[en] Purpose: Multi-omics offer worthwhile and increasingly accessible technologies to diagnostic laboratories seeking potential second-tier strategies to help patients with unresolved rare diseases, especially patients clinically diagnosed with a rare OMIM (Online Mendelian Inheritance in Man) disease. However, no consensus exists regarding the optimal diagnostic care pathway to adopt after negative results with standard approaches. Methods: In 15 unsolved individuals clinically diagnosed with recognizable OMIM diseases but with negative or inconclusive first-line genetic results, we explored the utility of a multi-step approach using several novel omics technologies to establish a molecular diagnosis. Inclusion criteria included a clinical autosomal recessive disease diagnosis and single heterozygous pathogenic variant in the gene of interest identified by first-line analysis (60%-9/15) or a clinical diagnosis of an X-linked recessive or autosomal dominant disease with no causative variant identified (40%-6/15). We performed a multi-step analysis involving short-read genome sequencing (srGS) and complementary approaches such as mRNA sequencing (mRNA-seq), long-read genome sequencing (lrG), or optical genome mapping (oGM) selected according to the outcome of the GS analysis. Results: SrGS alone or in combination with additional genomic and/or transcriptomic technologies allowed us to resolve 87% of individuals by identifying single nucleotide variants/indels missed by first-line targeted tests, identifying variants affecting transcription, or structural variants sometimes requiring lrGS or oGM for their characterization. Conclusion: Hypothesis-driven implementation of combined omics technologies is particularly effective in identifying molecular etiologies. In this study, we detail our experience of the implementation of genomics and transcriptomics technologies in a pilot cohort of previously investigated patients with a typical clinical diagnosis without molecular etiology.
Disciplines :
Genetics & genetic processes
Author, co-author :
Colin, Estelle; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France ; Service de Génétique Médicale, CHU d'Angers, Angers, France
Duffourd, Yannis; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
Chevarin, Martin; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France ; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
Tisserant, Emilie; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
Verdez, Simon; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
Paccaud, Julien; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
Bruel, Ange-Line; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France ; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
Tran Mau-Them, Frédéric; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France ; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
Denommé-Pichon, Anne-Sophie; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France ; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
Thevenon, Julien; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
Safraou, Hana; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France ; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
Besnard, Thomas; Service de Génétique Médicale, Nantes Université, CHU Nantes, Nantes, France ; CNRS, INSERM, L'institut du thorax, Nantes Université, CHU Nantes, Nantes, France
Goldenberg, Alice; Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France ; Normandie Univ, UNIROUEN, Inserm U1245, Rouen, France
Cogné, Benjamin; Service de Génétique Médicale, Nantes Université, CHU Nantes, Nantes, France ; CNRS, INSERM, L'institut du thorax, Nantes Université, CHU Nantes, Nantes, France
Isidor, Bertrand; Service de Génétique Médicale, CHU de Nantes, Nantes, France
Delanne, Julian; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France ; Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
Sorlin, Arthur; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France ; Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
Moutton, Sébastien; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France ; Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
Fradin, Mélanie; CHU Rennes, Service de Génétique Clinique, Centre de Référence Maladies Rares, CLAD-Ouest, Rennes, France
Dubourg, Christèle; Service de Génétique Moléculaire et Génomique, CHU Rennes, Rennes, France ; Univ Rennes, CNRS, Institut de Genetique et Developpement de Rennes, UMR 6290, Rennes, France
Gorce, Magali; Service de Génétique Médicale, CHU d'Angers, Angers, France
Bonneau, Dominique; Service de Génétique Médicale, CHU d'Angers, Angers, France
El Chehadeh, Salima; Service de Génétique Médicale, Hôpital de Hautepierre, CHU Strasbourg, Strasbourg, France
Debray, François-Guillaume ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Maladies métaboliques d'origine génétique
Doco-Fenzy, Martine; Medical School IFR53, EA3801, Université de Reims Champagne-Ardenne, Reims, France ; Service de Génétique, CHU Reims, Reims, France
Uguen, Kevin; Department of Genetics and Reference Center for Developmental Disorders, Lyon University Hospital, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France ; CHU Brest, Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France
Chatron, Nicolas; Department of Genetics and Reference Center for Developmental Disorders, Lyon University Hospital, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
Aral, Bernard; Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, Dijon, France
Marle, Nathalie; Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, Dijon, France
Kuentz, Paul; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France ; Oncobiologie Génétique Bioinformatique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France
Boland, Anne; Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
Olaso, Robert; Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France ; LabEx GENMED (Medical Genomics), Dijon, France
Deleuze, Jean-François; Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France ; LabEx GENMED (Medical Genomics), Dijon, France
Sanlaville, Damien; Department of Genetics and Reference Center for Developmental Disorders, Lyon University Hospital, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
Callier, Patrick; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France ; Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, Dijon, France
Philippe, Christophe; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France ; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
Thauvin-Robinet, Christel; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France ; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France ; Centre de Référence Maladies Rares "Déficiences Intellectuelles de Causes Rares", Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
Faivre, Laurence; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France ; Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
Vitobello, Antonio; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France ; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
This work was supported by grants from Dijon University Hospital, the ISITE-BFC (PIA ANR), the European Union through the FEDER programs (PERSONALISE), and the Burgundy-Franche Comté regional council (INTEGRA). The sequencing performed at the CNRGH was supported by the France Génomique National infrastructure, funded as part of the “Investissements d’Avenir” program managed by the Agence Nationale pour la Recherche (contract ANR-10-INBS-09).
Aicher J. K. Jewell P. Vaquero-Garcia J. Barash Y. Bhoj E. J. (2020). Mapping RNA splicing variations in clinically accessible and nonaccessible tissues to facilitate Mendelian disease diagnosis using RNA-seq. Genet. Med. Off. J. Am. Coll. Med. Genet. 22, 1181–1190. 10.1038/s41436-020-0780-y
Alston C. L. Stenton S. L. Hudson G. Prokisch H. Taylor R. W. (2021). The genetics of mitochondrial disease: Dissecting mitochondrial pathology using multi-omic pipelines. J. Pathol. 254, 430–442. 10.1002/path.5641
Al-Zaidy S. A. Malik V. Kneile K. Rosales X. Q. Gomez A. M. Lewis S. et al. (2015). A slowly progressive form of limb-girdle muscular dystrophy type 2C associated with founder mutation in the SGCG gene in Puerto Rican Hispanics. Mol. Genet. Genomic Med. 3, 92–98. 10.1002/mgg3.125
Amarasinghe S. L. Su S. Dong X. Zappia L. Ritchie M. E. Gouil Q. (2020). Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 21, 30. 10.1186/s13059-020-1935-5
Aref-Eshghi E. Kerkhof J. Pedro V. P. Barat-Houari M. Ruiz-Pallares N. et al.DI France Groupe (2020). Evaluation of DNA methylation episignatures for diagnosis and phenotype correlations in 42 mendelian neurodevelopmental disorders. Am. J. Hum. Genet. 106, 356–370. 10.1016/j.ajhg.2020.01.019
Belkadi A. Bolze A. Itan Y. Cobat A. Vincent Q. B. Antipenko A. et al. (2015). Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc. Natl. Acad. Sci. U. S. A. 112, 5473–5478. 10.1073/pnas.1418631112
Besnard T. Sloboda N. Goldenberg A. Küry S. Cogné B. Breheret F. et al. (2019). Biallelic pathogenic variants in the lanosterol synthase gene LSS involved in the cholesterol biosynthesis cause alopecia with intellectual disability, a rare recessive neuroectodermal syndrome. Genet. Med. Off. J. Am. Coll. Med. Genet. 21, 2025–2035. 10.1038/s41436-019-0445-x
Bodle E. E. Zhu W. Velez-Bartolomei F. Tesi-Rocha A. Liu P. Bernstein J. A. (2021). Combined genome sequencing and RNA analysis reveals and characterizes a deep intronic variant in IGHMBP2 in a patient with spinal muscular atrophy with respiratory distress type 1. Pediatr. Neurol. 114, 16–20. 10.1016/j.pediatrneurol.2020.09.011
Boeva V. Popova T. Bleakley K. Chiche P. Cappo J. Schleiermacher G. et al. (2012). Control-FREEC: A tool for assessing copy number and allelic content using next-generation sequencing data. Bioinforma. Oxf. Engl. 28, 423–425. 10.1093/bioinformatics/btr670
Bose P. Hermetz K. E. Conneely K. N. Rudd M. K. (2014). Tandem repeats and G-rich sequences are enriched at human CNV breakpoints. PLoS ONE 9, e101607. 10.1371/journal.pone.0101607
Boycott K. M. Hartley T. Biesecker L. G. Gibbs R. A. Innes A. M. Riess O. et al. (2019). A diagnosis for all rare genetic diseases: The horizon and the next Frontiers. Cell 177, 32–37. 10.1016/j.cell.2019.02.040
Brechtmann F. Mertes C. Matusevičiūtė A. Yépez V. A. Avsec Ž. Herzog M. et al. (2018). Outrider: A statistical method for detecting aberrantly expressed genes in RNA sequencing data. Am. J. Hum. Genet. 103, 907–917. 10.1016/j.ajhg.2018.10.025
Bronstein R. Capowski E. E. Mehrotra S. Jansen A. D. Navarro-Gomez D. Maher M. et al. (2020). A combined RNA-seq and whole genome sequencing approach for identification of non-coding pathogenic variants in single families. Hum. Mol. Genet. 29, 967–979. 10.1093/hmg/ddaa016
Bruel A.-L. Vitobello A. Tran Mau-Them F. Nambot S. Sorlin A. Denommé-Pichon A.-S. et al. (2020). Next-generation sequencing approaches and challenges in the diagnosis of developmental anomalies and intellectual disability. Clin. Genet. 98, 433–444. 10.1111/cge.13764
Bryen S. J. Oates E. C. Evesson F. J. Lu J. K. Waddell L. B. Joshi H. et al. (2021). Pathogenic deep intronic MTM1 variant activates a pseudo-exon encoding a nonsense codon resulting in severe X-linked myotubular myopathy. Eur. J. Hum. Genet. EJHG 29, 61–66. 10.1038/s41431-020-00715-7
Caspar S. M. Dubacher N. Kopps A. M. Meienberg J. Henggeler C. Matyas G. (2018). Clinical sequencing: From raw data to diagnosis with lifetime value. Clin. Genet. 93, 508–519. 10.1111/cge.13190
Chaisson M. J. P. Sanders A. D. Zhao X. Malhotra A. Porubsky D. Rausch T. et al. (2019). Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 10, 1784. 10.1038/s41467-018-08148-z
Chan S. Lam E. Saghbini M. Bocklandt S. Hastie A. Cao H. et al. (2018). Structural variation detection and analysis using Bionano optical mapping. Methods Mol. Biol. Clifton N. J. 1833, 193–203. 10.1007/978-1-4939-8666-8_16
Cingolani P. Platts A. Wang L. L. Coon M. Nguyen T. Wang L. et al. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. (Austin) 6, 80–92. 10.4161/fly.19695
Clark M. M. Stark Z. Farnaes L. Tan T. Y. White S. M. Dimmock D. et al. (2018). Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genomic Med. 3, 16. 10.1038/s41525-018-0053-8
Colin E. Duffourd Y. Tisserant E. Relator R. Bruel A-L. Tran Mau-Them F. et al. (2022). Omixcare: OMICS technologies solved about 33% of the patients with heterogeneous rare neuro developmental disorders and negative exome sequencing results and identified 13% additional candidate variants. Front. Cell Dev. Biol. 10, 1021785. 10.3389/fcell.2022.1021785
Cummings B. B. Karczewski K. J. Kosmicki J. A. Seaby E. G. Watts N. A. Singer-Berk M. et al. (2020). Transcript expression-aware annotation improves rare variant interpretation. Nature. 581, 452–458. 10.1038/s41586-020-2329-2
Cummings B. B. Marshall J. L. Tukiainen T. Lek M. Donkervoort S. Foley A. R. et al. (2017). Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci. Transl. Med. 9, eaal5209. 10.1126/scitranslmed.aal5209
de Bruijn S. E. Fiorentino A. Ottaviani D. Fanucchi S. Melo U. S. Corral-Serrano J. C. et al. (2020). Structural variants create New topological-associated domains and ectopic retinal enhancer-gene contact in dominant retinitis pigmentosa. Am. J. Hum. Genet. 107, 802–814. 10.1016/j.ajhg.2020.09.002
DePristo M. A. Banks E. Poplin R. Garimella K. V. Maguire J. R. Hartl C. et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498. 10.1038/ng.806
DiCapua D. Patwa H. (2014). Puerto Rican founder mutation G787A in the SGCG gene: A case report of 2 siblings with LGMD 2C. J. Clin. Neuromuscul. Dis. 15, 105–107. 10.1097/CND.0000000000000018
Dobin A. Davis C. A. Schlesinger F. Drenkow J. Zaleski C. Jha S. et al. (2013). Star: Ultrafast universal RNA-seq aligner. Bioinforma. Oxf. Engl. 29, 15–21. 10.1093/bioinformatics/bts635
Frésard L. Montgomery S. B. (2018). Diagnosing rare diseases after the exome. Cold Spring Harb. Mol. Case Stud. 4, a003392. 10.1101/mcs.a003392
Frésard L. Smail C. Ferraro N. M. Teran N. A. Li X. Smith K. S. et al. (2019). Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat. Med. 25, 911–919. 10.1038/s41591-019-0457-8
Frith M. C. Hamada M. Horton P. (2010). Parameters for accurate genome alignment. BMC Bioinforma. 11, 80. 10.1186/1471-2105-11-80
Frith M. C. Mitsuhashi S. Katoh K. (2021). lamassemble: Multiple alignment and consensus sequence of long reads. Methods Mol. Biol. Clifton N. J. 2231, 135–145. 10.1007/978-1-0716-1036-7_9
Gilissen C. Hehir-Kwa J. Y. Thung D. T. van de Vorst M. van Bon B. W. M. Willemsen M. H. et al. (2014). Genome sequencing identifies major causes of severe intellectual disability. Nature 511, 344–347. 10.1038/nature13394
Gonorazky H. D. Naumenko S. Ramani A. K. Nelakuditi V. Mashouri P. Wang P. et al. (2019). Expanding the boundaries of RNA sequencing as a diagnostic tool for rare mendelian disease. Am. J. Hum. Genet. 104, 466–483. 10.1016/j.ajhg.2019.01.012
Hamanaka K. Miyatake S. Koshimizu E. Tsurusaki Y. Mitsuhashi S. Iwama K. et al. (2019). RNA sequencing solved the most common but unrecognized NEB pathogenic variant in Japanese nemaline myopathy. Genet. Med. Off. J. Am. Coll. Med. Genet. 21, 1629–1638. 10.1038/s41436-018-0360-6
Hartley T. Balcı T. B. Rojas S. K. Eaton A. Canada C. R. Dyment D. A., (2018). The unsolved rare genetic disease atlas? An analysis of the unexplained phenotypic descriptions in OMIM®. Am. J. Med. Genet. C Semin. Med. Genet. 178, 458–463. 10.1002/ajmg.c.31662
Hartley T. Lemire G. Kernohan K. D. Howley H. E. Adams D. R. Boycott K. M. (2020). New diagnostic approaches for undiagnosed rare genetic diseases. Annu. Rev. Genomics Hum. Genet. 21, 351–372. 10.1146/annurev-genom-083118-015345
Jenkinson G. Li Y. I. Basu S. Cousin M. A. Oliver G. R. Klee E. W. (2020). LeafCutterMD: An algorithm for outlier splicing detection in rare diseases. Bioinformatics 36, 4609–4615. 10.1093/bioinformatics/btaa259
Kobren S. N. Baldridge D. Velinder M. Krier J. B. LeBlanc K. Esteves C. et al. (2021). Commonalities across computational workflows for uncovering explanatory variants in undiagnosed cases. Genet. Med. Off. J. Am. Coll. Med. Genet. 23, 1075–1085. 10.1038/s41436-020-01084-8
Köhler S. Carmody L. Vasilevsky N. Jacobsen J. O. B. Danis D. Gourdine J.-P. et al. (2019). Expansion of the human phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Res. 47, D1018–D1027. 10.1093/nar/gky1105
Kremer L. S. Bader D. M. Mertes C. Kopajtich R. Pichler G. Iuso A. et al. (2017). Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat. Commun. 8, 15824. 10.1038/ncomms15824
Kremer L. S. Wortmann S. B. Prokisch H. (2018). Transcriptomics”: Molecular diagnosis of inborn errors of metabolism via RNA-sequencing. J. Inherit. Metab. Dis. 41, 525–532. 10.1007/s10545-017-0133-4
Layer R. M. Chiang C. Quinlan A. R. Hall I. M. (2014). Lumpy: A probabilistic framework for structural variant discovery. Genome Biol. 15, R84. 10.1186/gb-2014-15-6-r84
Lee H. Huang A. Y. Wang L.-K. Yoon A. J. Renteria G. Eskin A. et al. (2020). Diagnostic utility of transcriptome sequencing for rare Mendelian diseases. Genet. Med. Off. J. Am. Coll. Med. Genet. 22, 490–499. 10.1038/s41436-019-0672-1
Lelieveld S. H. Spielmann M. Mundlos S. Veltman J. A. Gilissen C. (2015). Comparison of exome and genome sequencing technologies for the complete capture of protein-coding regions. Hum. Mutat. 36, 815–822. 10.1002/humu.22813
Levy M. A. McConkey H. Kerkhof J. Barat-Houari M. Bargiacchi S. Biamino E. et al. (2022). Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. HGG Adv. 3, 100075. 10.1016/j.xhgg.2021.100075
Li H. Durbin R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinforma. Oxf. Engl. 25, 1754–1760. 10.1093/bioinformatics/btp324
Li H. Handsaker B. Wysoker A. Fennell T. Ruan J. Homer N. et al. (2009). 1000 the sequence alignment/map format and SAMtools. Bioinforma. Oxf. Engl. 25, 2078–2079. 10.1093/bioinformatics/btp352
Logsdon G. A. Vollger M. R. Eichler E. E. (2020). Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614. 10.1038/s41576-020-0236-x
Lonsdale J. Thomas J. Salvatore M. Phillips R. Lo E. Shad S. et al. (2013). The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585. 10.1038/ng.2653
Love M. I. Huber W. Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. 10.1186/s13059-014-0550-8
Mahmoud M. Gobet N. Cruz-Dávalos D. I. Mounier N. Dessimoz C. Sedlazeck F. J. (2019). Structural variant calling: The long and the short of it. Genome Biol. 20, 246. 10.1186/s13059-019-1828-7
Marshall C. R. Bick D. Belmont J. W. Taylor S. L. Ashley E. Dimmock D. et al. (2020). The medical genome initiative: Moving whole-genome sequencing for rare disease diagnosis to the clinic. Genome Med. 12, 48. 10.1186/s13073-020-00748-z
Mehmood A. Laiho A. Venäläinen M. S. McGlinchey A. J. Wang N. Elo L. L. (2020). Systematic evaluation of differential splicing tools for RNA-seq studies. Brief. Bioinform. 21, 2052–2065. 10.1093/bib/bbz126
Meienberg J. Bruggmann R. Oexle K. Matyas G. (2016). Clinical sequencing: Is WGS the better WES? Hum. Genet. 135, 359–362. 10.1007/s00439-015-1631-9
Melo U. S. Schöpflin R. Acuna-Hidalgo R. Mensah M. A. Fischer-Zirnsak B. Holtgrewe M. et al. (2020). Hi-C identifies complex genomic rearrangements and TAD-shuffling in developmental diseases. Am. J. Hum. Genet. 106, 872–884. 10.1016/j.ajhg.2020.04.016
Mitsuhashi S. Matsumoto N. (2020). Long-read sequencing for rare human genetic diseases. J. Hum. Genet. 65, 11–19. 10.1038/s10038-019-0671-8
Mitsuhashi S. Ohori S. Katoh K. Frith M. C. Matsumoto N. (2020). A pipeline for complete characterization of complex germline rearrangements from long DNA reads. Genome Med. 12, 67. 10.1186/s13073-020-00762-1
Murdock D. R. Dai H. Burrage L. C. Rosenfeld J. A. Ketkar S. Müller M. F. et al. (2021). Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing. J. Clin. Invest. 131, 141500. 10.1172/JCI141500
Peymani F. Farzeen A. Prokisch H. (2022). RNA sequencing role and application in clinical diagnostic. Pediatr. Investig. 6, 29–35. 10.1002/ped4.12314
Rentas S. Rathi K. S. Kaur M. Raman P. Krantz I. D. Sarmady M. et al. (2020). Diagnosing Cornelia de Lange syndrome and related neurodevelopmental disorders using RNA sequencing. Genet. Med. Off. J. Am. Coll. Med. Genet. 22, 927–936. 10.1038/s41436-019-0741-5
Richards S. Aziz N. Bale S. Bick D. Das S. Gastier-Foster J. et al. (2015). ACMG laboratory quality assurance CommitteeStandards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet. Med. Off. J. Am. Coll. Med. Genet. 17, 405–424. 10.1038/gim.2015.30
Ross M. G. Russ C. Costello M. Hollinger A. Lennon N. J. Hegarty R. et al. (2013). Characterizing and measuring bias in sequence data. Genome Biol. 14, R51. 10.1186/gb-2013-14-5-r51
Sadikovic B. Levy M. A. Kerkhof J. Aref-Eshghi E. Schenkel L. Stuart A. et al. (2021). Clinical epigenomics: Genome-wide DNA methylation analysis for the diagnosis of mendelian disorders. Genet. Med. Off. J. Am. Coll. Med. Genet. 23, 1065–1074. 10.1038/s41436-020-01096-4
Sanchis-Juan A. Stephens J. French C. E. Gleadall N. Mégy K. Penkett C. et al. (2018). Complex structural variants in mendelian disorders: Identification and breakpoint resolution using short- and long-read genome sequencing. Genome Med. 10, 95. 10.1186/s13073-018-0606-6
Sanlaville D. Vidaud M. Thauvin-Robinet C. Nowak F. Lethimonnier F. (2021). French genomic medicine plan 2025 (PFMG2025): France enters the era of genomic medicine. Rev. Prat. 71, 1061–1064.
Sawyer S. L. Hartley T. Dyment D. A. Beaulieu C. L. Schwartzentruber J. Smith A. et al. (2016). Utility of whole-exome sequencing for those near the end of the diagnostic odyssey: Time to address gaps in care. Clin. Genet. 89, 275–284. 10.1111/cge.12654
Sedlazeck F. J. Lee H. Darby C. A. Schatz M. C. (2018). Piercing the dark matter: Bioinformatics of long-range sequencing and mapping. Nat. Rev. Genet. 19, 329–346. 10.1038/s41576-018-0003-4
Shahjaman M. Manir Hossain Mollah M. Rezanur Rahman M. Islam S. M. S. Nurul Haque Mollah M. (2020). Robust identification of differentially expressed genes from RNA-seq data. Genomics 112, 2000–2010. 10.1016/j.ygeno.2019.11.012
Shen S. Park J. W. Lu Z. Lin L. Henry M. D. Wu Y. N. et al. (2014). rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. 111, E5593–E5601. 10.1073/pnas.1419161111
Short P. J. McRae J. F. Gallone G. Sifrim A. Won H. Geschwind D. H. et al. (2018). De novo mutations in regulatory elements in neurodevelopmental disorders. Nature 555, 611–616. 10.1038/nature25983
Smedley D. Smith K. R. Martin A. Thomas E. A. McDonagh E. M. Cipriani V. et al.100,000 Genomes Project Pilot Investigators (2021). 100,000 genomes pilot on rare-disease diagnosis in health care - preliminary report. N. Engl. J. Med. 385, 1868–1880. 10.1056/NEJMoa2035790
Stenton S. L. Prokisch H. (2020). The clinical application of RNA sequencing in genetic diagnosis of mendelian disorders. Clin. Lab. Med. 40, 121–133. 10.1016/j.cll.2020.02.004
Yépez V. A. Gusic M. Kopajtich R. Mertes C. Smith N. H. Alston C. L. et al. (2022). Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Med. 14, 38. 10.1186/s13073-022-01019-9
Yuan Y. Chung C. Y.-L. Chan T.-F. (2020). Advances in optical mapping for genomic research. Comput. Struct. Biotechnol. J. 18, 2051–2062. 10.1016/j.csbj.2020.07.018