[en] 1. Most tree species can suffer from inbreeding depression (ID), which they escape by reproducing predominantly through outcrossing. A remarkable exception is Pericopsis elata, an African timber species naturally producing 54% of self- fertilized seeds in the eastern Congo Basin. This species is highly logged and suffers from a deficit of natural regeneration, so that silviculture is needed for its sustainable management. While selecting good genetic material can increase the value of plantations, we lack fundamental biological knowledge on the effect of inbreed- ing and competition on growth potential, variability in leaf traits and phenotypic plasticity (PP). We hypothesize that ID in P. elata could result from the expression of deleterious mutations affecting functional traits, or from a reduction of adap- tive PP in inbred genotypes.
2. To test our hypotheses, 540 P. elata seedlings were monitored for 4 years in a Nelder- type device, in which trees were planted along concentric circles to gener- ate a density gradient. Nine leaf morphological traits (including specific leaf area, stomata density and size), eight leaf chemical traits, diameter and total height were measured regularly on 60 individuals, while paternity analyses allowed dis- tinguishing inbred and outbred plants. To explain the observed ID on growth, we tested whether inbreeding affected leaf traits and/or their plasticity expressed across years, across the density gradient or across sunlight exposure.
3. Outbred plants grew faster than inbred ones, demonstrating ID for each level of competition. Despite the significant correlation found between specific LA and growth, and the impact of planting density, plant age and leaf exposure to sunlight on multiple traits, mean leaf trait values did not differ according to inbreeding. However, a few leaf traits (chlorophyll content, maximum stomatal water vapour conductance and leaf fresh mass) showed significantly higher plasticity in outbred than inbred plants.
4. Synthesis. The observed ID on growth traits was not explained by a direct effect of inbreeding on the mean values of leaf traits but possibly by a reduction in PP with inbreeding. Additional studies on the interplay between ID, functional traits and plasticity should be conducted at the intraspecific level to identify general patterns.
Research Center/Unit :
TERRA Research Centre. Gestion des ressources forestières - ULiège
Disciplines :
Genetics & genetic processes
Author, co-author :
Ngongo, Jean Pierre ; Department of Natural and Renewable Resources Management, Faculty of Agricultural Sciences University of Kindu Kindu Democratic Republic of the Congo ; Faculty of Sciences University of Kisangani Kisangani Democratic Republic of the Congo ; Evolutionary Biology and Ecology, CP 160/12, Faculty of Sciences Université Libre de Bruxelles Brussels Belgium
Kafuti, Chadrack; UGCT‐Woodlab‐UGent, Laboratory of Wood Technology Ghent University Ghent Belgium ; Service of Wood Biology Royal Museum for Central Africa Tervuren Belgium ; Department of Natural Resources Management, Faculty of Agricultural Sciences University of Kinshasa Kinshasa Democratic Republic of the Congo
Beeckman, Hans; Service of Wood Biology Royal Museum for Central Africa Tervuren Belgium
Ndjele, Léopold; Faculty of Sciences University of Kisangani Kisangani Democratic Republic of the Congo
Ibrahim, Espoir; Faculty of Sciences University of Kisangani Kisangani Democratic Republic of the Congo
Ilunga-Mulala Mushagalusa, Crispin ; Université de Liège - ULiège > TERRA Research Centre ; Faculté des Sciences Université du Cinquantenaire de Lwiro Lwiro Democratic Republic of the Congo
Hatakiwe, Hulda; Center for International Forestry Research (CIFOR) Bogor Indonesia
Brostaux, Yves ; Université de Liège - ULiège > Département GxABT > Modélisation et développement
Angbonda, Dieu‐Merci Assumani; Evolutionary Biology and Ecology, CP 160/12, Faculty of Sciences Université Libre de Bruxelles Brussels Belgium ; Faculté de Gestion des Ressources Naturelles Renouvelables Université de Kisangani Kisangani Democratic Republic of Congo ; Institut National Pour l'Etude et la Recherche Agronomiques de Yangambi (INERA‐Yangambi) Yangambi Democratic Republic of the Congo
Drouet, Thomas; Plant Ecology and Biogeochemistry, CP 244, Faculty of Sciences Université Libre de Bruxelles Brussels Belgium
Bourland, Nils ; Université de Liège - ULiège > Forêts, Nature et Paysage > Laboratoire de Foresterie des régions tropicales et subtropicales ; Service of Wood Biology Royal Museum for Central Africa Tervuren Belgium ; Center for International Forestry Research (CIFOR) Bogor Indonesia ; Ressources &, Synergies Development Singapore Singapore
Hardy, Olivier J.; Evolutionary Biology and Ecology, CP 160/12, Faculty of Sciences Université Libre de Bruxelles Brussels Belgium
Language :
English
Title :
Inbreeding depression, functional traits and phenotypic plasticity in an endangered tree species with a mixed mating system
Alternative titles :
[fr] Dépression de consanguinité, traits fonctionnels et plasticité phénotypique chez une espèce d'arbre menacée avec un système d'accouplement mixte
Original title :
[en] Inbreeding depression, functional traits and phenotypic plasticity in an endangered tree species with a mixed mating system
Abdusalam, A., & Li, Q. (2018). Morphological plasticity and adaptation level of distylous Primula nivalis in a heterogeneous alpine environment. Plant Diversity, 40, 284–291. https://doi.org/10.1016/j.pld.2018.11.003
Ackerly, D. D., Knight, C. A., Weiss, S. B., & Barton, K. (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses. Oecologia, 130, 449–457. https://doi.org/10.1007/s004420100805
Aleman, J. C., Jarzyna, M. A., & Staver, A. C. (2018). Forest extent and deforestation in tropical Africa since 1900. Nature Ecology & Evolution, 2, 26–33. https://doi.org/10.1038/s41559-017-0406-1
Amorim, G. T. d. S., Pinto, T. d. O., Silveira, T. d. O., de Souza, M. A. A., Menezes, B. R. d. S., & Junior, P. C. D. (2023). Catharanthus roseus [L.] G. Don: Allogamy as the main reproductive strategy and autogamy as a supposed reproductive guarantee mechanism. South African Journal of Botany, 154, 32–40. https://doi.org/10.1016/j.sajb.2023.01.004
Anderson, J. T., Panetta, A. M., & Mitchell-Olds, T. (2012). Evolutionary and ecological responses to anthropogenic climate change. Plant Physiology, 160, 1728–1740. https://doi.org/10.1104/pp.112.206219
Angbonda, D.-M. A., Ilunga-Mulala, C. M., Bourland, N., Beeckman, H., Hatakiwe, H., Ngongo, J. P., & Hardy, O. J. (2024). Inbreeding depression affects the growth of seedlings of an African timber species with a mixed mating reproductive system, Pericopsis elata. Heredity, 133, 238–248. https://doi.org/10.1038/s41437-024-00709-x
Angbonda, D. M. A., Monthe, F. K., Bourland, N., Boyemba, F., & Hardy, O. J. (2021). Seed and pollen dispersal and fine-scale spatial genetic structure of a threatened tree species: Pericopsis elata (HARMS) Meeuwen (Fabaceae). Tree Genetics & Genomes, 17, 27. https://doi.org/10.1007/s11295-021-01509-8
Aranda, I., Gil, L., & Pardos, J. (2001). Effects of thinning in a Pinus sylvestris L. stand on foliar water relations of Fagus sylvatica L. seedlings planted within the pinewood. Trees, 15, 358–364. https://doi.org/10.1007/s004680100109
Auld, J. R., & Relyea, R. A. (2010). Inbreeding depression in adaptive plasticity under predation risk in a freshwater snail. Biology Letters, 6, 222–224. https://doi.org/10.1098/rsbl.2009.0726
Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48. https://doi.org/10.18637/jss.v067.i01
Beeckman, H., & Vander Mijnsbrugge, K. (1990). The evolutionary learning algorithm in processing of ecological data. Case-study: Poplar tree-ring analysis. Silva Gandav, 55, 87–103. https://doi.org/10.21825/sg.v55i0.903
Bourland, N., Kouadio, Y. L., Fétéké, F., & Lejeune, P. (2012). Ecology and management of Pericopsis elata (Harms) Meeuwen (Fabaceae) populations: A review. Biotechnology, Agronomy, Society and Environment, 16, 486–498.
Bourland, N., Lambert, K. Y., Lejeune, P., Bonaventure, S., Julien, P., Daïnou, K., Fétéké, F., & Doucet, J.-L. (2012). Ecology of Pericopsis elata (Fabaceae), an endangered timber species in southeastern Cameroon. Biotropica, 44, 840–847. https://doi.org/10.1111/j.1744-7429.2012.00874.x
Brunner, A., & Nigh, G. (2000). Light absorption and bole volume growth of individual Douglas-fir trees. Tree Physiology, 20, 323–332. https://doi.org/10.1093/treephys/20.5-6.323
Buckley, J., Daly, R., Cobbold, C. A., Burgess, K., & Mable, B. K. (2019). Changing environments and genetic variation: Natural variation in inbreeding does not compromise short-term physiological responses. Proceedings of the Royal Society B: Biological Sciences, 286, 20192109. https://doi.org/10.1098/rspb.2019.2109
Buckley, T. N. (2019). How do stomata respond to water status? The New Phytologist, 224, 21–36. https://doi.org/10.1111/nph.15899
Burgess, I. P., Williams, E. R., Bell, J. C., Harwood, C. E., & Owen, J. V. (1996). The effect of outcrossing rate on the growth of selected families of Eucalyptus grandis. Silvae Genetica, 45, 97–100.
Camargo, M. A. B., & Marenco, R. A. (2011). Densidade, tamanho e distribuição estomática em 35 espécies de árvores na Amazônia central. Acta Amazonica, 41, 205–212. https://doi.org/10.1590/S0044-59672011000200004
Charlesworth, D., & Willis, J. H. (2009). The genetics of inbreeding depression. Nature Reviews. Genetics, 10, 783–796. https://doi.org/10.1038/nrg2664
Coleman, J., McConnaughay, M. K. D., & Ackerly, D. D. (1994). Interpreting phenotypic variation in plants. Trends in Ecology & Evolution, 9, 187–191.
Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., Ter Steege, H., Morgan, H. D., Van Der Heijden, M. G. A., Pausas, J. G., & Poorter, H. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335–380. https://doi.org/10.1071/BT02124
Costa e Silva, J., Hardner, C., Tilyard, P., Pires, A. M., & Potts, B. M. (2010). Effects of inbreeding on population mean performance and observational variances in Eucalyptus globulus. Annals of Forest Science, 67, 605. https://doi.org/10.1051/forest/2010018
Coste, S., Baraloto, C., Leroy, C., Marcon, É., Renaud, A., Richardson, A. D., Roggy, J. C., Schimann, H., Uddling, J., & Hérault, B. (2010). Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: A calibration test with thirteen tree species of tropical rainforest in French Guiana. Annals of Forest Science, 67, 607. https://doi.org/10.1051/forest/2010020
Daïnou, K., Tosso, F., Bracke, C., Bourland, N., Forni, E., Hubert, D., Kankolongo, A., Loumeto, J., Louppe, D., Ngomanda, A., Ngomin, A., Tite, V., & Doucet, J.-L. (2021). Guide Pratique des Plantations d'Arbres des forêts denses humides d'Afrique.
Darwin, C. R. (1876). The effects of cross and self fertilisation in the vegetable. John Murray.
De Ridder, M., Toirambe, B., Van den Bulcke, J., Bourland, N., Van Acker, J., & Beeckman, H. (2014). Dendrochronological potential in a semi-deciduous rainforest: The case of Pericopsis elata in central Africa. Forests, 5, 3087–3106. https://doi.org/10.3390/f5123087
Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529, 167–171. https://doi.org/10.1038/nature16489
Dick, C. W., Hardy, O. J., Jones, F. A., & Petit, R. J. (2008). Spatial Scales of pollen and seed-mediated gene flow in tropical rain Forest trees. Tropical Plant Biology, 1, 20–33. https://doi.org/10.1007/s12042-007-9006-6
Djinet, A. I., Bell, J. M., Nana, R., Nguinambaye, M. M., & Tamini, Z. (2016). Évaluation des caractéristiques des stomates chez le palmier à huile (Elaeis guineensis Jacq.). Journal of Applied Biosciences, 104, 9904. https://doi.org/10.4314/jab.v104i1.2
dos Santos, V. A. H. F., & Ferreira, M. J. (2020). Are photosynthetic leaf traits related to the first-year growth of tropical tree seedlings? A light-induced plasticity test in a secondary forest enrichment planting. Forest Ecology and Management, 460, 117900. https://doi.org/10.1016/j.foreco.2020.117900
Douhovnikoff, V., Taylor, S. H., Hazelton, E. L. G., Smith, C. M., & O'Brien, J. (2016). Maximal stomatal conductance to water and plasticity in stomatal traits differ between native and invasive introduced lineages of Phragmites australis in North America. AoB Plants, 8, 1–11. https://doi.org/10.1093/aobpla/plw006
Dow, G. J., Bergmann, D. C., & Berry, J. A. (2014). An integrated model of stomatal development and leaf physiology. The New Phytologist, 201, 1218–1226. https://doi.org/10.1111/nph.12608
Duminil, J., Daïnou, K., Kaviriri, D. K., Gillet, P., Loo, J., Doucet, J. L., & Hardy, O. J. (2016). Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests. Heredity (Edinb), 116, 295–303. https://doi.org/10.1038/hdy.2015.101
Duminil, J., Hardy, O. J., & Petit, R. J. (2009). Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure. BMC Evolutionary Biology, 9, 1–14. https://doi.org/10.1186/1471-2148-9-177
Duminil, J., Mendene Abessolo, D. T., Ndiade Bourobou, D., Doucet, J. L., Loo, J., & Hardy, O. J. (2016). High selfing rate, limited pollen dispersal and inbreeding depression in the emblematic African rain forest tree Baillonella toxisperma—Management implications. Forest Ecology and Management, 379, 20–29. https://doi.org/10.1016/j.foreco.2016.08.003
Ebuy, J., Mate, J. P., Mukandama, J. P., & Ponette, Q. (2016). Chute des litières et fertilité des sols sous plantations forestières dans le bassin du Congo: Cas de la station I.N.E.R.A/Yangambi en R.D.C. Journal of Animal & Plant Sciences, 31, 4843–4861.
Eldridge, K. G. (1983). Selfing effets in Eucalyptus regnans. Silvae Genetica, 32, 5–6.
Flexas, J., Barón, M., Bota, J., Ducruet, J. M., Gallé, A., Galmés, J., Jiménez, M., Pou, A., Ribas-Carbó, M., Sajnani, C., Tomàs, M., & Medrano, H. (2009). Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris). Journal of Experimental Botany, 60, 2361–2377. https://doi.org/10.1093/jxb/erp069
Fyllas, N. M., Patino, S., Baker, T. R., Bielefeld Nardoto, G., Martinelli, L. A., Quesada, C. A., Paiva, R., Schwarz, M., Horna, V., Mercado, L. M., Santos, A., Arroyo, L., Jiměnez, E. M., Luizao, F. J., Neill, D. A., Silva, N., Prieto, A., Rudas, A., Silviera, M., … Lloyd, J. (2009). Basin-wide variations in foliar properties of Amazonian forest: Phylogeny, soils and climate. Biogeosciences, 6, 2677–2708. https://doi.org/10.5194/bg-6-2677-2009
Gratani, L. (2014). Plant phenotypic plasticity in response to environmental factors. Advances in Botany, 2014, 1–17. https://doi.org/10.1155/2014/208747
Gratani, L., Pesoli, P., Crescente, M. F., Aichner, K., & Larcher, W. (2000). Photosynthesis as a temperature indicator in Quercus ilex L. Global and Planetary Change, 24, 153–163. https://doi.org/10.1016/S0921-8181(99)00061-2
Griffin, A. R., Potts, B. M., Vaillancourt, R. E., & Bell, J. C. (2019). Life cycle expression of inbreeding depression in Eucalyptus regnans and inter-generational stability of its mixed mating system. Annals of Botany, 124, 179–187. https://doi.org/10.1093/aob/mcz059
Hajek, P., Kurjak, D., Von Wühlisch, G., Delzon, S., & Schuldt, B. (2016). Intraspecific variation in wood anatomical, hydraulic, and foliar traits in ten European beech provenances differing in growth yield. Frontiers in Plant Science, 7, 1–14. https://doi.org/10.3389/fpls.2016.00791
Hardner, C. M., & Potts, B. M. (1995). Inbreeding depression and changes in variation after selfing in Eucalyptus globulus ssp. globulus. Silvae Genetica, 44, 46–54.
Hedde, M., Aubert, M., Bureau, F., Margerie, P., & Decaëns, T. (2007). Soil detritivore macro-invertebrate assemblages throughout a managed beech rotation. Annals of Forest Science, 64, 219–228. https://doi.org/10.1051/forest
Hedrick, P. W., Hellsten, U., & Grattapaglia, D. (2016). Examining the cause of high inbreeding depression: Analysis of whole-genome sequence data in 28 selfed progeny of Eucalyptus grandis. The New Phytologist, 209, 600–611. https://doi.org/10.1111/nph.13639
Heineman, K. D., Turner, B. L., & Dalling, J. W. (2016). Variation in wood nutrients along a tropical soil fertility gradient. The New Phytologist, 211, 440–454. https://doi.org/10.1111/nph.13904
Herlihy, C. R., & Eckert, C. G. (2002). Genetic cost of reproductive assurance in a self-fertilizing plant. Nature, 416, 320–323. https://doi.org/10.1038/416320a
Hills, R. (2020). Pericopsis elata. The IUCN Red List of Threatened Species 2020.
Hodgson, J. G., Montserrat-Martí, G., Charles, M., Jones, G., Wilson, P., Shipley, B., Sharafi, M., Cerabolini, B. E. L., Cornelissen, J. H. C., Band, S. R., Bogard, A., Castro-Díez, P., Guerrero-Campo, J., Palmer, C., Pérez-Rontomé, M. C., Carter, G., Hynd, A., Romo-Díez, A., De Torres Espuny, L., & Royo Pla, F. (2011). Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany, 108, 1337–1345. https://doi.org/10.1093/aob/mcr225
Hufford, K. M., & Hamrick, J. L. (2003). Viability selection at three early life stages of the tropical tree, Platypodium elegans (Fabaceae, Papilionoideae). Evolution, 57, 518–526. https://doi.org/10.1111/j.0014-3820.2003.tb01543.x
Ilunga-Mulala, C., Hatakiwe, H., Beeckman, H., Hardy, O. J., Ligot, G., Assumani, D., Ndjele, L., & Bourland, N. (2021). Influence of spacing and seed trees on the growth of Pericopsis elata saplings during the first twenty months of a planting trial. Biotechnology, Agronomy, Society and Environment, 25, 32–44.
Ismail, S. A., Ghazoul, J., Ravikanth, G., Kushalappa, C. G., Uma Shaanker, R., & Kettle, C. J. (2014). Forest trees in human modified landscapes: Ecological and genetic drivers of recruitment failure in Dysoxylum malabaricum (Meliaceae). PLoS One, 9, e89437. https://doi.org/10.1371/journal.pone.0089437
Jones, A., Breuning-Madsen, H., Brossard, M., Chapelle, J., Dampha, A., Deckers, J., Dewitte, O., Dondeyne, S., Gallali, T., Hallett, S., Jones, R., Kilasara, M., Le Roux, P., Micheli, E., Montanarella, L., Spaargaren, O., Thiombiano, L., Van Ranst, E., Yemefack, M., & Zougmoré, R. (Eds.). (2013). Atlas des sols d'Afrique. Commission européenne, Bureau des publications de l'Union européenne.
Kafuti, C., Bourland, N., De Mil, T., Meeus, S., Rousseau, M., Toirambe, B., Bolaluembe, P. C., Ndjele, L., & Beeckman, H. (2020). Foliar and wood traits covary along a vertical gradient within the crown of long-lived light-demanding species of the Congo basin semi-deciduous forest. Forests, 11, 35. https://doi.org/10.3390/f11010035
Kafuti, C., Van den Bulcke, J., Beeckman, H., Van Acker, J., Hubau, W., De Mil, T., Hatakiwe, H., Djiofack, B., Fayolle, A., Loubota Panzou, G. J., & Bourland, N. (2022). Height-diameter allometric equations of an emergent tree species from the Congo Basin. Forest Ecology and Management, 504, 119822. https://doi.org/10.1016/J.FORECO.2021.119822
Kouadio, Y., & Doucet, J. (2009). Etude du comportement de Baillonella toxisperma Pierre (moabi) dans les trouées d'abattage enrichies. Biotechnology, Agronomy, Society and Environment, 13, 317–324.
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82, 1–26. https://doi.org/10.18637/JSS.V082.I13
Laforest-Lapointe, I., Martínez-Vilalta, J., & Retana, J. (2014). Intraspecific variability in functional traits matters: Case study of Scots pine. Oecologia, 175, 1337–1348. https://doi.org/10.1007/s00442-014-2967-x
Laure, N. M. R., William, M. A., & Din, N. (2014). Early growth stages structure and distribution of Pericopsis elata (Harms) van Meeuven in a logging concession of south-East Cameroon. Journal of Biodiversity and Environmental Sciences, 5, 354–363.
Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.x
Lenth, R. V., Banfai, B., Bolker, B., Buerkner, P., Giné-Vázquez, I., Herve, M., Jung, M., Love, J., Miguez, F., & Piaskowski, J. (2025). Package ‘emmeans’. https://doi.org/10.1080/00031305.1980.10483031>.License
Mosango, M. (1983). Une estimation du niveau d'accumulation des diaspores dans les sols des groupements herbacés à Portulaca quadrifda L. et à Talinum triangulare (Jacq.) Willd. à Kisangani (Zaïre). Bulletin de la Societe Royale de Botanique de Belgique, 116, 55–61.
Murren, C. J., & Dudash, M. R. (2012). Variation in inbreeding depression and plasticity across native and non-native field environments. Annals of Botany, 109, 621–632. https://doi.org/10.1093/aob/mcr325
Naito, Y., Konuma, A., Iwata, H., Suyama, Y., Seiwa, K., Okuda, T., Lee, S. L., Muhammad, N., & Tsumura, Y. (2005). Selfing and inbreeding depression in seeds and seedlings of Neobalanocarpus heimii (Dipterocarpaceae). Journal of Plant Research, 118, 423–430. https://doi.org/10.1007/s10265-005-0245-z
Nelder, J. A. (1962). New kinds of systematic designs for spacing experiments. Biometrics, 18, 283–307. https://doi.org/10.2307/2527473
Ngongo, J. P. (2024). Inbreeding depression, functional traits and phenotypic plasticity in an endangered tree species from Congo basin with a mixed mating system [Data set]. Zenodo. https://doi.org/10.5281/zenodo.13927593-01582-2
Nickolas, H., Harrison, P. A., Tilyard, P., Vaillancourt, R. E., & Potts, B. M. (2019). Inbreeding depression and differential maladaptation shape the fitness trajectory of two co-occurring Eucalyptus species. Annals of Forest Science, 76, 10. https://doi.org/10.1007/s13595-018-0796-5
Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., Poot, P., Purugganan, M. D., Richards, C. L., Valladares, F., & van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684–692. https://doi.org/10.1016/j.tplants.2010.09.008
Ouédraogo, D. Y., Fayolle, A., Daïnou, K., Demaret, C., Bourland, N., Lagoute, P., & Doucet, J. L. (2014). Enrichment of logging gaps with a high conservation value species (Pericopsis elata) in a central African moist forest. Forests, 5, 3031–3047. https://doi.org/10.3390/f5123031
Oukabli, A., Lansari, A., Loudiyi, W., & Abousalim, A. (2001). Effets endogamiques sur la germination et la croissance de semis du cultivar autocompatible Tuono (Prunus dulcis). Fruits, 56, 197–205. https://doi.org/10.1051/fruits:2001123
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., De Vos, A. C., … Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167–234. https://doi.org/10.1071/BT12225
Pierce, S., Negreiros, D., Cerabolini, B. E. L., Kattge, J., Díaz, S., Kleyer, M., Shipley, B., Wright, S. J., Soudzilovskaia, N. A., Onipchenko, V. G., van Bodegom, P. M., Frenette-Dussault, C., Weiher, E., Pinho, B. X., Cornelissen, J. H. C., Grime, J. P., Thompson, K., Hunt, R., Wilson, P. J., … Tampucci, D. (2017). A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Functional Ecology, 31, 444–457. https://doi.org/10.1111/1365-2435.12722
Pommerening, A., & Grabarnik, P. (2019). Individual-based methods in forest ecology and management. Springer International Publishing. https://doi.org/10.1007/978-3-030-24528-3
Poorter, L., & Bongers, F. (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87, 1733–1743. https://doi.org/10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
Poorter, L., Wright, S. J., Paz, H., Ackerly, D. D., Condit, R., Harms, E., Licona, J. C., Mazer, S. J., Webb, C. O., & Wright, I. J. (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908–1920.
Ratz, T., Perodaskalaki, A., Moorad, J., & Smiseth, P. T. (2020). Effects of inbreeding on behavioural plasticity of parent–offspring interactions in a burying beetle. Journal of Evolutionary Biology, 33, 1006–1016. https://doi.org/10.1111/jeb.13640
Reed, D. H., Fox, C. W., Enders, L. S., & Kristensen, T. N. (2012). Inbreeding-stress interactions: Evolutionary and conservation consequences. Annals of the New York Academy of Sciences, 1256, 33–48. https://doi.org/10.1111/j.1749-6632.2012.06548.x
Ren, L., Guo, X., Liu, S., Yu, T., Guo, W., Wang, R., Ye, S., Lambertini, C., Brix, H., & Eller, F. (2020). Intraspecific variation in Phragmites australis: Clinal adaption of functional traits and phenotypic plasticity vary with latitude of origin. Journal of Ecology, 108, 2531–2543. https://doi.org/10.1111/1365-2745.13401
Richardson, A. E., & Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability. Plant Physiology, 156, 989–996. https://doi.org/10.1104/pp.111.175448
Richardson, S. J., Allen, R. B., Buxton, R. P., Easdale, T. A., Hurst, J. M., Morse, C. W., Smissen, R. D., & Peltzer, D. A. (2013). Intraspecific relationships among wood density, leaf structural traits and environment in four co-occurring species of Nothofagus in New Zealand. PLoS One, 8, 24–26. https://doi.org/10.1371/journal.pone.0058878
Rozendaal, D. M. A., Phillips, O. L., Lewis, S. L., Affum-Baffoe, K., Alvarez-Davila, E., Andrade, A., Aragão, L. E. O. C., Araujo-Murakami, A., Baker, T. R., Bánki, O., Brienen, R. J. W., Camargo, J. L. C., Comiskey, J. A., Djuikouo Kamdem, M. N., Fauset, S., Feldpausch, T. R., Killeen, T. J., Laurance, W. F., Laurance, S. G. W., … Vanderwel, M. C. (2020). Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 101, 1–11. https://doi.org/10.1002/ecy.3052
Rozendaal, D. M. A., Hurtado, V. H., & Poorter, L. (2006). Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology, 20, 207–216. https://doi.org/10.1111/j.1365-2435.2006.01105.x
Sandner, T. M., Dotzert, A., Gerken, F., & Matthies, D. (2022). Inbreeding depression changes with stress response over time in flooded Mimulus guttatus. Perspectives in Plant Ecology, Evolution and Systematics, 57, 125697. https://doi.org/10.1016/j.ppees.2022.125697
Santiago, L. S., Wright, S. J., Harms, K. E., Yavitt, J. B., Korine, C., Garcia, M. N., & Turner, B. L. (2012). Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition. Journal of Ecology, 100, 309–316. https://doi.org/10.1111/j.1365-2745.2011.01904.x
Schlichting, C. D., & Levin, D. A. (1986). Effects of inbreeding on phenotypic plasticity in cultivated Phlox. Theoretical and Applied Genetics, 72, 114–119. https://doi.org/10.1007/BF00261465
Schneider, C., Wayne, R., & Kevin, E. (2012). NIH image to ImageJ: 25 years of image analysis. Fundamentals of Digital Imaging in Medicine, 9, 671–675. https://doi.org/10.1007/978-1-84882-087-6_9
Seltmann, P., Cocucci, A., Renison, D., Cierjacks, A., & Hensen, I. (2009). Mating system, outcrossing distance effects and pollen availability in the wind-pollinated treeline species Polylepis australis BITT. (Rosaceae). Basic and Applied Ecology, 10, 52–60. https://doi.org/10.1016/j.baae.2007.11.008
Silla, F., González-Gil, A., González-Molina, M. E., Mediavilla, S., & Escudero, A. (2010). Estimation of chlorophyll in Quercus leaves using a portable chlorophyll meter: Effects of species and leaf age. Annals of Forest Science, 67, 108. https://doi.org/10.1051/forest/2009093
Smart, S. M., Glanville, H. C., Blanes, M. d. C., Mercado, L. M., Emmett, B. A., Jones, D. L., Cosby, B. J., Marrs, R. H., Butler, A., Marshall, M. R., Reinsch, S., Herrero-Jáuregui, C., & Hodgson, J. G. (2017). Leaf dry matter content is better at predicting above-ground net primary production than specific leaf area. Functional Ecology, 31, 1336–1344. https://doi.org/10.1111/1365-2435.12832
Stacy, E. A. (2001). Cross-fertility in two tropical tree species: Evidence of inbreeding depression within populations and genetic divergence among populations. American Journal of Botany, 88, 1041–1051. https://doi.org/10.2307/2657086
Sultan, S. E. (2000). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537–542. https://doi.org/10.1016/S1360-1385(00)01797-0
Swillen, I., Vanoverbeke, J., & De Meester, L. (2015). Inbreeding and adaptive plasticity: An experimental analysis on predator-induced responses in the water flea daphnia. Ecology and Evolution, 5, 2712–2721. https://doi.org/10.1002/ece3.1545
Takeuchi, Y., Kikuchi, S., & Diway, B. (2020). Albinism and inbreeding depression in seedlings of the tropical tree, Shorea laxa. Journal of Forest Research, 25, 413–419. https://doi.org/10.1080/13416979.2020.1796897
Taylor, S. H., Franks, P. J., Hulme, S. P., Spriggs, E., Christin, P. A., Edwards, E. J., Woodward, F. I., & Osborne, C. P. (2012). Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytologist, 2, 387–396.
Tyukavina, A., Hansen, M. C., Potapov, P., Parker, D., Okpa, C., Stehman, S. V., Kommareddy, I., & Turubanova, S. (2018). Congo Basin forest loss dominated by increasing smallholder clearing. Science Advances, 4, 1–12. https://doi.org/10.1126/sciadv.aat2993
Valladares, F., Sanchez-Gomez, D., & Zavala, M. A. (2006). Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 94, 1103–1116. https://doi.org/10.1111/j.1365-2745.2006.01176.x
Velikova, V., Arena, C., Izzo, L. G., Tsonev, T., Koleva, D., Tattini, M., Roeva, O., De Maio, A., & Loreto, F. (2020). Functional and structural leaf plasticity determine photosynthetic performances during drought stress and recovery in two Platanus orientalis populations from contrasting habitats. International Journal of Molecular Sciences, 21, 1–18. https://doi.org/10.3390/ijms21113912
Violle, C., Enquist, B. J., McGill, B. J., Jiang, L., Albert, C. H., Hulshof, C., Jung, V., & Messier, J. (2012). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244–252. https://doi.org/10.1016/j.tree.2011.11.014
Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116, 882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x
Vitasse, Y., Bresson, C. C., Kremer, A., Michalet, R., & Delzon, S. (2010). Quantifying phenological plasticity to temperature in two temperate tree species. Functional Ecology, 24, 1211–1218. https://doi.org/10.1111/j.1365-2435.2010.01748.x
Walker, A. P., Beckerman, A. P., Gu, L., Kattge, J., Cernusak, L. A., Domingues, T. F., Scales, J. C., Wohlfahrt, G., Wullschleger, S. D., & Woodward, F. I. (2014). The relationship of leaf photosynthetic traits—Vcmax and Jmax—to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study. Ecology and Evolution, 4, 3218–3235. https://doi.org/10.1002/ece3.1173
Wang, S., Li, Y., Ju, W., Chen, B., Chen, J., Croft, H., Mickler, R. A., & Yang, F. (2020). Estimation of leaf photosynthetic capacity from leaf chlorophyll content and leaf age in a subtropical evergreen coniferous plantation. Journal of Geophysical Research: Biogeosciences, 125, 1–14. https://doi.org/10.1029/2019JG005020
Wang, Z., Townsend, P. A., & Kruger, E. L. (2022). Leaf spectroscopy reveals divergent inter- and intra-species foliar trait covariation and trait–environment relationships across NEON domains. New Phytologist, 235, 923–938. https://doi.org/10.1111/nph.18204
White, F. (1986). La Végétation de L'afrique. ORSTOM-UNESCO.
Winn, A. A., Elle, E., Kalisz, S., Cheptou, P., Eckert, C. G., Goodwillie, C., Johnston, M. O., Moeller, D. A., Ree, R. H., Sargent, R. D., & Vallejo-mar, M. (2011). Mixed-mating plants provides evidence for selective interference and stable mixed mating. Evolution, 65(12), 3339–3359. https://doi.org/10.5061/dryad.gr43t
Xiong, D., Chen, J., Yu, T., Gao, W., Ling, X., Li, Y., Peng, S., & Huang, J. (2015). SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Scientific Reports, 5, 1–12. https://doi.org/10.1038/srep13389
Zhang, Q., Zhou, Z., Zhao, W., Huang, G., Liu, G., Li, X., & Wu, J. (2023). Effect of slope position on leaf and fine root C, N and P stoichiometry and rhizosphere soil properties in Tectona grandis plantations. Journal of Forestry Research, 34, 1997–2009. https://doi.org/10.1007/s11676-022-01582-2