Drug resistance; MARCKS; Metastasis; Protein kinase C; Targeted therapy; microRNA; Myristoylated Alanine-Rich C Kinase Substrate; MicroRNAs; Protein Kinase C; Intracellular Signaling Peptides and Proteins; Membrane Proteins; MARCKS protein, human; MARCKSL1 protein, human; Calmodulin-Binding Proteins; Microfilament Proteins; Humans; Myristoylated Alanine-Rich C Kinase Substrate/metabolism; Protein Kinase C/metabolism; Intracellular Signaling Peptides and Proteins/genetics; Intracellular Signaling Peptides and Proteins/metabolism; Membrane Proteins/metabolism; Phosphorylation; Calmodulin-Binding Proteins/metabolism; Microfilament Proteins/metabolism; MicroRNAs/genetics; MicroRNAs/metabolism; Neoplasms/genetics; Neoplasms; Cell Biology
Abstract :
[en] MicroRNAs (miRNAs) have emerged as pivotal regulators of gene expression, playing essential roles in diverse cellular processes, including the development and progression of cancer. Among the numerous proteins influenced by miRNAs, the MARCKS/MARCKSL1 protein, a key regulator of cellular cytoskeletal dynamics and membrane-cytosol communication, has garnered significant attention due to its multifaceted involvement in various cancer-related processes, including cell migration, invasion, metastasis, and drug resistance. Motivated by the encouraging early clinical success of peptides targeting MARCKS in several pathological conditions, this review article delves into the intricate interplay between miRNAs and the MARCKS protein in cancer. Herein, we have highlighted the latest findings on specific miRNAs that modulate MARCKS/MARCKSL1 expression, providing a comprehensive overview of their roles in different cancer types. We have underscored the need for in-depth investigations into the therapeutic feasibility of targeting the miRNA-MARCKS axis in cancer, taking cues from the successes witnessed in related fields. Unlocking the full potential of miRNA-mediated MARCKS regulation could pave the way for innovative and effective therapeutic interventions against various cancer types.
Vikas, Yadav ; Université de Liège - ULiège > GIGA > GIGA Cancer - Cellular and Molecular Epigenetics
Jena, Manoj Kumar ; Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
Parashar, Gaurav; Division of Biomedical & Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
Parashar, Nidarshana Chaturvedi; Department of Biosciences & Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
Joshi, Hemant; School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
Ramniwas, Seema; University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
Tuli, Hardeep Singh; Department of Biosciences & Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
Language :
English
Title :
Emerging role of microRNAs as regulators of protein kinase C substrate MARCKS and MARCKSL1 in cancer.
Micallef, J., Taccone, M., Mukherjee, J., Croul, S., Busby, J., Moran, M.F., Guha, A., Epidermal growth factor receptor variant III-induced glioma invasion is mediated through myristoylated alanine-rich protein kinase C substrate overexpression. Cancer Res. 69:19 (2009), 7548–7556.
Rombouts, K., Lottini, B., Caligiuri, A., Liotta, F., Mello, T., Carloni, V., Marra, F., Pinzani, M., MARCKS is a downstream effector in platelet-derived growth factor-induced cell motility in activated human hepatic stellate cells. Exp. Cell Res. 314:7 (2008), 1444–1454.
Chiu, C.L., Zhao, H., Chen, C.H., Wu, R., Brooks, J.D., The role of MARCKS in metastasis and treatment resistance of solid tumors. Cancers, 14(19), 2022.
Chen, C.H., Statt, S., Chiu, C.L., Thai, P., Arif, M., Adler, K.B., Wu, R., Targeting myristoylated alanine-rich C kinase substrate phosphorylation site domain in lung cancer. Mechanisms and therapeutic implications. Am. J. Respir. Crit. Care Med. 190:10 (2014), 1127–1138.
Iyer, D.N., Faruq, O., Zhang, L., Rastgoo, N., Liu, A., Chang, H., Pathophysiological roles of myristoylated alanine-rich C-kinase substrate (MARCKS) in hematological malignancies. Biomark. Res., 9(1), 2021, 34.
Arbuzova, A., Schmitz, A.A., Vergeres, G., Cross-talk unfolded: MARCKS proteins. Biochem. J. 362:Pt 1 (2002), 1–12.
Uchida, A., Seki, N., Mizuno, K., Misono, S., Yamada, Y., Kikkawa, N., Sanada, H., Kumamoto, T., Suetsugu, T., Inoue, H., Involvement of dual-strand of the miR-144 duplex and their targets in the pathogenesis of lung squamous cell carcinoma. Cancer Sci. 110:1 (2019), 420–432.
Song, J., Wang, Q., Luo, Y., Yuan, P., Tang, C., Hui, Y., Wang, Z., miR-34c-3p inhibits cell proliferation, migration and invasion of hepatocellular carcinoma by targeting MARCKS. Int. J. Clin. Exp. Pathol. 8:10 (2015), 12728–12737.
Liu, H., Su, P., Zhi, L., Zhao, K., miR-34c-3p acts as a tumor suppressor gene in osteosarcoma by targeting MARCKS. Mol. Med. Rep. 15:3 (2017), 1204–1210.
Li, T., Li, D., Sha, J., Sun, P., Huang, Y., MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem. Biophys. Res. Commun. 383:3 (2009), 280–285.
Shen, H., Jin, J., Wang, H., Yu, N., Liu, T., Sheng, H., Wan, Z., Feng, C., Huang, Y., Gao, F., Integrated analysis identifies microRNA-188-5p as a suppressor of AKT/mTOR pathway in renal cancer. Cancer Sci. 114:8 (2023), 3128–3143.
Zhang, Y., Zhang, W., Xu, A., Tian, Y., Liang, C., Wang, Z., MicroRNA-188 inhibits proliferation migration and invasion of prostate carcinoma by targeting at MARCKS. Am J Transl Res 11:8 (2019), 5019–5028.
Zhang, L., Rastgoo, N., Wu, J., Zhang, M., Pourabdollah, M., Zacksenhaus, E., Chen, Y., Chang, H., MARCKS inhibition cooperates with autophagy antagonists to potentiate the effect of standard therapy against drug-resistant multiple myeloma. Cancer Lett. 480 (2020), 29–38.
Elson-Schwab, I., Lorentzen, A., Marshall, C.J., MicroRNA-200 family members differentially regulate morphological plasticity and mode of melanoma cell invasion. PLoS One, 5(10), 2010.
Taverna, S., Fontana, S., Monteleone, F., Pucci, M., Saieva, L., De Caro, V., et al. Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21. Oncotarget 7:21 (2016), 30420–30439.
Luo, J., Chen, Y., Xu, Y., Tang, M., Zhang, X., Morphine contributed to the deterioration of cancer via miR-543/MARCKS/FcγR-mediated phagocytosis pathway. J. Pharm. Pharmacol. 71:10 (2019), 1584–1598.
Mo, Ji-Su, Alam, K.J., Kim, H.-S., Lee, Y.-M., Yun, K.-J., Chae, S.-C., MicroRNA 429 regulates mucin gene expression and secretion in murine model of colitis. J Crohns Colitis 10:7 (2016), 837–849.
Mitra, A., Yoshida-Court, K., Solley, T.N., Mikkelson, M., Yeung, C.L.A., Nick, A., Lu, K., Klopp, A.H., Extracellular vesicles derived from ascitic fluid enhance growth and migration of ovarian cancer cells. Sci. Rep., 11(1), 2021, 9149.
Eddy, S.R., Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2:12 (2001), 919–929.
Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., Ruvkun, G., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:6772 (2000), 901–906.
Bhatti, G.K., Khullar, N., Sidhu, I.S., Navik, U.S., Reddy, A.P., Reddy, P.H., Bhatti, J.S., Emerging role of non-coding RNA in health and disease. Metab. Brain Dis. 36:6 (2021), 1119–1134.
Loganathan, T., Doss, C.G., Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct. Integr. Genomics, 23(1), 2023, 33.
Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W.J., Mattick, J.S., Haussler, D., Ultraconserved elements in the human genome. Science 304:5675 (2004), 1321–1325.
Johnsson, P., Lipovich, L., Grander, D., Morris, K.V., Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim. Biophys. Acta 1840:3 (2014), 1063–1071.
Braun, J.E., Truffault, V., Boland, A., Huntzinger, E., Chang, C.T., Haas, G., Weichenrieder, O., Coles, M., Izaurralde, E., A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5' exonucleolytic degradation. Nat. Struct. Mol. Biol. 19:12 (2012), 1324–1331.
Jo, M.H., Shin, S., Jung, S.R., Kim, E., Song, J.J., Hohng, S., Human argonaute 2 has diverse reaction pathways on target RNAs. Mol. Cell 59:1 (2015), 117–124.
Jonas, S., Izaurralde, E., Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16:7 (2015), 421–433.
Ellwanger, D.C., Buttner, F.A., Mewes, H.W., Stumpflen, V., The sufficient minimal set of miRNA seed types. Bioinformatics 27:10 (2011), 1346–1350.
Makarova, J.A., Shkurnikov, M.U., Wicklein, D., Lange, T., Samatov, T.R., Turchinovich, A.A., Tonevitsky, A.G., Intracellular and extracellular microRNA: an update on localization and biological role. Prog. Histochem. Cytochem. 51:3–4 (2016), 33–49.
Nishi, K., Nishi, A., Nagasawa, T., Ui-Tei, K., Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA 19:1 (2013), 17–35.
Pitchiaya S, S., Heinicke, L.A., Park, J.I., Cameron, E.L., Walter, N.G., Resolving subcellular miRNA trafficking and turnover at single-molecule resolution. Cell Rep. 19:3 (2017), 630–642.
Bottini, S., Hamouda-Tekaya, N., Mategot, R., Zaragosi, L.E., Audebert, S., Pisano, S., Grandjean, V., Mauduit, C., Benahmed, M., Barbry, P., et al. Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq. Nat. Commun., 8(1), 2017, 1189.
Allo, M., Agirre, E., Bessonov, S., Bertucci, P., Gomez Acuna, L., Buggiano, V., Bellora, N., Singh, B., Petrillo, E., Blaustein, M., et al. Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells. Proc. Natl. Acad. Sci. U.S.A. 111:44 (2014), 15622–15629.
Havens, M.A., Reich, A.A., Hastings, M.L., Drosha promotes splicing of a pre-microRNA-like alternative exon. PLoS Genet., 10(5), 2014, e1004312.
Cernilogar, F.M., Onorati, M.C., Kothe, G.O., Burroughs, A.M., Parsi, K.M., Breiling, A., Lo Sardo, F., Saxena, A., Miyoshi, K., Siomi, H., et al. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 480:7377 (2011), 391–395.
Alon, U., Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8:6 (2007), 450–461.
Chekulaeva, M., Rajewsky, N., Roles of long noncoding RNAs and circular RNAs in translation. Cold Spring Harbor Perspect. Biol., 11(6), 2019, a032680.
Vasudevan, S., Steitz, J.A., AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128:6 (2007), 1105–1118.
Truesdell, S.S., Mortensen, R.D., Seo, M., Schroeder, J.C., Lee, J.H., LeTonqueze, O., Vasudevan, S., MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP. Sci. Rep., 2, 2012, 842.
Catalanotto, C., Cogoni, C., Zardo, G., MicroRNA in control of gene expression: an overview of nuclear functions. Int. J. Mol. Sci., 17(10), 2016, 1712.
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca - Cancer J. Clin. 71:3 (2021), 209–249.
Thandra, K.C., Barsouk, A., Saginala, K., Aluru, J.S., Barsouk, A., Epidemiology of lung cancer. Contemp. Oncol. 25:1 (2021), 45–52.
Chen, C.H., Chiu, C.L., Adler, K.B., Wu, R., A novel predictor of cancer malignancy: up-regulation of myristoylated alanine-rich C kinase substrate phosphorylation in lung cancer. Am. J. Respir. Crit. Care Med. 189:8 (2014), 1002–1004.
Hanada, S., Kakehashi, A., Nishiyama, N., Wei, M., Yamano, S., Chung, K., Komatsu, H., Inoue, H., Suehiro, S., Wanibuchi, H., Myristoylated alanine-rich C-kinase substrate as a prognostic biomarker in human primary lung squamous cell carcinoma. Cancer Biomarkers 13:4 (2013), 289–298.
Rao, G., Pierobon, M., Kim, I.K., Hsu, W.H., Deng, J., Moon, Y.W., Petricoin, E.F., Zhang, Y.W., Wang, Y., Giaccone, G., Inhibition of AKT1 signaling promotes invasion and metastasis of non-small cell lung cancer cells with K-RAS or EGFR mutations. Sci. Rep., 7(1), 2017, 7066.
Croce, C.M., Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10:10 (2009), 704–714.
Di Leva, G., Garofalo, M., Croce, C.M., MicroRNAs in cancer. Annu. Rev. Pathol. 9 (2014), 287–314.
Singh, G., Storey, K.B., MicroRNAs cues from nature: a road map to decipher and combat challenges in human health and diseases?. Cells, 10(12), 2021, 3374.
Tuli, H.S., Garg, V.K., Bhushan, S., Uttam, V., Sharma, U., Jain, A., Sak, K., Yadav, V., Lorenzo, J.M., Dhama, K., et al. Natural flavonoids exhibit potent anticancer activity by targeting microRNAs in cancer: a signature step hinting towards clinical perfection. Transl Oncol, 27, 2023, 101596.
Yang, Q.S., Li, B., Xu, G., Yang, S.Q., Wang, P., Tang, H.H., Liu, Y.Y., Long noncoding RNA LINC00483/microRNA-144 regulates radiosensitivity and epithelial-mesenchymal transition in lung adenocarcinoma by interacting with HOXA10. J. Cell. Physiol. 234:7 (2019), 11805–11821.
Chen, S., Li, P., Li, J., Wang, Y., Du, Y., Chen, X., Zang, W., Wang, H., Chu, H., Zhao, G., et al. MiR-144 inhibits proliferation and induces apoptosis and autophagy in lung cancer cells by targeting TIGAR. Cell. Physiol. Biochem. 35:3 (2015), 997–1007.
Chen, Y.J., Guo, Y.N., Shi, K., Huang, H.M., Huang, S.P., Xu, W.Q., Li, Z.Y., Wei, K.L., Gan, T.Q., Chen, G., Down-regulation of microRNA-144-3p and its clinical value in non-small cell lung cancer: a comprehensive analysis based on microarray, miRNA-sequencing, and quantitative real-time PCR data. Respir. Res., 20(1), 2019, 48.
Liang, W., Gao, R., Yang, M., Wang, X., Cheng, K., Shi, X., He, C., Li, Y., Wu, Y., Shi, L., et al. MARCKSL1 promotes the proliferation, migration and invasion of lung adenocarcinoma cells. Oncol. Lett. 19:3 (2020), 2272–2280.
Li, F., Zhao, J., Wang, L., Chi, Y., Huang, X., Liu, W., METTL14-Mediated miR-30c-1-3p maturation represses the progression of lung cancer via regulation of MARCKSL1 expression. Mol. Biotechnol. 64:2 (2022), 199–212.
Jiang, M., Qi, F., Zhang, K., Zhang, X., Ma, J., Xia, S., Chen, L., Yu, Z., Chen, J., Chen, D., MARCKSL1-2 reverses docetaxel-resistance of lung adenocarcinoma cells by recruiting SUZ12 to suppress HDAC1 and elevate miR-200b. Mol. Cancer, 21(1), 2022, 150.
Jia, J., Liu, Y., Yang, X., Wu, Z., Xu, X., Kang, F., Liu, Y., IncRNA TYMSOS promotes epithelial-mesenchymal transition and metastasis in thyroid carcinoma through regulating MARCKSL1 and activating the PI3K/Akt signaling pathway. Crit. Rev. Eukaryot Gene Expr. 33:1 (2022), 1–14.
Siegel, R.L., Miller, K.D., Wagle, N.S., Jemal, A., Cancer statistics, 2023. Ca - Cancer J. Clin. 73:1 (2023), 17–48.
Manai, M., Abdeljaoued, S., Goucha, A., Adouni, O., Bettaieb, I., Bouzaien, H., Rahal, K., Birnbaum, D., Bertucci, F., Gamoudi, A., MARCKS protein overexpression is associated with poor prognosis in male breast cancer. Cancer Biomarkers 26:4 (2019), 513–522.
Manai, M., Thomassin-Piana, J., Gamoudi, A., Finetti, P., Lopez, M., Eghozzi, R., Ayadi, S., Lamine, O.B., Manai, M., Rahal, K., et al. MARCKS protein overexpression in inflammatory breast cancer. Oncotarget 8:4 (2017), 6246–6257.
Jonsdottir, K., Zhang, H., Jhagroe, D., Skaland, I., Slewa, A., Bjorkblom, B., Coffey, E.T., Gudlaugsson, E., Smaaland, R., Janssen, E.A., et al. The prognostic value of MARCKS-like 1 in lymph node-negative breast cancer. Breast Cancer Res. Treat. 135:2 (2012), 381–390.
Lai, J.I., Chao, T.C., Liu, C.Y., Huang, C.C., Tseng, L.M., A systemic review of taxanes and their side effects in metastatic breast cancer. Front. Oncol., 12, 2022, 940239.
Mustacchi, G., De Laurentiis, M., The role of taxanes in triple-negative breast cancer: literature review. Drug Des. Dev. Ther. 9 (2015), 4303–4318.
Swaminathan, H., Saravanamurali, K., Yadav, S.A., Extensive review on breast cancer its etiology, progression, prognostic markers, and treatment. Med. Oncol., 40(8), 2023, 238.
Chen, C.H., Cheng, C.T., Yuan, Y., Zhai, J., Arif, M., Fong, L.W., Wu, R., Ann, D.K., Elevated MARCKS phosphorylation contributes to unresponsiveness of breast cancer to paclitaxel treatment. Oncotarget 6:17 (2015), 15194–15208.
Salem, O., Erdem, N., Jung, J., Munstermann, E., Worner, A., Wilhelm, H., Wiemann, S., Korner, C., The highly expressed 5'isomiR of hsa-miR-140-3p contributes to the tumor-suppressive effects of miR-140 by reducing breast cancer proliferation and migration. BMC Genom., 17, 2016, 566.
Llovet, J.M., Kelley, R.K., Villanueva, A., Singal, A.G., Pikarsky, E., Roayaie, S., Lencioni, R., Koike, K., Zucman-Rossi, J., Finn, R.S., Hepatocellular carcinoma. Nat. Rev. Dis. Prim., 7(1), 2021, 6.
Philips, C.A., Rajesh, S., Nair, D.C., Ahamed, R., Abduljaleel, J.K., Augustine, P., Hepatocellular carcinoma in 2021: an exhaustive update. Cureus, 13(11), 2021, e19274.
Janevska, D., Chaloska-Ivanova, V., Janevski, V., Hepatocellular carcinoma: risk factors, diagnosis and treatment. Open Access Maced J Med Sci 3:4 (2015), 732–736.
Masaki, T., Tokuda, M., Yoshida, S., Nakai, S., Morishita, A., Uchida, N., Funaki, T., Kita, Y., Funakoshi, F., Nonomura, T., et al. Comparison study of the expressions of myristoylated alanine-rich C kinase substrate in hepatocellular carcinoma, liver cirrhosis, chronic hepatitis, and normal liver. Int. J. Oncol. 26:3 (2005), 661–671.
Naboulsi, W., Megger, D.A., Bracht, T., Kohl, M., Turewicz, M., Eisenacher, M., Voss, D.M., Schlaak, J.F., Hoffmann, A.C., Weber, F., et al. Quantitative tissue proteomics analysis reveals versican as potential biomarker for early-stage hepatocellular carcinoma. J. Proteome Res. 15:1 (2016), 38–47.
Huo, J., Fan, X., Qi, B., Sun, P., A five-gene signature associated with DNA damage repair molecular subtype predict overall survival for hepatocellular carcinoma. Front. Genet., 13, 2022, 771819.
Yao F, F., Zhan, Y., Li, C., Lu, Y., Chen, J., Deng, J., Wu, Z., Li, Q., Song, Y., Chen, B., et al. Single-cell RNA sequencing reveals the role of phosphorylation-related genes in hepatocellular carcinoma stem cells. Front. Cell Dev. Biol., 9, 2021, 734287.
Ren, X., Ju, Y., Wang, C., Wei, R., Sun, H., Zhang, Q., MARCKS on tumor-associated macrophages is correlated with immune infiltrates and poor prognosis in hepatocellular carcinoma. Cancer Invest. 39:9 (2021), 756–768.
Koenig, A.B., Barajas, J.M., Guerrero, M.J., Ghoshal, K., A comprehensive analysis of argonaute-CLIP data identifies novel, conserved and species-specific targets of miR-21 in human liver and hepatocellular carcinoma. Int. J. Mol. Sci., 19(3), 2018.
Hermeking, H., The miR-34 family in cancer and apoptosis. Cell Death Differ. 17:2 (2010), 193–199.
Rawla, P., Epidemiology of prostate cancer. World J. Oncol. 10:2 (2019), 63–89.
Wang, L., Lu, B., He, M., Wang, Y., Wang, Z., Du, L., Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Front. Public Health, 10, 2022, 811044.
Finlayson, A.E., Freeman, K.W., A cell motility screen reveals role for MARCKS-related protein in adherens junction formation and tumorigenesis. PLoS One, 4(11), 2009, e7833.
Dorris, E., O'Neill, A., Hanrahan, K., Treacy, A., Watson, R.W., MARCKS promotes invasion and is associated with biochemical recurrence in prostate cancer. Oncotarget 8:42 (2017), 72021–72030.
Bjorkblom, B., Padzik, A., Mohammad, H., Westerlund, N., Komulainen, E., Hollos, P., Parviainen, L., Papageorgiou, A.C., Iljin, K., Kallioniemi, O., et al. c-Jun N-terminal kinase phosphorylation of MARCKSL1 determines actin stability and migration in neurons and in cancer cells. Mol. Cell Biol. 32:17 (2012), 3513–3526.
Feng, Y.H., Tsao, C.J., Emerging role of microRNA-21 in cancer. Biomed Rep 5:4 (2016), 395–402.
Li, J., Chen, H., Sun, G., Zhang, X., Ye, H., Wang, P., Role of miR-21 in the diagnosis of colorectal cancer: meta-analysis and bioinformatics. Pathol. Res. Pract., 248, 2023, 154670.
Singh, A., Singh, A.K., Giri, R., Kumar, D., Sharma, R., Valis, M., Kuca, K., Garg, N., The role of microRNA-21 in the onset and progression of cancer. Future Med. Chem. 13:21 (2021), 1885–1906.
Bilal, M., Javaid, A., Amjad, F., Youssif, T.A., Afzal, S., An overview of prostate cancer (PCa) diagnosis: potential role of miRNAs. Transl Oncol, 26, 2022, 101542.
Jokovic, S.M., Dobrijevic, Z., Kotarac, N., Filipovic, L., Popovic, M., Korac, A., Vukovic, I., Savic-Pavicevic, D., Brajuskovic, G., MiR-375 and miR-21 as potential biomarkers of prostate cancer: comparison of matching samples of plasma and exosomes. Genes, 13(12), 2022, 2320.
Camargo, J.A., Viana, N.I., Pimenta, R., Guimaraes, V.R., Dos Santos, G.A., Candido, P., Ghazarian, V., Romao, P., Silva, I.A., Birbrair, A., et al. The effect of gene editing by CRISPR-cas9 of miR-21 and the indirect target MMP9 in metastatic prostate cancer. Int. J. Mol. Sci., 24(19), 2023, 14847.
Rajkumar, S.V., Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. Am. J. Hematol. 97:8 (2022), 1086–1107.
Sonneveld, P., Broijl, A., Treatment of relapsed and refractory multiple myeloma. Haematologica 101:4 (2016), 396–406.
Podar, K., Raab, M.S., Zhang, J., McMillin, D., Breitkreutz, I., Tai, Y.T., Lin, B.K., Munshi, N., Hideshima, T., Chauhan, D., et al. Targeting PKC in multiple myeloma: in vitro and in vivo effects of the novel, orally available small-molecule inhibitor enzastaurin (LY317615.HCl). Blood 109:4 (2007), 1669–1677.
Verdelli, D., Nobili, L., Todoerti, K., Intini, D., Cosenza, M., Civallero, M., Bertacchini, J., Deliliers, G.L., Sacchi, S., Lombardi, L., et al. Molecular targeting of the PKC-beta inhibitor enzastaurin (LY317615) in multiple myeloma involves a coordinated downregulation of MYC and IRF4 expression. Hematol. Oncol. 27:1 (2009), 23–30.
Carballo, E., Colomer, D., Vives Corrons, J.L., Blackshear, P.J., Gil, J., Phosphorylation of the MARCKS family of protein kinase C substrates in human B chronic lymphocytic leukemia cells. Leukemia 9:5 (1995), 834–839.
Carballo, E., Colomer, D., Vives-Corrons, J.L., Blackshear, P.J., Gil, J., Characterization and purification of a protein kinase C substrate in human B cells, Identification as lymphocyte-specific protein 1 (LSP1). J. Immunol. 156:5 (1996), 1709–1713.
Nagata, K.I., kano, Y., Nozawa, Y., Protein kinase C isozymes in human megakaryoblastic leukemia cell line, MEG-01: possible involvement of the isozymes in the differentiation process of MEG-01 cells. Br. J. Haematol. 93:4 (1996), 762–771.
Muguruma, Y., Yahata, T., Warita, T., Hozumi, K., Nakamura, Y., Suzuki, R., Ito, M., Ando, K., Jagged1-induced Notch activation contributes to the acquisition of bortezomib resistance in myeloma cells. Blood Cancer J., 7(12), 2017, 650.
Yang, Y., Chen, Y., Saha, M.N., Chen, J., Evans, K., Qiu, L., Reece, D., Chen, G.A., Chang, H., Targeting phospho-MARCKS overcomes drug-resistance and induces antitumor activity in preclinical models of multiple myeloma. Leukemia 29:3 (2015), 715–726.
Naik, P.P., Cutaneous malignant melanoma: a review of early diagnosis and management. World J. Oncol. 12:1 (2021), 7–19.
Eddy, K., Shah, R., Chen, S., Decoding melanoma development and progression: identification of therapeutic vulnerabilities. Front. Oncol., 10, 2020, 626129.
Gajos-Michniewicz, A., Czyz, M., WNT signaling in melanoma. Int. J. Mol. Sci., 21(14), 2020, 4852.
Weeraratna, A.T., Jiang, Y., Hostetter, G., Rosenblatt, K., Duray, P., Bittner, M., Trent, J.M., Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1:3 (2002), 279–288.
Dissanayake, S.K., Wade, M., Johnson, C.E., O'Connell, M.P., Leotlela, P.D., French, A.D., Shah, K.V., Hewitt, K.J., Rosenthal, D.T., Indig, F.E., et al. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J. Biol. Chem. 282:23 (2007), 17259–17271.
Mohapatra, P., Yadav, V., Toftdahl, M., Andersson, T., WNT5A-Induced activation of the protein kinase C substrate MARCKS is required for melanoma cell invasion. Cancers, 12(2), 2020, 346.
Estrada-Bernal, A., Gatlin, J.C., Sunpaweravong, S., Pfenninger, K.H., Dynamic adhesions and MARCKS in melanoma cells. J. Cell Sci. 122:Pt 13 (2009), 2300–2310.
Zaman, A., Wu, W., Bivona, T.G., Targeting oncogenic BRAF: past, present, and future. Cancers, 11(8), 2019, 1197.
Yadav, V., Jobe N, N., Satapathy, S.R., Mohapatra, P., Andersson, T., Increased MARCKS activity in BRAF inhibitor-resistant melanoma cells is essential for their enhanced metastatic behavior independent of elevated WNT5A and IL-6 signaling. Cancers, 14(24), 2022, 6077.
Mueller, D.W., Rehli, M., Bosserhoff, A.K., miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J. Invest. Dermatol. 129:7 (2009), 1740–1751.
Rosenfeld, N., Aharonov, R., Meiri, E., Rosenwald, S., Spector, Y., Zepeniuk, M., Benjamin, H., Shabes, N., Tabak, S., Levy, A., et al. MicroRNAs accurately identify cancer tissue origin. Nat. Biotechnol. 26:4 (2008), 462–469.
Fotakopoulos, G., Georgakopoulou, V.E., Spandidos, D.A., Papalexis, P., Angelopoulou, E., Aravantinou-Fatorou, A., Trakas, N., Trakas, I., Brotis, A.G., Role of miR-200 family in brain metastases: a systematic review. Mol Clin Oncol, 18(3), 2023, 15.
Enuka, Y., Lauriola, M., Feldman, M.E., Sas-Chen, A., Ulitsky, I., Yarden, Y., Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44:3 (2016), 1370–1383.
Dawoud, A., Ihab Zakaria, Z., Hisham Rashwan, H., Braoudaki, M., Youness, R.A., Circular RNAs: new layer of complexity evading breast cancer heterogeneity. Noncoding RNA Res 8:1 (2023), 60–74.
Pamudurti, N.R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., Ruhe, L., Hanan, M., Wyler, E., Perez-Hernandez, D., Ramberger, E., et al. Translation of CircRNAs. Mol. Cell 66:1 (2017), 9–21 e27.
Jeck, W.R., Sorrentino, J.A., Wang, K., Slevin, M.K., Burd, C.E., Liu, J., Marzluff, W.F., Sharpless, N.E., Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:2 (2013), 141–157.
Wilusz, J.E., Sharp, P.A., Molecular biology. A circuitous route to noncoding RNA. Science 340:6131 (2013), 440–441.
Zhao, B., Huang, C., Pan, J., Hu, H., Liu, X., Zhang, K., Zhou, F., Shi, X., Wu, J., Yu, B., et al. circPLIN2 promotes clear cell renal cell carcinoma progression by binding IGF2BP proteins and miR-199a-3p. Cell Death Dis., 13(12), 2022, 1030.
Zhao, P., Zhang, J., Circ_0039569 competes with MARCKS for miR-133b binding sites to promote the progression of renal cell carcinoma. Nephron 146:4 (2022), 404–417.
Yadav, V., Islam, R., Tuli, H.S., Patent landscape highlighting double-edged scaffold of a WNT5A-agonizing peptide, Foxy5. Pharm Pat Anal 12:2 (2023), 69–77.