. B.; An, Z. Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Curr. Opin. Microbiol. 2013, 16 ( 5), 549- 565, 10.1016/j.mib.2013.08.001
Mootz, H. D.; Marahiel, M. A. The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J. Bacteriol. 1997, 179 ( 21), 6843- 6850, 10.1128/jb.179.21.6843-6850.1997
Zerikly, M.; Challis, G. L. Strategies for the discovery of new natural products by genome mining. ChemBioChem 2009, 10 ( 4), 625- 633, 10.1002/cbic.200800389
Bando, Y.; Hou, Y.; Seyfarth, L.; Probst, J.; Gotze, S.; Bogacz, M.; Hellmich, U. A.; Stallforth, P.; Mittag, M.; Arndt, H. D. Total synthesis and structure correction of the cyclic lipodepsipeptide orfamide A. Chem. - Eur. J. 2022, 28 ( 20), e202104417 10.1002/chem.202104417
Chen, H.; Zhong, L.; Zhou, H.; Bai, X.; Sun, T.; Wang, X.; Zhao, Y.; Ji, X.; Tu, Q.; Zhang, Y.; Bian, X. Biosynthesis and engineering of the nonribosomal peptides with a C-terminal putrescine. Nat. Commun. 2023, 14 ( 1), 6619 10.1038/s41467-023-42387-z