Comparative study of kilonova opacities for three elements of the sixth period (hafnium, osmium, and gold) from new atomic structure calculations in Hf I–IV, Os I–IV, and Au I–IV - 2024
Comparative study of kilonova opacities for three elements of the sixth period (hafnium, osmium, and gold) from new atomic structure calculations in Hf I–IV, Os I–IV, and Au I–IV
Ben Nasr, S.; Carvajal Gallego, H.; Deprince, J.et al.
atomic data; atomic processes; opacity; Atomic data; Atomic models; Atomic process; Atomic structure calculations; Comparatives studies; Large amounts; Level density; Neutron stars; Spectra's; Subshells; Astronomy and Astrophysics; Space and Planetary Science
Abstract :
[en] Aims. It is now well established that a large amount of heavy (trans-iron) elements are produced during neutron star (NS) mergers. These elements can be detected in the spectra of the kilonova emitted from the post-merger ejected materials. Due to the high level densities that characterize the complex configurations belonging to heavy elements, thus giving rise to millions of absorption lines, the kilonova ejecta opacity is of significant importance. The elements that contribute the most to the latter are those with an unfilled nd subshell belonging to the fifth and the sixth rows of the periodic table, and those with an unfilled nf subshell belonging to the lanthanide and actinide groups. The aim of the present work is to make a new contribution to this field by performing large-scale atomic structure calculations in three specific sixth-row 5d elements, namely hafnium, osmium, and gold, in the first four charge stages (I–IV), and by computing the corresponding opacities, while focusing on the importance of the atomic models used. Methods. The pseudo-relativistic Hartree–Fock (HFR) method, including extended sets of interacting configurations, was used for the atomic structure and radiative parameter calculations, while the expansion formalism was used to estimate the opacities. Results. Theoretical energy levels, wavelengths, and oscillator strengths were computed for millions of spectral lines in Hf I–IV, Os I–IV, and Au I–IV ions, the reliability of these parameters being assessed through detailed comparisons with previously published experimental and theoretical results. The newly obtained atomic data were then used to calculate expansion opacities for typical kilonova conditions expected one day after the NS merger; these are a density of ρ = 10−13 g cm−3 and temperatures ranging from T = 5000 K to T = 15 000 K. Some agreements and differences were found when comparing our results with available data, highlighting the importance of using sufficiently complete atomic models for the determination of opacities.
Disciplines :
Physics
Author, co-author :
Ben Nasr, S.; Université de Mons, Mons, Belgium
Carvajal Gallego, H.; Université de Mons, Mons, Belgium
Deprince, J. ; Université de Mons, Mons, Belgium ; Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, Brussels, Belgium
Palmeri, P. ; Université de Mons, Mons, Belgium
Quinet, Pascal ; Université de Liège - ULiège > Département de physique > Spectroscopie atomique et Physique des atomes froids ; Université de Mons, Mons, Belgium
Language :
English
Title :
Comparative study of kilonova opacities for three elements of the sixth period (hafnium, osmium, and gold) from new atomic structure calculations in Hf I–IV, Os I–IV, and Au I–IV
H.C.G. is holder of a FRIA fellowship while P.P. and P.Q. are, respectively, Research Associate and Research Director of the Belgian Fund for Scientific Research F.R.S.-FNRS. This project has received funding from the FWO and F.R.S.-FNRS under the Excellence of Science (EOS) programme (Grant Nos. O.0228.18 and O.0004.22). Part of the atomic calculations were made with computational resources provided by the Consortium des \u00C9quipements de Calcul Intensif (CECI), funded by the F.R.S.-FNRS under Grant No. 2.5020.11 and by the Walloon Region of Belgium.
Carvajal Gallego, H., Deprince, J., Godefroid, M., et al. 2023c, Eur. Phys. J. D, 77, 72
Corliss, C. H., & Bozman W. R. 1962, Experimental Transition Probabilities for Spectral Lines of Seventy Elements (NBS Monograph 53) (Washington, DC: US Govt Printing Office), 7
Cowan, R. D. 1981, The Theory of Atomic Structure and Spectra (Berkeley: California University Press)
Den Hartog, E. A., Lawler, J. E., & Roederer, I. U. 2021, ApJS, 254, 5
Deprince, J., Carvajal Gallego, H., Godefroid, M., et al. 2023, Eur. Phys. J. D, 77, 93
Desclaux, J. P., & Kim, Y.-K. 1975, J. Phys. B, 8, 1177
Duquette, D. W., Den Hartog, E. A., & Lawler, J. E. 1986, JQSRT, 35, 281
Eastman, R. G., & Pinto, P. A. 1993, ApJ, 412, 731
Eichler, D., Livio, M., Piran, T., & Schramm, D. N. 1989, Nature, 340, 126
Enzonga Yoca, S., Biémont, E., Delahaye, F., Quinet, P., & Zeippen, C. J. 2008, Phys. Scr., 78, 025303
Fivet, V., Quinet, P., Palmeri, P., Biémont, E., & Xu, H. L. 2007, J. Elect. Spectr. Rel. Phen., 250
Flörs, A., Silva, R. F., Deprince, J., et al. 2023, MNRAS, 524, 3083
Fontes, C. J., Fryer, C. L., Hungerford, A. L., Wollaeger, R. T., & Korobkin, O. 2020, MNRAS, 493, 4143
Fontes, C. J., Fryer, C. L., Wollaeger, R. T., Mimpower, M. R., & Sprouse, T. M. 2023, MNRAS 519, 2862
Freiburghaus, C., Rosswog, S., & Thielemann, F. K. 1999, ApJ, 525, L121
Gaarde, M. B., Zerne, R., Caiyan, L., et al. 1994, Phys. Rev. A, 50, 209
Gaigalas, G., Kato, D., Rynkun, P., Radziute, L., & Tanaka, M. 2019, ApJS, 240, 29
Ivarsson, S., Wahlgren, G. M., Dai, Z., Lundberg, H., & Leckrone, D. S. 2004, A&A, 425, 353
Just, O., Kullmann, I., Goriely, S., et al. 2022, MNRAS, 510, 2820
Karp, A. H., Lasher, G., Chan, K. L., & Salpeter, E. E. 1977, ApJ, 214, 161
Kasen, D., Thomas, R. C., & Nugent, P. 2006, ApJ, 651, 366
Kasen, D., Badnell, N. R., & Barnes, J. 2013, ApJ, 774, 25
Kasen, D., Metzger, B., Barnes, J., Quataert, E., & Ramirez-Ruiz, E. 2017, Nature, 551, 80
Korobkin, O., Rosswog, S., Arcones, A., & Winteler, C. 2012, MNRAS, 426, 1940
Kramida, A., Ralchenko, Yu., Reader, J., & NIST ASD Team 2023, NIST Atomic Database, National Institute of Standards and Technology, Gaithersburg, MD, https://physics.nist.gov/asd
Kurucz, R. L. 1993, Synthesis Programs and Line Data (Kurucz CD-ROM No. 18)
Lattimer, J. M., & Schramm, D. N. 1974, ApJ, 192, L145
Lawler, J. E., Den Hartog, E. A., & Labby, Z. E. 2007, ApJS, 169, 120
Lundqvist, M., Nilsson, H., Wahlgren, G. M., et al. 2006, A&A, 450, 407