Designed Ankyrin Repeat Protein; RAS; cancer; drug development; oncogene; small GTPase; Molecular Medicine; Oncology; Genetics; Cancer Research
Abstract :
[en] The KRAS oncoprotein is a frequent tumor driver in lung, pancreatic, and colorectal cancers and has proven to be a challenging pharmaceutical target. The first KRAS-targeted therapeutics are now being tested in clinical trials but the consequences of preferentially targeting the GDP or GTP state of KRAS and the relevance of RAS nanoclustering have remained unclear. Here we report a Designed Ankyrin Repeat Protein (DARPin) that recognizes the RAS switch I/II region with low nm affinity, independently of the nucleotide bound (GDP- or GTP state). This DARPin, termed '784_F5', occupies the effector recognition lobe, resulting in interference with SOS-mediated activation, RAS downstream effector interactions, and KRAS nanoclustering. Consequently, this anti-RAS DARPin potently blocks downstream signaling, leading to a strong reduction in proliferation and anchorage-independent growth in RAS-dependent cell lines. We showed that the expression of '784_F5', the pan-RAS, nucleotide-independent DARPin can lead to tumor regression in a colorectal xenograft model which may hold promise for further investigation and development.
Disciplines :
Oncology
Author, co-author :
Kapp, Jonas N; Department of Biochemistry, University of Zurich, Switzerland
Verdurmen, Wouter P R; Department of Biochemistry, University of Zurich, Switzerland
Schaefer, Jonas V; Department of Biochemistry, University of Zurich, Switzerland
Kopra, Kari ; Department of Chemistry, University of Turku, Finland
Nagy-Davidescu, Gabriela; Department of Biochemistry, University of Zurich, Switzerland
Richard, Elodie; Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, France
Nokin, Marie-Julie ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; ACTION Laboratory, IECB, INSERM U1218, University of Bordeaux, France
Ernst, Patrick; Department of Biochemistry, University of Zurich, Switzerland
Tamaskovic, Rastislav; Department of Biochemistry, University of Zurich, Switzerland
Schwill, Martin; Department of Biochemistry, University of Zurich, Switzerland
Degen, Ralph; Department of Biochemistry, University of Zurich, Switzerland
Scholl, Claudia; Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany ; National Center for Tumor Diseases (NCT), Heidelberg, Germany
Santamaria, David; ACTION Laboratory, IECB, INSERM U1218, University of Bordeaux, France ; Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Spain
Plückthun, Andreas ; Department of Biochemistry, University of Zurich, Switzerland
Research Council of Finland KFS - Swiss Cancer Research Foundation
Funding text :
This research was funded by Swiss Cancer Research foundation, grant number KFS 4147\u201002\u20102017 and KFS\u20105290\u201002\u20102021\u2010R to AP and the Research Council of Finland (296225/KK, 323433/KK, 329012/KK, and 353324/KK). We thank Susanne M\u00FCller\u2010Knapp from the Structural Genomics Consortium (SGC) in Oxford for providing the KRAS protein for the selection. We further wish to express our appreciation to Dr William Gillette and his team in the RAS Initiative at the Frederick National Laboratory, Frederick MD USA for providing the SOS and RAF1\u2010RBD proteins. The authors would like to thank Marie Groth for training and scientific discussion. The Figs 2A,B and 5A were created with BioRender.com .
Der CJ, Krontiris TG, Cooper GM. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the Ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci U S A. 1982;79:3637–3640. https://doi.org/10.1073/pnas.79.11.3637
Prior IA, Hood FE, Hartley JL. The frequency of Ras mutations in cancer. Cancer Res. 2020;80:2969–2974. https://doi.org/10.1158/0008-5472.CAN-19-3682
Lee JK, Sivakumar S, Schrock AB, Madison R, Fabrizio D, Gjoerup O, et al. Comprehensive pan-cancer genomic landscape of KRAS altered cancers and real-world outcomes in solid tumors. NPJ Precis Oncol. 2022;6:91. https://doi.org/10.1038/s41698-022-00334-z
Punekar SR, Velcheti V, Neel BG, Wong K-K. The current state of the art and future trends in RAS-targeted cancer therapies. Nat Rev Clin Oncol. 2022;19:637–655. https://doi.org/10.1038/s41571-022-00671-9
Lohinai Z, Klikovits T, Moldvay J, Ostoros G, Raso E, Timar J, et al. KRAS-mutation incidence and prognostic value are metastatic site-specific in lung adenocarcinoma: poor prognosis in patients with KRAS mutation and bone metastasis. Sci Rep. 2017;7:39721. https://doi.org/10.1038/srep39721
Phipps AI, Buchanan DD, Makar KW, Win AK, Baron JA, Lindor NM, et al. KRAS-mutation status in relation to colorectal cancer survival: the joint impact of correlated tumour markers. Br J Cancer. 2013;108:1757–1764. https://doi.org/10.1038/bjc.2013.118
Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3:11–22. https://doi.org/10.1038/nrc969
Sugiura R, Satoh R, Takasaki T. ERK: a double-edged sword in cancer. ERK-dependent apoptosis as a potential therapeutic strategy for cancer. Cells. 2021;10:2509. https://doi.org/10.3390/cells10102509
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep. 2020;47:4587–4629. https://doi.org/10.1007/s11033-020-05435-1
Moore AR, Rosenberg SC, McCormick F, Malek S. RAS-targeted therapies: is the undruggable drugged? Nat Rev Drug Discov. 2020;19:533–552. https://doi.org/10.1038/s41573-020-0068-6
Parikh K, Banna G, Liu SV, Friedlaender A, Desai A, Subbiah V, et al. Drugging KRAS: current perspectives and state-of-art review. J Hematol Oncol. 2022;15:152. https://doi.org/10.1186/s13045-022-01375-4
Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503:548–551. https://doi.org/10.1038/nature12796
Vasta JD, Peacock DM, Zheng Q, Walker JA, Zhang Z, Zimprich CA, et al. KRAS is vulnerable to reversible switch-II pocket engagement in cells. Nat Chem Biol. 2022;18:596–604. https://doi.org/10.1038/s41589-022-00985-w
Wang X, Allen S, Blake JF, Bowcut V, Briere DM, Calinisan A, et al. Identification of MRTX1133, a noncovalent, potent, and selective KRASG12D inhibitor. J Med Chem. 2022;65:3123–3133. https://doi.org/10.1021/acs.jmedchem.1c01688
Holderfield M, Lee BJ, Jiang J, Tomlinson A, Seamon KJ, Mira A, et al. Concurrent inhibition of oncogenic and wild-type RAS-GTP for cancer therapy. Nature. 2024;629:919–926. https://doi.org/10.1038/s41586-024-07205-6
Kim D, Herdeis L, Rudolph D, Zhao Y, Böttcher J, Vides A, et al. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth. Nature. 2023;619:160–166. https://doi.org/10.1038/s41586-023-06123-3
Feramisco JR, Clark R, Wong G, Arnheim N, Milley R, McCormick F. Transient reversion of Ras oncogene-induced cell transformation by antibodies specific for amino acid 12 of Ras protein. Nature. 1985;314:639–642. https://doi.org/10.1038/314639a0
Tomazini A, Shifman JM. Targeting Ras with protein engineering. Oncotarget. 2023;14:672–687. https://doi.org/10.18632/oncotarget.28469
Teng KW, Tsai ST, Hattori T, Fedele C, Koide A, Yang C, et al. Selective and noncovalent targeting of RAS mutants for inhibition and degradation. Nat Commun. 2021;12:2656. https://doi.org/10.1038/s41467-021-22969-5
Lim S, Khoo R, Juang YC, Gopal P, Zhang H, Yeo C, et al. Exquisitely specific anti-KRAS biodegraders inform on the cellular prevalence of nucleotide-loaded states. ACS Cent Sci. 2021;7:274–291. https://doi.org/10.1021/acscentsci.0c01337
Vidimar V, Beilhartz GL, Park M, Biancucci M, Kieffer MB, Gius DR, et al. An engineered chimeric toxin that cleaves activated mutant and wild-type RAS inhibits tumor growth. Proc Natl Acad Sci U S A. 2020;117:16938–16948. https://doi.org/10.1073/pnas.2000312117
Singh A, Erijman A, Noronha A, Kumar H, Peleg Y, Yarden Y, et al. Engineered variants of the Ras effector protein RASSF5 (NORE1A) promote anticancer activities in lung adenocarcinoma. J Biol Chem. 2021;297:101353. https://doi.org/10.1016/j.jbc.2021.101353
Wiechmann S, Maisonneuve P, Grebbin BM, Hoffmeister M, Kaulich M, Clevers H, et al. Conformation-specific inhibitors of activated Ras GTPases reveal limited Ras dependency of patient-derived cancer organoids. J Biol Chem. 2020;295:4526–4540. https://doi.org/10.1074/jbc.RA119.011025
Porello I, Cellesi F. Intracellular delivery of therapeutic proteins. New advancements and future directions. Front Bioeng Biotechnol. 2023;11:1211798. https://doi.org/10.3389/fbioe.2023.1211798
Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23:265–280. https://doi.org/10.1038/s41576-021-00439-4
Akkapeddi P, Hattori T, Khan I, Glasser E, Koide A, Ketavarapu G, et al. Exploring switch II pocket conformation of KRAS(G12D) with mutant-selective monobody inhibitors. Proc Natl Acad Sci U S A. 2023;120:e2302485120. https://doi.org/10.1073/pnas.2302485120
Wallon L, Khan I, Teng KW, Koide A, Zuberi M, Li J, et al. Inhibition of RAS-driven signaling and tumorigenesis with a pan-RAS monobody targeting the switch I/II pocket. Proc Natl Acad Sci U S A. 2022;119:e2204481119. https://doi.org/10.1073/pnas.2204481119
Spencer-Smith R, Koide A, Zhou Y, Eguchi RR, Sha F, Gajwani P, et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nat Chem Biol. 2017;13:62–68. https://doi.org/10.1038/nchembio.2231
Khan I, Koide A, Zuberi M, Ketavarapu G, Denbaum E, Teng KW, et al. Identification of the nucleotide-free state as a therapeutic vulnerability for inhibition of selected oncogenic RAS mutants. Cell Rep. 2022;38:110322. https://doi.org/10.1016/j.celrep.2022.110322
Guillard S, Kolasinska-Zwierz P, Debreczeni J, Breed J, Zhang J, Bery N, et al. Structural and functional characterization of a DARPin which inhibits Ras nucleotide exchange. Nat Commun. 2017;8:16111. https://doi.org/10.1038/ncomms16111
Bery N, Legg S, Debreczeni J, Breed J, Embrey K, Stubbs C, et al. KRAS-specific inhibition using a DARPin binding to a site in the allosteric lobe. Nat Commun. 2019;10:2607. https://doi.org/10.1038/s41467-019-10419-2
Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol. 2015;55:489–511. https://doi.org/10.1146/annurev-pharmtox-010611-134654
Binz HK, Stumpp MT, Forrer P, Amstutz P, Plückthun A. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol. 2003;332:489–503. https://doi.org/10.1016/S0022-2836(03)00896-9
Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, Forrer P, et al. High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol. 2004;22:575–582. https://doi.org/10.1038/nbt962
Tamaskovic R, Schwill M, Nagy-Davidescu G, Jost C, Schaefer DC, Verdurmen WPR, et al. Intermolecular biparatopic trapping of ErbB2 prevents compensatory activation of PI3K/AKT via RAS–P110 crosstalk. Nat Commun. 2016;7:11672. https://doi.org/10.1038/ncomms11672
Dreier B, Plückthun A. Rapid selection of high-affinity binders using ribosome display. Methods Mol Biol. 2012;805:261–286. https://doi.org/10.1007/978-1-61779-379-0_15
Plückthun A. Ribosome display: a perspective. Methods Mol Biol. 2012;805:3–28. https://doi.org/10.1007/978-1-61779-379-0_1
Zahnd C, Sarkar CA, Plückthun A. Computational analysis of off-rate selection experiments to optimize affinity maturation by directed evolution. Protein Eng Des Sel. 2010;23:175–184. https://doi.org/10.1093/protein/gzp087
Brauchle M, Hansen S, Caussinus E, Lenard A, Ochoa-Espinosa A, Scholz O, et al. Protein interference applications in cellular and developmental biology using DARPins that recognize GFP and MCherry. Biol Open. 2014;3:1252–1261. https://doi.org/10.1242/bio.201410041
Amstutz P, Binz HK, Parizek P, Stumpp MT, Kohl A, Grütter MG, et al. Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J Biol Chem. 2005;280:24715–24722. https://doi.org/10.1074/jbc.M501746200
Kummer L, Parizek P, Rube P, Millgramm B, Prinz A, Mittl PRE, et al. Structural and functional analysis of phosphorylation-specific binders of the kinase ERK from designed ankyrin repeat protein libraries. Proc Natl Acad Sci U S A. 2012;109:E2248–E2257. https://doi.org/10.1073/pnas.1205399109
Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO, et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS One. 2009;4:e6529. https://doi.org/10.1371/journal.pone.0006529
Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr. 2010;66:125–132. https://doi.org/10.1107/S0907444909047337
Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, et al. Towards automated crystallographic structure refinement with Phenix.Refine. Acta Crystallogr D Biol Crystallogr. 2012;68:352–367. https://doi.org/10.1107/S0907444912001308
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501. https://doi.org/10.1107/S0907444910007493
DeLano WL. The PyMOL Molecular Graphics System. Schrödinger LLC; 2002. Version 1. http://www.pymol.org.
Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, Hung L-W, et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr. 2008;64:61–69. https://doi.org/10.1107/S090744490705024X
Krissinel E, Henrick K. Detection of protein assemblies in crystals. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 2005; 3695 LNBI, pp. 163–174.
Laskowski RA, Swindells MB. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51:2778–2786. https://doi.org/10.1021/ci200227u
Guzman C, Bagga M, Kaur A, Westermarck J, Abankwa D. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One. 2014;9:e92444. https://doi.org/10.1371/journal.pone.0092444
Kopra K, Ligabue A, Wang Q, Syrjänpää M, Blaževitš O, Veltel S, et al. A homogeneous quenching resonance energy transfer assay for the kinetic analysis of the GTPase nucleotide exchange reaction. Anal Bioanal Chem. 2014;406:4147–4156. https://doi.org/10.1007/s00216-014-7795-7
Kopra K, Vuorinen E, Abreu-Blanco M, Wang Q, Eskonen V, Gillette W, et al. Homogeneous dual-parametric-coupled assay for simultaneous nucleotide exchange and KRAS/RAF-RBD interaction monitoring. Anal Chem. 2020;92:4971–4979. https://doi.org/10.1021/acs.analchem.9b05126
Kopra K, Valtonen S, Mahran R, Kapp JN, Hassan N, Gillette W, et al. Thermal shift assay for small GTPase stability screening: evaluation and suitability. Int J Mol Sci. 2022;23:7095. https://doi.org/10.3390/ijms23137095
Kopra K, van Adrichem AJ, Salo-Ahen OMH, Peltonen J, Wennerberg K, Härmä H. High-throughput dual screening method for Ras activities and inhibitors. Anal Chem. 2017;89:4508–4516. https://doi.org/10.1021/acs.analchem.6b04904
Hunter JC, Manandhar A, Carrasco MA, Gurbani D, Gondi S, Westover KD. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol Cancer Res. 2015;13:1325–1335. https://doi.org/10.1158/1541-7786.MCR-15-0203
Xu S, Long BN, Boris GH, Chen A, Ni S, Kennedy MA. Structural insight into the rearrangement of the switch I region in GTP-bound G12A K-Ras. Acta Crystallogr D Struct Biol. 2017;73:970–984. https://doi.org/10.1107/S2059798317015418
Dharmaiah S, Tran TH, Messing S, Agamasu C, Gillette WK, Yan W, et al. Structures of N-terminally processed KRAS provide insight into the role of N-acetylation. Sci Rep. 2019;9:10512. https://doi.org/10.1038/s41598-019-46846-w
Hunter JC, Gurbani D, Ficarro SB, Carrasco MA, Lim SM, Choi HG, et al. In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proc Natl Acad Sci U S A. 2014;111:8895–8900. https://doi.org/10.1073/pnas.1404639111
Moghadamchargari Z, Shirzadeh M, Liu C, Schrecke S, Packianathan C, Russell DH, et al. Molecular assemblies of the catalytic domain of SOS with KRas and oncogenic mutants. Proc Natl Acad Sci U S A. 2021;118:e2022403118. https://doi.org/10.1073/pnas.2022403118
Mazhab-Jafari MT, Marshall CB, Smith MJ, Gasmi-Seabrook GMC, Stathopulos PB, Inagaki F, et al. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site. Proc Natl Acad Sci U S A. 2015;112:6625–6630. https://doi.org/10.1073/pnas.1419895112
Nakhaeizadeh H, Amin E, Nakhaei-Rad S, Dvorsky R, Ahmadian MR. The RAS-effector interface: isoform-specific differences in the effector binding regions. PLoS One. 2016;11:e0167145. https://doi.org/10.1371/journal.pone.0167145
Wimmer R, Baccarini M. Partner exchange: protein–protein interactions in the Raf pathway. Trends Biochem Sci. 2010;35:660–668. https://doi.org/10.1016/j.tibs.2010.06.001
Mor A, Philips MR. Compartmentalized RAS/MAPK signaling. Annu Rev Immunol. 2006;24:771–800. https://doi.org/10.1146/annurev.immunol.24.021605.090723
Nan X, Tamgüney TM, Collisson EA, Lin L-J, Pitt C, Galeas J, et al. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway. Proc Natl Acad Sci U S A. 2015;112:7996–8001. https://doi.org/10.1073/pnas.1509123112
Ambrogio C, Köhler J, Zhou ZW, Wang H, Paranal R, Li J, et al. KRAS dimerization impacts MEK inhibitor sensitivity and oncogenic activity of mutant KRAS. Cell. 2018;172:857–868.e15. https://doi.org/10.1016/j.cell.2017.12.020
Whaby M, Wallon L, Mazzei M, Khan I, Teng KW, Koide S, et al. Mutations in the α4-α5 allosteric lobe of RAS do not significantly impair RAS signaling or self-association. J Biol Chem. 2022;298:102661. https://doi.org/10.1016/j.jbc.2022.102661
Simanshu DK, Philips MR, Hancock JF. Consensus on the RAS dimerization hypothesis: strong evidence for lipid-mediated clustering but not for G-domain-mediated interactions. Mol Cell. 2023;83:1210–1215.
Zhou Z, Nguyen TL, Li X, Poujol C, Berlinska E, Michelina SV, et al. Experimental variables determine the outcome of RAS-RAS interactions. J Biol Chem. 2024;300:107859. https://doi.org/10.1016/j.jbc.2024.107859
Mysore VP, Zhou ZW, Ambrogio C, Li L, Kapp JN, Lu C, et al. A structural model of a Ras–Raf signalosome. Nat Struct Mol Biol. 2021;28:847–857. https://doi.org/10.1038/s41594-021-00667-6
Lee S, Lee K. Conditional cooperativity in RAS assembly pathways on nanodiscs and altered GTPase cycling. Angew Chem Int Ed Engl. 2024;63:e202316942. https://doi.org/10.1002/anie.202316942
Scholl C, Fröhling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell. 2009;137:821–834. https://doi.org/10.1016/j.cell.2009.03.017
Eser S, Reiff N, Messer M, Seidler B, Gottschalk K, Dobler M, et al. Selective requirement of PI3K/PDK1 signaling for KRAS oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell. 2013;23:406–420. https://doi.org/10.1016/j.ccr.2013.01.023
Tanaka T, Rabbitts TH. Interfering with RAS-effector protein interactions prevent RAS-dependent tumour initiation and causes stop-start control of cancer growth. Oncogene. 2010;29:6064–6070. https://doi.org/10.1038/onc.2010.346
Khan I, Spencer-Smith R, O'Bryan JP. Targeting the α4-α5 dimerization Interface of K-RAS inhibits tumor formation in vivo. Oncogene. 2019;38:2984–2993. https://doi.org/10.1038/s41388-018-0636-y
Kiel C, Filchtinski D, Spoerner M, Schreiber G, Kalbitzer HR, Herrmann C. Improved binding of Raf to Ras-GDP is correlated with biological activity. J Biol Chem. 2009;284:31893–31902. https://doi.org/10.1074/jbc.M109.031153
Amodio V, Yaeger R, Arcella P, Cancelliere C, Lamba S, Lorenzato A, et al. EGFR blockade reverts resistance to KRASG12C inhibition in colorectal cancer. Cancer Discov. 2020;10:1129–1139. https://doi.org/10.1158/2159-8290.CD-20-0187
Schulze CJ, Seamon KJ, Zhao Y, Yang YC, Cregg J, Kim D, et al. Chemical remodeling of a cellular chaperone to target the active state of mutant KRAS. Science. 2023;381:794–799. https://doi.org/10.1126/science.adg9652
Nokin M-J, Mira A, Patrucco E, Ricciuti B, Cousin S, Soubeyran I, et al. RAS-ON inhibition overcomes clinical resistance to KRAS G12C-OFF covalent blockade. Nat Commun. 2024;15:7554. https://doi.org/10.1038/s41467-024-51828-2
Haley RM, Chan A, Billingsley MM, Gong N, Padilla MS, Kim EH, et al. Lipid nanoparticle delivery of small proteins for potent in vivo RAS inhibition. ACS Appl Mater Interfaces. 2023;15:21877–21892. https://doi.org/10.1021/acsami.3c01501