[en] Understanding how to control phase transitions in quantum systems is at the forefront of research for the development of new quantum materials and technologies. Here, we study how the coupling of a quantum system to a non-Markovian environment, i.e., an environment with a frequency-dependent spectral density inducing memory effects, can be used to generate and reshape phase transitions and squeezing in matter phases. Focusing on a Lipkin-Meshkov-Glick model, we demonstrate that non-Markovian dissipation can be leveraged to engineer tricriticality via the fusion of second-order and first-order critical points. We identify phases that arise from different ways of breaking the single weak symmetry of our model, which led us to examine an alternative concept of directional spontaneous symmetry breaking (DSSB) as a general framework to understand this phenomenon. We show that signatures of DSSB can be seen in the emergence of spin squeezing along different directions, and that the latter is controllable via non-Markovian effects, opening up possibilities for applications in quantum metrology. Finally, we propose an experimental implementation of our non-Markovian model in cavity QED. Our work features non-Markovianity as a resource for controlling phase transitions in general systems, and highlights shortcomings of the Markovian limit in this context.
Disciplines :
Physics
Author, co-author :
Debecker, Baptiste ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Pausch, Lukas ; Université de Liège - ULiège > Département de physique > Optique quantique
Louvet, Jonathan ; Université de Liège - ULiège > Département de physique > Spectroscopie atomique et Physique des atomes froids
Bastin, Thierry ; Université de Liège - ULiège > Département de physique > Spectroscopie atomique et Physique des atomes froids
Martin, John ; Université de Liège - ULiège > Département de physique > Optique quantique
Damanet, François ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Language :
English
Title :
Role of non-Markovian dissipation in quantum phase transitions: Tricriticality, spin squeezing, and directional symmetry breaking
Publication date :
11 July 2025
Journal title :
Physical Review. A
ISSN :
2469-9926
eISSN :
2469-9934
Publisher :
American Physical Society, College Park, United States - Maryland
F.R.S.-FNRS - Fonds de la Recherche Scientifique FWO - Flemish Research Foundation
Funding text :
J.M., T.B., and L.P. acknowledge the FWO and the F.R.S.-FNRS for their funding as part of the Excellence of Science program (EOS Project No. 40007526). T.B. also acknowledges F.R.S.-FNRS financial support through IISN convention 4.4512.08. Computational resources were provided by the Consortium des Equipements de Calcul Intensif (CECI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11.
[1] D. Roberts and A. A. Clerk, Phys. Rev. X 10, 021022 (2020).
[2] P. Zapletal, A. Nunnenkamp, and M. Brunelli, PRX Quantum 3, 010301 (2022).
[3] J. Toner and Y. Tu, Phys. Rev. E 58, 4828 (1998).
[4] J. Jin, A. Biella, O. Viyuela, L. Mazza, J. Keeling, R. Fazio, and D. Rossini, Phys. Rev. X 6, 031011 (2016).
[5] T. E. Lee, S. Gopalakrishnan, and M. D. Lukin, Phys. Rev. Lett. 110, 257204 (2013).
[6] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, Nat. Phys. 4, 878 (2008).
[7] F. Verstraete, M. M. Wolf, and J. I. Cirac, Nat. Phys. 5, 633 (2009).
[8] M. Koppenhöfer, P. Groszkowski, H.-K. Lau, and A. A. Clerk, PRX Quantum 3, 030330 (2022).
[9] X. Yang, X. Long, R. Liu, K. Tang, Y. Zhai, X. Nie, T. Xin, J. Li, and D. Lu, Commun. Phys. 7, 282 (2024).
[10] I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017).
[11] S. Gröblacher, A. Trubarov, N. Prigge, G. D. Cole, M. Aspelmeyer, and J. Eisert, Nat. Commun. 6, 7606 (2015).
[12] A. Potočnik, A. Bargerbos, F. A. Y. N. Schröder, S. A. Khan, M. C. Collodo, S. Gasparinetti, Y. Salathé, C. Creatore, C. Eichler, H. E. Türeci, A. W. Chin, and A. Wallraff, Nat. Commun. 9, 904 (2018).
[13] K. H. Madsen, S. Ates, T. Lund-Hansen, A. Löffler, S. Reitzenstein, A. Forchel, and P. Lodahl, Phys. Rev. Lett. 106, 233601 (2011).
[14] R. A. Vicencio, F. G. L. Cárcamo-Macaya, D. Román-Cortés, and P. Solano, Phys. Rev. Lett. 135, 013601 (2025).
[15] R. Palacino and J. Keeling, Phys. Rev. Res. 3, L032016 (2021).
[16] F. Damanet, A. J. Daley, and J. Keeling, Phys. Rev. A 99, 033845 (2019).
[17] V. Link, K. Müller, R. G. Lena, K. Luoma, F. Damanet, W. T. Strunz, and A. J. Daley, PRX Quantum 3, 020348 (2022).
[18] A. Ask and G. Johansson, Phys. Rev. Lett. 128, 083603 (2022).
[19] S. F. Huelga, A. Rivas, and M. B. Plenio, Phys. Rev. Lett. 108, 160402 (2012).
[20] C. Maier, T. Brydges, P. Jurcevic, N. Trautmann, C. Hempel, B. P. Lanyon, P. Hauke, R. Blatt, and C. F. Roos, Phys. Rev. Lett. 122, 050501 (2019).
[21] P.-C. Kuo, S.-L. Yang, N. Lambert, J.-D. Lin, Y.-T. Huang, F. Nori, and Y.-N. Chen, Phys. Rev. Res. 7, L012068 (2025).
[22] B. Debecker, J. Martin, and F. Damanet, Phys. Rev. A 110, 042201 (2024).
[23] B. Debecker, J. Martin, and F. Damanet, Phys. Rev. Lett. 133, 140403 (2024).
[24] M. Soriente, T. Donner, R. Chitra, and O. Zilberberg, Phys. Rev. Lett. 120, 183603 (2018).
[25] H. Lipkin, N. Meshkov, and A. Glick, Nucl. Phys. 62, 188 (1965).
[26] J. Vidal, G. Palacios, and C. Aslangul, Phys. Rev. A 70, 062304 (2004).
[27] J. Wilms, J. Vidal, F. Verstraete, and S. Dusuel, J. Stat. Mech. (2012) P01023.
[28] P. Ribeiro, J. Vidal, and R. Mosseri, Phys. Rev. Lett. 99, 050402 (2007).
[29] R. Orús, S. Dusuel, and J. Vidal, Phys. Rev. Lett. 101, 025701 (2008).
[30] K. Ptaszyński and M. Esposito, Phys. Rev. E 110, 044134 (2024).
[31] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, UK, 2006).
[32] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[33] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17, 821 (1976).
[34] L. Pausch, F. Damanet, T. Bastin, and J. Martin, Phys. Rev. A 110, 062208 (2024).
[35] J. S. Ferreira and P. Ribeiro, Phys. Rev. B 100, 184422 (2019).
[36] Y.-H. Ma, Q.-Z. Ding, and T. Yu, Phys. Rev. A 101, 022327 (2020).
[37] T. E. Lee, C.-K. Chan, and S. F. Yelin, Phys. Rev. A 90, 052109 (2014).
[38] S. Morrison and A. S. Parkins, Phys. Rev. Lett. 100, 040403 (2008).
[39] D. Nigro, J. Stat. Mech. (2019) 043202.
[40] S. Morrison and A. S. Parkins, Phys. Rev. A 77, 043810 (2008).
[41] F. Mivehvar, F. Piazza, T. Donner, and H. Ritsch, Adv. Phys. 70, 1 (2021).
[42] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, Rev. Mod. Phys. 93, 025005 (2021).
[43] A. Imamoglu, Phys. Rev. A 50, 3650 (1994).
[44] B. J. Dalton, S. M. Barnett, and B. M. Garraway, Phys. Rev. A 64, 053813 (2001).
[45] B. M. Garraway, Phys. Rev. A 55, 2290 (1997).
[46] G. Pleasance, B. M. Garraway, and F. Petruccione, Phys. Rev. Res. 2, 043058 (2020).
[47] L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, Phys. Rev. A 80, 012104 (2009).
[48] H. Yang, H. Miao, and Y. Chen, Phys. Rev. A 85, 040101(R) (2012).
[49] H.-P. Breuer, Phys. Rev. A 70, 012106 (2004).
[50] A. Barchielli, C. Pellegrini, and F. Petruccione, Europhys. Lett. 91, 24001 (2010).
[51] Y. Tanimura, J. Chem. Phys. 153, 020901 (2020).
[52] Y. Tanimura and R. Kubo, J. Phys. Soc. Jpn. 58, 1199 (1989).
[53] B. Buča and T. Prosen, New J. Phys. 14, 073007 (2012).
[54] V. V. Albert and L. Jiang, Phys. Rev. A 89, 022118 (2014).
[55] F. Minganti, A. Biella, N. Bartolo, and C. Ciuti, Phys. Rev. A 98, 042118 (2018).
[56] K. Hepp and E. H. Lieb, Ann. Phys. (NY) 76, 360 (1973).
[57] F. Minganti, I. I. Arkhipov, A. Miranowicz, and F. Nori, New J. Phys. 23, 122001 (2021).
[58] J. Huber, P. Kirton, and P. Rabl, Phys. Rev. A 102, 012219 (2020).
[59] D. Gu, Z. Wang, and Z. Wang, arXiv:2406.19381.
[60] A. Baksic and C. Ciuti, Phys. Rev. Lett. 112, 173601 (2014).
[61] See Supplemental Material at http://link.aps.org/supplemental/10.1103/4wq2-wyh4 for two videos showing the deformation of the Husimi function across the first-order and second-order DPTs.
[62] M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).
[63] J. K. Korbicz, J. I. Cirac, and M. Lewenstein, Phys. Rev. Lett. 95, 120502 (2005).
[64] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein, Rev. Mod. Phys. 90, 035005 (2018).
[65] J. Ma, X. Wang, C. Sun, and F. Nori, Phys. Rep. 509, 89 (2011).
[66] T. Prosen, New J. Phys. 10, 043026 (2008).
[67] T. Prosen and T. H. Seligman, J. Phys. A: Math. Theor. 43, 392004 (2010).
[68] J. Ma and X. Wang, Phys. Rev. A 80, 012318 (2009).
[69] S. Dusuel and J. Vidal, Phys. Rev. B 71, 224420 (2005).
[70] C. Emary and T. Brandes, Phys. Rev. E 67, 066203 (2003).
[71] B. Buča and D. Jaksch, Phys. Rev. Lett. 123, 260401 (2019).
[72] J. Fan and S. Jia, Phys. Rev. A 107, 033711 (2023).
[73] F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, Phys. Rev. A 75, 013804 (2007).
[74] H. J. Metcalf and P. van der Straten, LaserCoolingandTrapping (Springer New York, 1999).
[75] R. Azouit, F. Chittaro, A. Sarlette, and P. Rouchon, Quantum Sci. Technol. 2, 044011 (2017).
[76] S. Lieu, R. Belyansky, J. T. Young, R. Lundgren, V. V. Albert, and A. V. Gorshkov, Phys. Rev. Lett. 125, 240405 (2020).
[77] P. Sala, S. Gopalakrishnan, M. Oshikawa, and Y. You, Phys. Rev. B 110, 155150 (2024).
[78] L. A. Lessa, R. Ma, J.-H. Zhang, Z. Bi, M. Cheng, and C. Wang, PRX Quantum 6, 010344 (2025).