Novel low-cost instrumentation based on an RGB sensor using molecularly imprinted polymers (MIPs) for the rapid detection of aqueous 2-methoxphenidine (2-MXP) - 2025
Novel low-cost instrumentation based on an RGB sensor using molecularly imprinted polymers (MIPs) for the rapid detection of aqueous 2-methoxphenidine (2-MXP)
Stoukatch, Serguei; Dupont, François; Lowdon, Joseph W.et al.
2025 • In Journal of Sensors and Sensor Systems, 14 (1), p. 111-118
[en] Abstract. In this paper, we demonstrate a novel, cost-effective sensing system utilizing a molecularly imprinted polymer (MIP) for the indirect colorimetric detection of 2-methoxphenidine (2-MXP). Unlike other colorimetric methods that often require expensive spectrometers and bulky read-out equipment, our system is streamlined, employing basic components such as a digital RGB colour sensor, a white LED, and a 3D-printed opaque enclosure compatible with standard spectrometer cuvettes. The sensor is constructed from readily available commercial components using conventional manufacturing processes. Our approach is versatile, accommodating various liquid analytes, making it suitable for diverse applications, including rapid toxicological screening. To this end, optimization towards the dwell time, number of assays needed, and a dose response for the methodology are explored. Specifically, we focus on the detection of 2-MXP in an aqueous solution within a concentration range of 0.05 to 1 mM. Within range, our system effectively identifies the presence of the analyte and quantifies its concentration. Notably, we achieved a detection limit as low as 0.026 mM, which corresponds to a typical metabolite concentration observed in humans. These results underscore the potential of our prototype sensor for practical applications in the rapid and economical field of diagnosis of MXP intoxication.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Stoukatch, Serguei ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés
Dupont, François ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés
Lowdon, Joseph W.
van Wissen, Gil
Eersels, Kasper
van Grinsven, Bart
Redouté, Jean-Michel ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Systèmes microélectroniques intégrés
Language :
English
Title :
Novel low-cost instrumentation based on an RGB sensor using molecularly imprinted polymers (MIPs) for the rapid detection of aqueous 2-methoxphenidine (2-MXP)
Interreg EMR - Interreg Euregio Meuse-Rhine EZK - Ministerie van Economische Zaken en Klimaat SPW - Service Public de Wallonie
Funding number :
EMR 159 project
Funding text :
This research has been supported by Interreg Euregio Meuse-Rhin, theWalloon Region of Belgium, and the Ministerie van Economische Zaken en Klimaat in the framework of the Interreg Food Screening – EMR 159 project. The whole project was also supported by Provincie Limburg and Die Landesregierung Nordrhein-Westfalen. This open-access publication was funded by
the University of Liège.
Avantor by VWR: Disposable macro-cuvettes, https://si.vwr.com/store/product/18616117/disposable-macro-cuvettes (last access: 19 September 2024), 2024.
Ayerdurai, V., Cieplak, M., and Kutner, W.: Molecularly imprinted polymer-based electrochemical sensors for food contaminants determination, Trends Anal. Chem., 158, 116830, https://doi.org/10.1016/j.trac.2022.116830, 2023.
Bahrani, S., Aslani, R., Hashemi, S. A., Mousavi, S. M., and Ghaedi, M.: Chapter 7 – Introduction to molecularly imprinted polymer, in: Interface Science and Technology, Vol. 33, edited by; Ghaedi, M., Elsevier, 511–556, https://doi.org/10.1016/B978-0-12-818805-7.00006-0, 2021.
Bitas, D. and Samanidou, V.: Molecularly imprinted polymers as extracting media for the chromatographic determination of antibiotics in milk, Molecules, 23, 316, https://doi.org/10.3390/molecules23020316, 2018.
Caldara, M., Lowdon, J. W., Royakkers, J., Peeters, M., Cleij, T. J., Diliën, H., Eersels, K., and van Grinsven, B.: A Molecularly Imprinted Polymer-Based Thermal Sensor for the Selective Detection of Melamine in Milk Samples, Foods, 11, 2906, https://doi.org/10.3390/foods11182906, 2022.
Caldara, M., van Wissen, G., Cleij, T. J., Diliën, H., van Grinsven, B., Eersels, K., and Lowdon, J. W.: Deposition Methods for the Integration of Molecularly Imprinted Polymers (MIPs) in Sensor Applications, Adv. Sen. Res., 202200059, 2751–1219, https://doi.org/10.1002/adsr.202200059, 2023.
Chen, H., Wu, F., Xu, Y., Liu, Y., Song, L., Chen, X., He, Q., Liu, W., Han, Q., Zhang, Z., Zou, Y., and Liu, W.: Synthesis, characterization, and evaluation of selective molecularly imprinted polymers for the fast determination of synthetic cathinones, RSC Adv., 11, 29752–29761, https://doi.org/10.1039/d1ra01330k, 2021.
Diliën, H., Peeters, M., Royakkers, J., Harings, J., Cornelis, P., Wagner, P., Steen Redeker, E., Banks, C. E., Eersels, K., van Grinsven, B., and Cleij, T. J.: Label-free detection of small organic molecules by molecularly imprinted polymer functionalized thermocouples: toward in vivo applications, ACS Sensors, 2, 583–589, https://doi.org/10.1021/acssensors.7b00104, 2017.
Dupont, F., Stoukatch, S., Laurent, P., Eersels, K., van Grinsven, B., and Redouté, J.-M.: Design Aspects for Portable LED-Based Colorimetric Characterisation Systems Targeting Liquid Analytes, MDPI Sensors, 24, 1960, https://doi.org/10.3390/s24061960, 2024.
Elliott, S. P., Brandt, S. D., Wallach, J., Morris, H., and Kavanagh, P. V.: First reported fatalities associated with the ‘research chemical’ 2-methoxydiphenidine, J. Anal. Toxicol., 39, 287–293, https://doi.org/10.1093/jat/bkv006, 2015.
EMCDDA – European Monitoring Centre for Drugs and Drug Addiction: Document Library, https://www.emcdda.europa.eu/drugs-library/jwh-018-oxizidsstructural-evolution-synthetic-cannabinoids (last access: 19 September 2024), 2024.
Giancarla, A., Zanoni,C., Spina, S., Magnaghi, L. R., and Biesuz, R.: Trends in Molecularly Imprinted Polymers (MIPs)-Based Plasmonic Sensors, Chemosensors, 11, 144, https://doi.org/10.3390/chemosensors11020144, 2023.
Goossens, J., Vandenryt, T., Lowdon, J. W., van Grinsven, B., Eersels, K., Deferme, W., and Thoelenet, R.: Design of a Lab-on-Chip Cartridge for the Optical Detection of Small Molecules Based on Dye-Displacement MIPs, IEEE T. Instrument. Meas., 72, 1–9, https://doi.org/10.1109/TIM.2023.3301040, 2023.
He, X., Ji, W., Xing, S., Feng, Z., Li, H., Lu, S., Du, K., and Li. X.: Emerging trends in sensors based on molecular imprinting technology: Harnessing smartphones for portable detection and recognition, Talanta, 268, 125283, https://doi.org/10.1016/j.talanta.2023.125283, 2024.
Heidt, B., Rogosic, R., Leoné, N., Brás, E. J. S., Cleij, T. J., Harings, J. A. W., Diliën, H., Eersels, K., and van Grinsven, B.: Topographical Vacuum Sealing of 3D-Printed Multiplanar Microfluidic Structures, Biosensors, 15, 395, https://doi.org/10.3390/bios11100395, 2021.
Hua, Y., Kukkar, D., Brown, R. J. C., and Kim, K.-H.: Recent advances in the synthesis of and sensing applications for metal-organic framework-molecularly imprinted polymer (MOF-MIP) composites, Crit. Rev. Environ. Sci. Technol., 53, 258–289, https://doi.org/10.1080/10643389.2022.2050161, 2023.
Jurásek, B., Bartůněk, V., Huber, Š., Fagan, P., Setnička, V., Králík, F., Dehaen, W., Svozil, D., and Kuchař, M.: Can X-Ray Powder Diffraction Be a Suitable Forensic Method for Illicit Drug Identification?, Front. Chem., 2020, 499, https://doi.org/10.3389/fchem.2020.00499, 2020.
Jurásek, B., Rimpelová, S., Babor, M., Čejka, J., Bartůněk, V., and Kuchař, M.: Intriguing Cytotoxicity of the Street Dissociative Anesthetic Methoxphenidine: Unexpected Impurities Spotted, Int. J. Mol. Sci., 23, 2083, https://doi.org/10.3390/ijms23042083, 2022.
Lowdon J. W., Alkirkit, S. M. O., Mewis, R. E., Fulton, D., Banks, C. E., Sutcliffe, O. B., and Peeters, M.: Engineering molecularly imprinted polymers (MIPs) for the selective extraction and quantification of the Novel Psychoactive Substance (NPS) methoxphenidine and its regioisomers, Analyst, 143, 2002–2007, https://doi.org/10.1039/C8AN00131F, 2018.
Lowdon, J. W., Eersels, K., Rogosic, R.; Boonen, T., Heidt, B., Diliën, H., van Grinsven, B., and Cleij, T. J.: Surface grafted molecularly imprinted polymeric receptor layers for thermal detection of the New Psychoactive substance 2-methoxphenidine, Sens. Actuat. A, 295, 586–595, https://doi.org/10.1016/j.sna.2019.06.029, 2019.
Lowdon, J. W., Diliën, H., van Grinsven, B., Eersels, K., and Cleij, T. J.: Colorimetric Sensing of Amoxicillin Facilitated by Molecularly Imprinted Polymers, Polymers, 13, 2221, https://doi.org/10.3390/polym13132221, 2021.
Marć, M., Bystrzanowska, M., Pokajewicz, K., and To-biszewski, M.: Multivariate assessment of procedures for molecularly imprinted polymer synthesis for pesticides detehttps://doi.org/10.3390/ma14227078, 2021.
Marroquin-Garcia, R., van Wissen, G., Cleij, T. J., Eersels, K., van Grinsven, B., and Diliën, H.: Single-use dye displacement colorimetry assay based on molecularly imprinted polymers: Towards fast and on-site detection of xylazine in alcoholic beverages, Food Control, 161, 110403, https://doi.org/10.1016/j.foodcont.2024.110403, 2024.
Martín-Esteban, A. and Sellergren, B.: 2.17 – Molecularly Imprinted Polymers, in: Comprehensive Sampling and Sample Preparation, edited by: Pawliszyn, J., Academic Press, 331–344, https://doi.org/10.1016/B978-0-12-381373-2.00046-6, 2012.
McLaughlin, G., Morris, N., Kavanagh, P. V., Power, J. D., O’Brien, J., Talbot, B., Elliott, S. P., Wallach, J., Hoang, K., Morris, H., and Brandt, S. D.: Test purchase, synthesis, and characterization of 2-methoxydiphenidine (MXP) and differentiation from its meta- and para-substituted isomers, Drug Test Anal., 8, 98–109, https://doi.org/10.1002/dta.1800, 2016.
Mohseni, N., Bahram, M., and Olivieri, A. C.: Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares. Calculation of the feasible bands of results, Spectrochim. Acta A, 122, 721–30, https://doi.org/10.1016/j.saa.2013.11.073, 2014.
Musiał, J., Czarny, J., and Gadzała-Kopciuch, R.: Overview of analytical methods for determining novel psychoactive substances, drugs and their metabolites in biological samples, Crit. Rev. Toxicol., 52, 239–258, https://doi.org/10.1080/10408444.2022.2091424, 2022.
Pirzada, M. and Altintas, Z.: Chapter 14 – Template Removal in Molecular Imprinting: Principles, Strategies, and Challenges, in: Molecular Imprinting for Nanosensors and Other Sensing Applications, edited by: Denizli, A., Elsevier, 367–406, https://doi.org/10.1016/B978-0-12-822117-4.00014-9, 2021.
Sánchez-González, J., Odoardi, S., Bermejo, A. M., Bermejo-Barrera, P., Romolo, F. S., Moreda-Piñeiro, A., and Strano-Rossi, S.: HPLC-MS/MS combined with membrane-protected molecularly imprinted polymer micro-solid-phase extraction for synthetic cathinones monitoring in urine, Drug Test. Anal. 11, 33–44, https://doi.org/10.1002/dta.2448, 2019.
Shafi, A, Berry, A. J., and Sumnall, H.: Wood DM, Tracy DK. New psychoactive substances: a review and updates, Ther. Adv. Psychopharmacol., 17, 2045125320967197, https://doi.org/10.1177/2045125320967197, 2020.
Turner, N. W., Jeans, C. W., Brain, K .R., Allender, C. J., Hlady, V., and Britt, D. W.: From 3D to 2D: a review of the molecular imprinting of proteins, Biotechnol. Prog., 22, 1474–1489, https://doi.org/10.1021/bp060122g, 2006.
Ultimaker: 3D printers, UltiMaker S5, https://ultimaker.com/3d-printers/s-series/ultimaker-s5/ (last access: 19 September 2024), 2024a.
Ultimaker: Tough PLA material properties, https://ultimaker.com/materials/s-series-tough-pla/ (last access: 19 September 2024), 2024b.
Vagnerova, M., Kolderova, N., Jurasek, B., Sykora, D., and Kuchar, M.: Novel method for determination of methoxphenidine and its main metabolite in biological samples, Toxicologie Analytique et Clinique, 34, S175, https://doi.org/10.1016/j.toxac.2022.06.302, 2022.
Varì, M. R., Mannocchi, G., Tittarelli, R., Campanozzi, L. L., Nittari, G., Feola, A., Umani Ronchi, F., and Ricci, G.: New Psychoactive Substances: Evolution in the Exchange of Information and Innovative Legal Responses in the European Union, Int. J. Environ. Res. Publ. Health, 17, 8704, https://doi.org/10.3390/ijerph17228704, 2020.
Wang, S., Xu, S., Zhou, Q., Liu, Z., and Xu, Z.: State-of-the-art molecular imprinted colorimetric sensors and their on-site inspecting applications, J. Sep. Sci., 46, e2201059, https://doi.org/10.1002/jssc.202201059, 2023.
WHO – World Health Organization: Critical Review Report: Diphenidine, https://cdn.who.int/media/docs/default-source/controlled-substances/43rd-ecdd/diphenidine-report-complete. pdf?sfvrsn=4f7ad16d_2 (last access: 19 September 2024), 2020a.
WHO – World Health Organization: Critical Review Report: 2-MEO-diphenidine, 2-MXP, https://www.who.int/docs/default-source/controlled-substances/43rd-ecdd/ 2-meo-diphenidine-report-final-a.pdf (last access: 19 September 2024), 2020b.
Woźniak, M. K., Banaszkiewicz, L., Wiergowski, M., Tomczak, E., Kata, M., Szpiech, B., Namieśnik, J., and Biziuk, M.: Development and validation of a GC–MS/MS method for the determination of 11 amphetamines and 34 synthetic cathinones in whole blood, Forensic Toxicol., 38, 42–58, https://doi.org/10.1007/s11419-019-00485-y, 2020.
Ye, T., Yin, W., Zhu, N., Yuan, M., Cao, H., Yu, J., Gou, Z., Wang, X., Zhu, H., Reyihanguli, A., and Xu, F.: Colorimetric detection of pyrethroid metabolite by using surface molecularly imprinted polymer, Sensors Actuat. B, 254, 417–423, https://doi.org/10.1016/j.talanta.2021.122397, 2018.