[en] AbstractInland waters in Arctic landscapes act as conduits of terrestrial organic material, transporting and processing organic material into the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), and subsequently exchanging these gases with the atmosphere. To assess the role of inland water emissions in the Arctic GHG budget, it is necessary to quantify their emissions in relation to the terrestrial sink capacity. We present measurements of dissolved CO2, CH4, and N2O from lake, pond, and low‐order fluvial systems across two summers (2016–2017) in the Arctic Siberian Indigirka River tundra lowlands. During May–July 2017, the region experienced large‐scale flooding, of which we captured the tail end. Using remote sensing images to upscale inland water emissions to an area of approximately 18 km2, we calculated combined carbon (C) emissions, CO2‐C, and diffusive CH4‐C under nonflood and flooded scenarios. These ranged from 7.03 ± 1.30 Mg C d−1 (nonflood; mean ± SD) to 9.63 ± 1.24 Mg C d−1 (flooded). Integrating these values into the total C landscape exchange offset the terrestrial C sink by ∼9–∼13%. When N2O emissions were calculated as CO2 equivalents, these emissions were negligible relative to CO2 and CH4. Our study shows that in the northeast Siberian Arctic tundra, summertime CO2 and CH4 emissions from inland waters are a potentially important component of landscape C exchange with the atmosphere, offsetting the terrestrial sink capacity, and this may be an important consideration for constraining future Arctic responses to climate warming.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Martyn Rosco, Melanie ; Department of Earth Sciences Vrije Universiteit Amsterdam Amsterdam the Netherlands
Dean, Joshua F. ; School of Geographical Sciences University of Bristol Bristol UK
Borges, Alberto ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Chemical Oceanography Unit (COU)
Meisel, Ove H. ; School of Geographical Sciences University of Bristol Bristol UK
van Logtestijn, Richard; Section Systems Ecology Amsterdam Institute for Life and Environment Vrije Universiteit Amsterdam Amsterdam the Netherlands
Hensgens, Geert ; Department of Earth Sciences Vrije Universiteit Amsterdam Amsterdam the Netherlands
Karsanaev, Sergei; Siberian Branch Russian Academy of Sciences Institute for Biological Problems of the Cryolithozone Yakutsk Russia
Maximov, Trofim; Siberian Branch Russian Academy of Sciences Institute for Biological Problems of the Cryolithozone Yakutsk Russia
Weedon, James T.; Section Systems Ecology Amsterdam Institute for Life and Environment Vrije Universiteit Amsterdam Amsterdam the Netherlands
Aerts, Rien; Section Systems Ecology Amsterdam Institute for Life and Environment Vrije Universiteit Amsterdam Amsterdam the Netherlands
Vonk, Jorien E.; Department of Earth Sciences Vrije Universiteit Amsterdam Amsterdam the Netherlands
Dolman, A. Johannes; Department of Earth Sciences Vrije Universiteit Amsterdam Amsterdam the Netherlands ; NIOZ Royal Netherlands Institute for Sea Research Texel The Netherlands
Language :
English
Title :
The Importance of Inland Water CO2, CH4, and N2O for Summertime Greenhouse Gas Exchange With the Atmosphere in Arctic Tundra Lowlands
Abnizova, A., Siemens, J., Langer, M., & Boike, J. (2012). Small ponds with major impact: The relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions. Global Biogeochemical Cycles, 26(2), GB2041. https://doi.org/10.1029/2011gb004237
Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., et al. (2011). Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 9(1), 53–60. https://doi.org/10.1890/100014
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., et al. (2019). Permafrost is warming at a global scale. Nature Communications, 10(1), 1–11. https://doi.org/10.1038/s41467-018-08240-4
Borges, A. V., Darchambeau, F., Lambert, T., Morana, C., Allen, G. H., Tambwe, E., et al. (2019). Variations in dissolved greenhouse gases (CO2, CH4, N2O) in the Congo River network overwhelmingly driven by fluvial-wetland connectivity. Biogeosciences, 16(19), 3801–3834. https://doi.org/10.5194/bg-16-3801-2019
Borges, A. V., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Geeraert, N., et al. (2015). Globally significant greenhouse-gas emissions from African inland waters. Nature Geoscience, 8(8), 637–642. https://doi.org/10.1038/ngeo2486
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Bulygina, O. N., Groisman, P. Y., Razuvaev, V. N., & Korshunova, N. N. (2011). Changes in snow cover characteristics over Northern Eurasia since 1966. Environmental Research Letters, 6(4), 045204. https://doi.org/10.1088/1748-9326/6/4/045204
Callaghan, T. V., Johansson, M., Brown, R. D., Groisman, P. Y., Labba, N., Radionov, V., et al. (2011). The changing face of arctic snow cover: A synthesis of observed and projected changes. Ambio, 40(SUPPL. 1), 17–31. https://doi.org/10.1007/s13280-011-0212-y
Cole, J. J., & Caraco, N. F. (1998). Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology & Oceanography, 43(4), 647–656. https://doi.org/10.4319/lo.1998.43.4.0647
Dean, J. F., Billett, M. F., Baxter, R., Dinsmore, K. J., Lessels, J. S., Street, L. E., et al. (2016). Biogeochemistry of “pristine” freshwater stream and lake systems in the western Canadian Arctic. Biogeochemistry, 130(3), 191–213. https://doi.org/10.1007/s10533-016-0252-2
Dean, J. F., Meisel, O. H., Martyn Rosco, M., Marchesini, L. B., Garnett, M. H., Lenderink, H., et al. (2020). East Siberian Arctic inland waters emit mostly contemporary carbon. Nature Communications, 11(1), 1–10. https://doi.org/10.1038/s41467-020-15511-6
Dean, J. F., Middelburg, J. J., Röckmann, T., Aerts, R., Blauw, L. G., Egger, M., et al. (2018). Methane feedbacks to the global climate system in a warmer world. Reviews of Geophysics, 56(1), 207–250. https://doi.org/10.1002/2017RG000559
Denfeld, B. A., Frey, K. E., Sobczak, W. V., Mann, P. J., & Holmes, R. M. (2013). Summer CO2 evasion from streams and rivers in the Kolyma river basin, north-east Siberia. Polar Research, 32(SUPPL.), 19704. https://doi.org/10.3402/polar.v32i0.19704
Denfeld, B. A., Wallin, M. B., Sahlée, E., Sobek, S., Kokic, J., Chmiel, H. E., & Weyhenmeyer, G. A. (2015). Temporal and spatial carbon dioxide concentration patterns in a small boreal lake in relation to ice-cover dynamics. Boreal Environment Research, 20, 679–692.
Dentener, F. J. (2006). Global maps of atmospheric nitrogen deposition, 1860, 1993, and 2050. ORNL DAAC.
Dlugokencky, E. J., Lang, P. M., Masarie, K. A., Crotwell, A. M., & Crotwell, M. J. (2015). Atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1968—2014. NOAA ESRL Global Monitoring Division.
Downing, J. (2010). Emerging global role of small lakes and ponds: Little things mean a lot. Limnética, 29(1), 9–24. https://doi.org/10.23818/limn.29.02
Downing, J. (2012). Global abundance and size distribution of streams and rivers. Inland Waters, 2(4), 229–236. https://doi.org/10.5268/IW-2.4.502
Drake, T. W., Raymond, P. A., & Spencer, R. G. M. (2018). Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty: Terrestrial carbon inputs to inland waters. Limnology and Oceanography Letters, 3(3), 132–142. https://doi.org/10.1002/lol2.10055
Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82(397), 171–185. https://doi.org/10.1080/01621459.1987.10478410
Elder, C. D., Xu, X., Walker, J., Schnell, J. L., Hinkel, K. M., Townsend-Small, A., et al. (2018). Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon. Nature Climate Change, 8(2), 166–171. https://doi.org/10.1038/s41558-017-0066-9
Emmerton, C. A., St. Louis, V. L., Lehnherr, I., Graydon, J. A., Kirk, J. L., & Rondeau, K. J. (2016). The importance of freshwater systems to the net atmospheric exchange ofcarbon dioxide and methane with a rapidly changing high Arctic watershed. Biogeosciences, 13(20), 5849–5863. https://doi.org/10.5194/bg-13-5849-2016
Gómez-Gener, L., Rocher-Ros, G., Battin, T., Cohen, M. J., Dalmagro, H. J., Dinsmore, K. J., et al. (2021). Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions. Nature Geoscience, 14(5), 289–294. Article 5. https://doi.org/10.1038/s41561-021-00722-3
Grosse, G., Jones, B., & Arp, C. (2013). Thermokarst lakes, drainage, and drained basins. In Treatise on Geomorphology (Vol. 8, pp. 325–353). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-374739-6.00216-5
Grosse, G., Romanovsky, V. E., Walter, K. M., Morgenstern, A., Lantuit, H., & Zimov, S. (2008). Thermokarst lakes: High resolution distribution and temporal changes at three yedoma sites in Siberia. In Proceedings from the Ninth International Conference on Permafrost (pp. 551–556).
Harden, J. W., Koven, C. D., Ping, C. L., Hugelius, G., David McGuire, A., Camill, P., et al. (2012). Field information links permafrost carbon to physical vulnerabilities of thawing. Geophysical Research Letters, 39(15), 1–6. https://doi.org/10.1029/2012GL051958
Harms, T. K., Rocher-Ros, G., & Godsey, S. E. (2020). Emission of greenhouse gases from water tracks draining arctic hillslopes. Journal of Geophysical Research: Biogeosciences, 125(12), e2020JG005889. https://doi.org/10.1029/2020JG005889
Hensgens, G., Laudon, H., Johnson, M. S., & Berggren, M. (2021). The undetected loss of aged carbon from boreal mineral soils. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-85506-w
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
Holgerson, M. A. (2015). Drivers of carbon dioxide and methane supersaturation in small, temporary ponds. Biogeochemistry, 124(1–3), 305–318. https://doi.org/10.1007/s10533-015-0099-y
Holgerson, M. A., & Raymond, P. A. (2016). Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience, 9(3), 222–226. https://doi.org/10.1038/ngeo2654
Holgerson, M. A., Farr, E. R., & Raymond, P. A. (2017). Gas transfer velocities in small forested ponds: Gas exchange in small ponds. Journal of Geophysical Research: Biogeosciences, 122(5), 1011–1021. https://doi.org/10.1002/2016JG003734
Hu, M., Chen, D., & Dahlgren, R. A. (2016). Modeling nitrous oxide emission from rivers: A global assessment. Global Change Biology, 22(11), 3566–3582. https://doi.org/10.1111/gcb.13351
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C. L., et al. (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11(23), 6573–6593. https://doi.org/10.5194/bg-11-6573-2014
Iwahana, G., Takano, S., Petrov, R. E., Tei, S., Shingubara, R., Maximov, T. C., et al. (2014). Geocryological characteristics of the upper permafrost in a tundra-forest transition of the Indigirka River Valley, Russia. Polar Science, 8(2), 96–113. https://doi.org/10.1016/j.polar.2014.01.005
Jähne, B., Heinz, G., & Dietrich, W. (1987). Measurement of the diffusion coefficients of sparingly soluble gases in water. Journal of Geophysical Research, 92(C10), 10767–10776. https://doi.org/10.1029/JC092iC10p10767
Jonasson, S., Michelsen, A., & Schmidt, I. K. (1999). Coupling of nutrient cycling and carbon dynamics in the Arctic, integration of soil microbial and plant processes. Applied Soil Ecology, 11(2–3), 135–146. https://doi.org/10.1016/s0929-1393(98)00145-0
Jones, B. M., & Arp, C. D. (2015). Observing a catastrophic thermokarst lake drainage in northern Alaska. Permafrost and Periglacial Processes, 26(2), 119–128. https://doi.org/10.1002/ppp.1842
Karlsson, J., Giesler, R., Persson, J., & Lundin, E. (2013). High emission of carbon dioxide and methane during ice thaw in high latitude lakes. Geophysical Research Letters, 40(6), 1123–1127. https://doi.org/10.1002/grl.50152
Karlsson, J., Serikova, S., Vorobyev, S. N., Rocher-Ros, G., Denfeld, B., & Pokrovsky, O. S. (2021). Carbon emission from Western Siberian inland waters. Nature Communications, 12(1), 1–8. https://doi.org/10.1038/s41467-021-21054-1
Kling, G. W., Kipphut, G. W., & Miller, M. C. (1991). Arctic lakes and streams as gas conduits to the atmosphere: Implications for tundra carbon budgets. Science, 251(4991), 298–301. https://doi.org/10.1126/science.251.4991.298
Knoblauch, C., Spott, O., Evgrafova, S., Kutzbach, L., & Pfeiffer, E.-M. (2015). Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra. Journal of Geophysical Research: Biogeosciences, 120(12), 2525–2541. https://doi.org/10.1002/2015JG003053
Kolstad, E., Michelsen, A., & Ambus, P. L. (2021). Nitrous oxide surface fluxes in a low Arctic heath: Effects of experimental warming along a natural snowmelt gradient. Soil Biology and Biochemistry, 160, 108346. https://doi.org/10.1016/j.soilbio.2021.108346
Kortelainen, P., Larmola, T., Rantakari, M., Juutinen, S., Alm, J., & Martikainen, P. J. (2020). Lakes as nitrous oxide sources in the boreal landscape. Global Change Biology, 26(3), 1432–1445. https://doi.org/10.1111/gcb.14928
Kortelainen, P., Rantakari, M., Huttunen, J. T., Mattsson, T., Alm, J., Juutinen, S., et al. (2006). Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology, 12(8), 1554–1567. https://doi.org/10.1111/j.1365-2486.2006.01167.x
Krickov, I. V., Serikova, S., Pokrovsky, O. S., Vorobyev, S. N., Lim, A. G., Siewert, M. B., & Karlsson, J. (2021). Sizable carbon emission from the floodplain of Ob River. Ecological Indicators, 131, 108164. https://doi.org/10.1016/j.ecolind.2021.108164
Kuhn, M., Lundin, E. J., Giesler, R., Johansson, M., & Karlsson, J. (2018). Emissions from thaw ponds largely offset the carbon sink of northern permafrost wetlands. Scientific Reports, 8(1), 9535. https://doi.org/10.1038/s41598-018-27770-x
Kuhn, M., Thompson, L. M., Winder, J. C., Braga, L. P. P., Tanentzap, A. J., Bastviken, D., & Olefeldt, D. (2021). Opposing effects of climate and permafrost thaw on CH 4 and CO 2 emissions from northern lakes. AGU Advances, 2(4), e2021AV000515. https://doi.org/10.1029/2021AV000515
Lauerwald, R., Regnier, P., Figueiredo, V., Enrich-Prast, A., Bastviken, D., Lehner, B., et al. (2019). Natural lakes are a minor global source of N2O to the atmosphere. Global Biogeochemical Cycles, 33(12), 1564–1581. https://doi.org/10.1029/2019GB006261
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V., Grosse, G., et al. (2016). Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nature Geoscience, 9(4), 312–318. https://doi.org/10.1038/ngeo2674
Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand, M., et al. (2019). Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Scientific Data, 6(1), 283. https://doi.org/10.1038/s41597-019-0300-6
Liu, S., Kuhn, C., Amatulli, G., Aho, K., Butman, D. E., Allen, G. H., et al. (2022). The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers. Proceedings of the National Academy of Sciences, 119(11), e2106322119. https://doi.org/10.1073/pnas.2106322119
Lundin, E. J., Giesler, R., Persson, A., Thompson, M. S., & Karlsson, J. (2013). Integrating carbon emissions from lakes and streams in a subarctic catchment. Journal of Geophysical Research: Biogeosciences, 118(3), 1200–1207. https://doi.org/10.1002/jgrg.20092
Martikainen, P. J., Nykänen, H., Crill, P., & Silvola, J. (1993). Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature, 366(6450), 51–53. https://doi.org/10.1038/366051a0
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., et al. (2019). Polar regions. In H.-O. Pörtner, et al. (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. https://doi.org/10.1016/S1366-7017(01)00066-6
Morozumi, T., Shingubara, R., Murase, J., Nagai, S., Kobayashi, H., Takano, S., et al. (2019). Usability of water surface reflectance for the determination of riverine dissolved methane during extreme flooding in northeastern Siberia. Polar Science, 21(June 2018), 186–194. https://doi.org/10.1016/j.polar.2019.01.005
Mörsdorf, M. A., Baggesen, N. S., Yoccoz, N. G., Michelsen, A., Elberling, B., Ambus, P. L., & Cooper, E. J. (2020). Deepened winter snow significantly influences the availability and forms of nitrogen taken up by plants in High Arctic tundra. Soil Biology and Biochemistry, 142, 107654. https://doi.org/10.1016/j.soilbio.2019.107654
Muster, S., Langer, M., Heim, B., Westermann, S., & Boike, J. (2012). Subpixel heterogeneity of ice-wedge polygonal tundra: A multi-scale analysis of land cover and evapotranspiration in the Lena river Delta, Siberia. Tellus B: Chemical and Physical Meteorology, 64(1), 17301. https://doi.org/10.3402/tellusb.v64i0.17301
Muster, S., Roth, K., Langer, M., Lange, S., Cresto Aleina, F., Bartsch, A., et al. (2017). PeRL: A circum-arctic permafrost region pond and lake database. Earth System Science Data, 9(1), 317–348. https://doi.org/10.5194/essd-9-317-2017
Neubauer, S. C., & Megonigal, J. P. (2015). Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems, 18(6), 1000–1013. https://doi.org/10.1007/s10021-015-9879-4
Nitzbon, J., Westermann, S., Langer, M., Martin, L. C. P., Laboor, S., & Boike, J. (2020). Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nature Communications, 11(1), 2201. https://doi.org/10.1038/s41467-020-15725-8
Papale, D., Reichstein, M., Canfora, E., Aubinet, M., Bernhofer, C., Longdoz, B., et al. (2006). Towards a more harmonized processing of eddy covariance CO2 fluxes: Algorithms and uncertainty estimation. Biogeosciences Discussions, 3 (4), 961–992. Retrieved from https://bg.copernicus.org/preprints/3/961/2006/bgd-3-961-2006-print.pdf
Parmentier, F. J. W., Van Huissteden, J., Van Der Molen, M. K., Schaepman-Strub, G., Karsanaev, S. A., Maximov, T. C., & Dolman, A. J. (2011). Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia. Journal of Geophysical Research, 116(3), 1–14. https://doi.org/10.1029/2010JG001637
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
R Core Team. (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Rantakari, M., & Kortelainen, P. (2005). Interannual variation and climatic regulation of the CO2 emission from large boreal lakes. Global Change Biology, 11(8), 1368–1380. https://doi.org/10.1111/j.1365-2486.2005.00982.x
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., et al. (2013). Global carbon dioxide emissions from inland waters. Nature, 503(7476), 355–359. https://doi.org/10.1038/nature12760
Raymond, P. A., McClelland, J. W., Holmes, R. M., Zhulidov, A. V., Mull, K., Peterson, B. J., et al. (2007). Flux and age of dissolved organic carbon exported to the arctic ocean: A carbon isotopic study of the five largest arctic rivers. Global Biogeochemical Cycles, 21(4), 1–9. https://doi.org/10.1029/2007GB002934
Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., et al. (2012). Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers: Gas transfer velocity and hydraulic geometry. Limnology and Oceanography: Fluids and Environments, 2(1), 41–53. https://doi.org/10.1215/21573689-1597669
Repo, M. E., Huttunen, J. T., Naumov, A. V., Chichulin, A. V., Lapshina, E. D., Bleuten, W., & Martikainen, P. J. (2007). Release of CO2 and CH4 from small wetland lakes in western Siberia. Tellus Series B Chemical and Physical Meteorology, 59(5), 788–796. https://doi.org/10.1111/j.1600-0889.2007.00301.x
Rocher-Ros, G., Giesler, R., Lundin, E., Salimi, S., Jonsson, A., & Karlsson, J. (2017). Large lakes dominate CO 2 evasion from lakes in an arctic catchment. Geophysical Research Letters, 44(24), 12254–12261. https://doi.org/10.1002/2017GL076146
Rodionow, A., Flessa, H., Kazansky, O., & Guggenberger, G. (2006). Organic matter composition and potential trace gas production of permafrost soils in the forest tundra in northern Siberia. Geoderma, 135, 49–62. https://doi.org/10.1016/j.geoderma.2005.10.008
Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S., Song, C., et al. (2021). Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 14(4), 225–230. https://doi.org/10.1038/s41561-021-00715-2
Rusydi, A. F. (2018). Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conference Series: Earth and Environmental Science, 118, 012019. https://doi.org/10.1088/1755-1315/118/1/012019
Schuur, E. A. G. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., et al. (2015). Climate change and the permafrost carbon feedback. Nature, 520(7546), 171–179. https://doi.org/10.1038/nature14338
Schwab, M. S., Hilton, R. G., Raymond, P. A., Haghipour, N., Amos, E., Tank, S. E., et al. (2020). An Abrupt aging of dissolved organic carbon in large arctic rivers. Geophysical Research Letters, 47(23), e2020GL088823. https://doi.org/10.1029/2020GL088823
Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S., & Thalasso, F. (2015). Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska. Biogeosciences, 12(11), 3197–3223. https://doi.org/10.5194/bg-12-3197-2015
Serikova, S., Pokrovsky, O. S., Ala-Aho, P., Kazantsev, V., Kirpotin, S. N., Kopysov, S. G., et al. (2018). High riverine CO2 emissions at the permafrost boundary of Western Siberia. Nature Geoscience, 11(11), 825–829. https://doi.org/10.1038/s41561-018-0218-1
Serikova, S., Pokrovsky, O. S., Laudon, H., Krickov, I. V., Lim, A. G., Manasypov, R. M., & Karlsson, J. (2019). High carbon emissions from thermokarst lakes of Western Siberia. Nature Communications, 10(1), 1–7. https://doi.org/10.1038/s41467-019-09592-1
Shahgedanova, M. (Ed.). (2003). The physical geography of northern Eurasia (Vol. 3). Oxford University Press.
Soued, C., Del Giorgio, P. A., & Maranger, R. (2016). Nitrous oxide sinks and emissions in boreal aquatic networks in Quebec. Nature Geoscience, 9(2), 116–120. https://doi.org/10.1038/ngeo2611
Tei, S., Morozumi, T., Nagai, S., Takano, S., Sugimoto, A., Shingubara, R., et al. (2020). An extreme flood caused by a heavy snowfall over the Indigirka River basin in Northeastern Siberia. Hydrological Processes, 34(3), 522–537. https://doi.org/10.1002/hyp.13601
Thackeray, C. W., Derksen, C., Fletcher, C. G., & Hall, A. (2019). Snow and climate: Feedbacks, drivers, and Indices of change. Current Climate Change Reports, 5(4), 322–333. https://doi.org/10.1007/s40641-019-00143-w
Trouet, V., & Oldenborgh, G. J. V. (2013). KNMI climate explorer: A web-based research tool for high-resolution paleoclimatology. Tree-Ring Research, 69(1), 3–13. https://doi.org/10.3959/1536-1098-69.1.3
van Huissteden, J., Teshebaeva, K., Cheung, Y., Magnússon, R. Í., Noorbergen, H., Karsanaev, S. V., et al. (2021). Geomorphology and InSAR-tracked surface displacements in an ice-rich yedoma landscape. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.680565
Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. CreateSpace.
Voigt, C., Marushchak, M. E., Abbott, B. W., Biasi, C., Elberling, B., Siciliano, S. D., et al. (2020). Nitrous oxide emissions from permafrost-affected soils. Nature Reviews Earth and Environment, 1(8), 420–434. https://doi.org/10.1038/s43017-020-0063-9
Voigt, C., Marushchak, M. E., Lamprecht, R. E., Jackowicz-Korczyński, M., Lindgren, A., Mastepanov, M., et al. (2017). Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proceedings of the National Academy of Sciences of the United States of America, 114(24), 6238–6243. https://doi.org/10.1073/pnas.1702902114
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F., Alekseychik, P., et al. (2015). Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences, 12(23), 7129–7167. https://doi.org/10.5194/bg-12-7129-2015
Vorobyev, S. N., Karlsson, J., Kolesnichenko, Y. Y., Korets, M. A., & Pokrovsky, O. S. (2021). Fluvial carbon dioxide emission from the Lena River basin during the spring flood. Biogeosciences, 18(17), 4919–4936. https://doi.org/10.5194/bg-18-4919-2021
Walker, D. A., Reynolds, M. K., Daniëls, F. J. A., Einarsson, E., Elvebakk, A., Gould, W. A., et al. (2005). The Circumpolar Arctic vegetation map. Journal of Vegetation Science, 16(3), 267–282. https://doi.org/10.1111/j.1654-1103.2005.tb02365.x
Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D., & Chapin, F. S. (2006). Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature, 443(7107), 71–75. https://doi.org/10.1038/nature05040
Wang, Z., Wu, R., Chen, Z., Huang, G., & Yang, X. (2023). Reasons for east Siberia winter snow water equivalent increase in the recent decades. Remote Sensing, 15(1), 134. Article 1. https://doi.org/10.3390/rs15010134
Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods, 12(6), 351–362. https://doi.org/10.4319/lom.2014.12.351
Webb, J. R., Santos, I. R., Maher, D. T., & Finlay, K. (2019). The importance of aquatic carbon fluxes in net ecosystem carbon budgets: A catchment-scale review. Ecosystems, 22(3), 508–527. https://doi.org/10.1007/s10021-018-0284-7
Weiss, R. F. (1974). Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chemistry, 2(3), 203–215. https://doi.org/10.1016/0304-4203(74)90015-2
Weiss, R. F., & Price, B. A. (1980). Nitrous oxide solubility in water and seawater. Marine Chemistry, 8(4), 347–359. https://doi.org/10.1016/0304-4203(80)90024-9
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S., & Bastviken, D. (2016). Climate-sensitive northern lakes and ponds are critical components of methane release. Nature Geoscience, 9(2), 99–105. https://doi.org/10.1038/ngeo2578
Xu, W., Frendrup, L. L., Michelsen, A., Elberling, B., & Ambus, P. L. (2023). Deepened snow in combination with summer warming increases growing season nitrous oxide emissions in dry tundra, but not in wet tundra. Soil Biology and Biochemistry, 180, 109013. https://doi.org/10.1016/j.soilbio.2023.109013
Yamamoto, S., Alcauskas, J. B., & Crozier, T. E. (1976). Solubility of methane in distilled water and seawater. Journal of Chemical and Engineering Data, 21(1), 78–80. https://doi.org/10.1021/je60068a029
Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., et al. (2014). Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507(7493), 488–491. Article 7493. https://doi.org/10.1038/nature13164
Zakharova, E. A., Kouraev, A. V., Kolmakova, M. V., Mognard, N. M., Zemtsov, V. A., & Kirpotin, S. N. (2009). The modern hydrological regime of the Northern part of Western Siberia from in situ and satellite observations. International Journal of Environmental Studies, 66(4), 447–463. https://doi.org/10.1080/00207230902823578
Zuur, A. F., Leno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R (1st ed.). Springer.