CPT 2 deficiency; LCHAD deficiency; MCAD deficiency; Mitochondrial fatty acid oxidation disorders; MTP deficiency; VLCAD deficiency; Pediatrics, Perinatology and Child Health; Neurology (clinical); General Medicine
Abstract :
[en] Fatty acid oxidation (FAO) disorders are autosomal recessive genetic disorders affecting either the transport or the oxidation of fatty acids. Acute symptoms arise during prolonged fasting, intercurrent infections, or intense physical activity. Metabolic crises are characterized by alteration of consciousness, hypoglycemic coma, hepatomegaly, cardiomegaly, arrhythmias, rhabdomyolysis, and can lead to death. In this retrospective and multicentric study, the data of 54 patients with FAO disorders were collected. Overall, 35 patients (64.8%) were diagnosed after newborn screening (NBS), 17 patients on clinical presentation (31.5%), and two patients after family screening (3.7%). Deficiencies identified included medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (75.9%), very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (11.1%), long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency (3.7%), mitochondrial trifunctional protein (MTP) deficiency (1.8%), and carnitine palmitoyltransferase 2 (CPT 2) deficiency (7.4%). The NBS results of 25 patients were reviewed and the neurological outcome of this population was compared with that of the patients who were diagnosed on clinical presentation. This article sought to provide a comprehensive overview of how NBS implementation in Southern Belgium has dramatically improved the neurological outcome of patients with FAO disorders by preventing metabolic crises and death. Further investigations are needed to better understand the physiopathology of long-term complications in order to improve the quality of life of patients and to ensure optimal management.
Laeremans, Hilde; Centre de Dépistage Néonatal de l'ULB, Brussels, Belgium
Boemer, François ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Marie, Sandrine; Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
Vincent, Marie-Françoise; Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
Dewulf, Joseph P. ; Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
Debray, François-Guillaume ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Maladies métaboliques d'origine génétique
De Laet, Corinne; Nutrition and Metabolism Unit, Department of Pediatrics, University Children's Hospital Queen Fabiola, Brussels, Belgium
Houten, et al. The Biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annu. Rev. Physiol. 78 (2016), 23–44, 10.1146/annurev-physiol-021115-105045.
De Lonlay, et al. Déficits de l'oxydation des acides gras. France, Springer-Verlag, (eds.) Prise en charge médicale et diététique des maladies héréditaires du métabolisme, 2013, Springer-Verlag, Paris, 259–280.
Lopez-Granados, et al. Guide pour le programme de dépistage néonatal des anomalies métaboliques en FWB. Fédération Wallonie-Bruxelles : Direction générale de la Santé. 2022 https://www.depistageneonatal.be/wp-content/uploads/2022/12/guide-de-depistage-des-anomalies-congenitales_acc-partie-i.pdf.
Feillet, et al. Déficit en acyl-CoA-déshydrogénase des acides gras à chaîne moyenne (MCAD) : consensus français pour le dépistage, le diagnostic, et la prise en charge. et sous l’égide de la SFEIM (Société française pour l’étude des erreurs innées du métabolisme) Arch. Pediatr. 19 (2012), 184–193, 10.1016/j.arcped.2011.10.025.
Derks, et al. The natural history of medium-chain acyl CoA dehydrogenase deficiency in The Netherlands: clinical presentation and outcome. J. Pediatr. 148 (2006), 665–670, 10.1016/j.jpeds.2005.12.028.
Wilcken, et al. Outcome of neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency in Australia: a cohort study. Lancet 369 (2007), 37–42, 10.1016/S0140-6736(07)60029-4.
Vianey-Saban, et al. Mitochondrial very-long-chain acyl-coenzyme A dehydrogenase deficiency: clinical characteristics and diagnostic considerations in 30 patients. Clin. Chim. Acta 269 (1998), 43–62, 10.1016/s0009-8981(97)00185-x.
Andresen, et al. Clear correlation of genotype with disease phenotype in very–long-chain acyl-CoA dehydrogenase deficiency. Am. J. Hum. Genet. 64 (1999), 479–494, 10.1086/302261.
Bonnet, et al. Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation 100 (1999), 2248–2253, 10.1161/01.CIR.100.22.2248.
Leslie, et al. Very long-chain acyl-coenzyme A dehydrogenase deficiency. [Internet] Pagon, R.A., Adam, M.P., Ardinger, H.H., et al. (eds.) GeneReviews®, 2009, University of Washington, Seattle, Seattle (WA), 1993–2016.
Spiekerkoetter, U., Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening. J. Inherit. Metab. Dis. 33 (2010), 527–532, 10.1007/s10545-010-9090-x.
Bonnefont, et al. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol. Aspect. Med. 25 (2004), 495–520, 10.1016/j.mam.2004.06.004.
Taroni, et al. Identification of a common variant in the carnitine palmitoyltransferase II gene in familial recurrent myoglobinuria patients. Nat. Genet. 4 (1993), 314–320, 10.1038/ng0793-314.
Boemer, F., et al. Diagnostic pitfall in antenatal manifestations of CPT II deficiency. Clin. Genet. 89:2 (2016), 193–197, 10.1111/cge.12593.
Sluysmans, et al. Very long chain acyl-coenzyme A dehydrogenase deficiency in two siblings: evolution after prenatal diagnosis and prompt management. J. Pediatr. 131 (1997), 444–446, 10.1016/s0022-3476(97)80073-x.
Yamada, et al. Management and diagnosis of mitochondrial fatty acid oxidation disorders: focus on very-long-chain acyl-CoA dehydrogenase deficiency. J. Hum. Genet. 64:2 (2019), 73–85, 10.1038/s10038-018-0527-7.
de Sain-van der Velden, M., Diekman, E.F., Jans, J.J., et al. Differences between acylcarnitine profiles in plasma and bloodspots. Mol. Genet. Metabol. 110 (2013), 116–121, 10.1016/j.ymgme.2013.04.008.
Tajima, et al. Carnitine palmitoyltransferase II deficiency with a focus on newborn screening. J. Hum. Genet. 64:2 (2019), 87–98, 10.1038/s10038-018-0530-z.