Critical Care; Dynamic Elastance; Mechanical Ventilation; Optimal PEEP; Over-distension; Pressure-Volume Curve; Ventilator-induced Lung; Critical care; Dynamic elastance; Elastance; Mechanical ventilation; Optimal positive-end-expiratory-pressure; Positive end expiratory pressures; Pressure level; Pressure-volume curves; Ventilator-induced lung; Control and Systems Engineering
Abstract :
[en] Acute respiratory distress syndrome (ARDS) patients usually require support from ventilation in the intensive care unit (ICU). Recruitment maneuvers (RMs) with positive-end-expiratory-pressure (PEEP) are a common way to recruit alveoli and improve oxygenation. However, excessive PEEP can worsen alveoli status and thus increase the risk of ventilator-induced lung injury (VILI). To date, standards for optimal patient-specific PEEP determination remain unclear, resulting in variability and uncertainty in care and thus requiring personalized care approaches. This research examines the conventional approach, dynamic elastance (Edyn), and a validated over-distension index (OD) from prior work identified from pressure-volume curves. Overall, in the studied pilot trial, the optimal PEEP selection outcome matches between Edyn and OD methods within 0-2cmH2O (0-1 PEEP levels) variation for 16 out of 18 patients. The variation in the rest 2 patients are 4cmH2O (2 PEEP levels). While possible limitation for Edyn is addressed and discussed, the over-distention index OD shows greater potential in routine care being more intuitive, general, and predictive.
Disciplines :
Mechanical engineering Cardiovascular & respiratory systems
Author, co-author :
Sun, Qianhui ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles ; Department of Mechanical Engineering, Dept of Mechanical Eng, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
Chase, J Geoffrey ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles ; Department of Mechanical Engineering, Dept of Mechanical Eng, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
Zhou, Cong; Department of Mechanical Engineering, Dept of Mechanical Eng, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
Tawhai, Merryn H.; Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
Knopp, Jennifer L.; Department of Mechanical Engineering, Dept of Mechanical Eng, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
Möller, Knut; Institute for Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
Shaw, Geoffrey M.; Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
Desaive, Thomas ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Language :
English
Title :
PEEP Selection: Dynamic Elastance versus An Over-distension Measurement
Publication date :
19 November 2024
Event name :
12th IFAC Symposium on Biological and Medical Systems BMS 2024
This work was supported the NZ Tertiary Education Commission (TEC) fund MedTech CoRE (Centre of Research Excellence; #3705718), the NZ National Science Challenge 7, Science for Technology and Innovation (2019-S3-CRS), and the Service Public Federal Strategie et Appui (BOSA) - DIGITWIN4PH.This work was supported the NZ Tertiary Education Commission (TEC) fund MedTech CoRE (Centre of Research Excellence; #3705718), the NZ National Science Challenge 7, Science for Technology and Innovation (2019-S3-CRS), and the Service Public F\u00E9d\u00E9ral Strat\u00E9g ie et Appui (OSA)B \u2013 DIGITWIN4PH.
A.R. CARVALHO, S.A. PACHECO, P.V. DE SOUZA ROCHA, B.C. BERGAMINI, L.F. PAULA, F.C. JANDRE, and A. GIANNELLA-NETO Detection of Tidal Recruitment/Overdistension in Lung-Healthy Mechanically Ventilated Patients Under General Anesthesia Anesthesia & Analgesia 116 2013 677 684
A.R. CARVALHO, P.M. SPIETH, P. PELOSI, M.F. VIDAL MELO, T. KOCH, F.C. JANDRE, A. GIANNELLA-NETO, and M.G. DE ABREU Ability of dynamic airway pressure curve profile and elastance for positive end-expiratory pressure titration Intensive Care Medicine 34 2008 2291
M. CEREDA, Y. XIN, A. GOFFI, J. HERRMANN, D.W. KACZKA, B.P. KAVANAGH, G. PERCHIAZZI, T. YOSHIDA, and R.R. RIZI Imaging the Injured Lung: Mechanisms of Action and Clinical Use. Anesthesiology 131 2019 716 749
J.G. CHASE, J.-C. PREISER, J.L. DICKSON, A. PIRONET, Y.S. CHIEW, C.G. PRETTY, G.M. SHAW, B. BENYO, K. MOELLER, S. SAFAEI, M. TAWHAI, P. HUNTER, and T. DESAIVE Next-generation, personalised, model-based critical care medicine: a state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them BioMedical Engineering OnLine 17 2018 24
Y.S. CHIEW, J.G. CHASE, G.M. SHAW, A. SUNDARESAN, and T. DESAIVE Model-based PEEP optimisation in mechanical ventilation BioMedical Engineering OnLine 10 2011 111
Y.S. CHIEW, C.G. PRETTY, G.M. SHAW, Y.W. CHIEW, B. LAMBERMONT, T. DESAIVE, and J.G. CHASE Feasibility of titrating PEEP to minimum elastance for mechanically ventilated patients Pilot and Feasibility Studies 1 2015 9
D. D'ANTINI, R. HUHLE, J. HERRMANN, D.S. SULEMANJI, J. OTO, P. RAIMONDO, L. MIRABELLA, S.N.T. HEMMES, M.J. SCHULTZ, P. PELOSI, D.W. KACZKA, M.F. VIDAL MELO, M. GAMA DE ABREU, G. CINNELLA EUROPEAN SOCIETY OF, A. & THE, P. V. N Respiratory System Mechanics During Low Versus High Positive End-Expiratory Pressure in Open Abdominal Surgery: A Substudy of PROVHILO Randomized Controlled Trial Anesth Analg 126 2018 143 149
M. DAMBROSIO, E. ROUPIE, J.-J. MOLLET, M.-C. ANGLADE, N. VASILE, F. LEMAIRE, and L. BROCHARD Effects of Positive End-expiratory Pressure and Different Tidal Volumes on Alveolar Recruitment and Hyperinflation Anesthesiology 87 1997 495 503
G. EMERIAUD, C.J. NEWTH PEDIATRIC ACUTE LUNG INJURY CONSENSUS CONFERENCE, G. Monitoring of children with pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference Pediatr Crit Care Med 16 2015 S86 101
J.B. FISHER, M.C. MAMMEL, J.M. COLEMAN, D.R. BING, and S.J. BOROS Identifying lung overdistention during mechanical ventilation by using volume-pressure loops Pediatric Pulmonology 5 1988 10 14
T.A.D.T FORCE∗ Acute Respiratory Distress Syndrome: The Berlin Definition JAMA 307 2012 2526 2533
L. GATTINONI, P. CAIRONI, P. PELOSI, and L.R. GOODMAN What Has Computed Tomography Taught Us about the Acute Respiratory Distress Syndrome? American Journal of Respiratory and Critical Care Medicine 164 2001 1701 1711
S. GRASSO, P. TERRAGNI, L. MASCIA, V. FANELLI, M. QUINTEL, P. HERRMANN, G. HEDENSTIERNA, A.S. SLUTSKY, and V.M. RANIERI Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury Critical care medicine 32 2004 1018 1027
J.M. HALTER, J.M. STEINBERG, L.A. GATTO, J.D. DIROCCO, L.A. PAVONE, H.J. SCHILLER, S. ALBERT, H.-M. LEE, D. CARNEY, and G.F. NIEMAN Effect of positive end-expiratory pressure and tidal volume on lung injury induced by alveolar instability Critical Care 11 2007 R20
S. KANO, C.J. LANTERI, A.W. DUNCAN, and P.D. SLY Influence of nonlinearities on estimates of respiratory mechanics using multilinear regression analysis Journal of Applied Physiology 77 1994 1185 1197
K.T. KIM, S. MORTON, S. HOWE, Y.S. CHIEW, J.L. KNOPP, P. DOCHERTY, C. PRETTY, T. DESAIVE, B. BENYO, and A. SZLAVECZ Model-based PEEP titration versus standard practice in mechanical ventilation: a randomised controlled trial Trials 21 2020 130
J. KOEFOED-NIELSEN, N.D. NIELSEN, A.J. KJÆRGAARD, and A LARSSON Alveolar recruitment can be predicted from airway pressure-lung volume loops: an experimental study in a porcine acute lung injury model Critical Care 12 2008 R7
Q. LU How to assess positive end-expiratory pressure-induced alveolar recruitment? Minerva anestesiologica 79 2012 83 91
S. MAISCH, H. REISSMANN, B. FUELLEKRUG, D. WEISMANN, T. RUTKOWSKI, G. TUSMAN, and S.H. BOHM Compliance and Dead Space Fraction Indicate an Optimal Level of Positive End-Expiratory Pressure After Recruitment in Anesthetized Patients Anesthesia & Analgesia 106 2008 175 181
V.J. MAJOR, Y.S. CHIEW, G.M. SHAW, and J.G. CHASE Biomedical engineer's guide to the clinical aspects of intensive care mechanical ventilation Biomed Eng Online 17 2018 169
S.E. MORTON, J.L. KNOPP, P.D. DOCHERTY, G.M. SHAW, and J.G. CHASE Validation of a Model-based Method for Estimating Functional Volume Gains during Recruitment Manoeuvres in Mechanical Ventilation IFAC-PapersOnLine 51 2018 231 236
V. NÈVE, F. LECLERC, E. ROQUE, S. LETEURTRE, and Y RIOU Overdistension in ventilated children Critical care 5 2001 196 203
C. PUTENSEN, B. HENTZE, S. MUENSTER, and T. MUDERS Electrical Impedance Tomography for Cardio-Pulmonary Monitoring Journal of Clinical Medicine 8 2019 1176
T.V. SCOHY, I.G. BIKKER, J.A.N. HOFLAND, JONG DE, L. P., A.J.J.C. BOGERS, and D GOMMERS Alveolar recruitment strategy and PEEP improve oxygenation, dynamic compliance of respiratory system and end-expiratory lung volume in pediatric patients undergoing cardiac surgery for congenital heart disease Pediatric Anesthesia 19 2009 1207 1212
C.A. STAHL, K. MÖLLER, S. SCHUMANN, R. KUHLEN, M. SYDOW, C. PUTENSEN, and J GUTTMANN Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome Crit Care Med 34 2006 2090 2098
Q. SUN, J.G. CHASE, C. ZHOU, M.H. TAWHAI, J.L. KNOPP, K. MÖLLER, and G.M SHAW Over-distension prediction via hysteresis loop analysis and patient-specific basis functions in a virtual patient model Computers in Biology and Medicine 141 2021 105022
Q. SUN, J.G. CHASE, C. ZHOU, M.H. TAWHAI, J.L. KNOPP, K. MÖLLER, and G.M SHAW Non-invasive over-distension measurements: data driven vs model-based Journal of Clinical Monitoring and Computing 2022
E.J. VAN DRUNEN, Y.S. CHIEW, C. PRETTY, G.M. SHAW, B. LAMBERMONT, N. JANSSEN, J.G. CHASE, and T. DESAIVE Visualisation of time-varying respiratory system elastance in experimental ARDS animal models BMC Pulmonary Medicine 14 2014 33
Z. ZHAO, L. SANG, Y. LI, I. FRERICHS, K. MÖLLER, and F FU Identification of lung overdistension caused by tidal volume and positive end-expiratory pressure increases based on electrical impedance tomography British Journal of Anaesthesia 2021
C. ZHOU, and J.G. CHASE A new pinched nonlinear hysteretic structural model for automated creation of digital clones in structural health monitoring Structural Health Monitoring 20 2020 101 117
C. ZHOU, J.G. CHASE, G.W. RODGERS, H. TOMLINSON, and C. XU Physical Parameter Identification of Structural Systems with Hysteretic Pinching Computer-Aided Civil and Infrastructure Engineering 30 2015 247 262