[en] Sweetpotato (Ipomoea batatas) production in sub-Saharan Africa is affected by viral diseases caused by several interacting viruses, including Potyvirus and Sweepovirus. This research was conducted with the aim of determining the incidence and characterizing sweetpotato viruses in Benin. A field survey was conducted in 16 districts of Benin, and 138 plant samples were collected with symptoms from 35 fields. Viruses were identified using molecular diagnoses and Sanger sequencing. The symptoms of the detected viruses were then evaluated by grafting infected sweetpotato scions onto healthy Ipomoea setosa plants, using two scions per plant. Eight viruses were detected from samples: cucumber mosaic virus (CMV), sweet potato chlorotic stunt virus (SPCSV), sweet potato virus G, sweet potato feathery mottle virus, sweet potato chlorotic fleck virus, sweet potato latent virus (SPLV) with sweet potato leaf curl virus (SPLCV) and sweet potato symptomless virus 1 (SPSMV-1) predominating at 70 and 13% incidence, respectively. Co-infections and mixed infections, such as SPSMV-1 + CMV, SPLCV + CMV, SPSMV-1 + SPLCV, CMV + SPCSV, SPSMV-1 + CMV + SPLCV, and SPSMV-1 + CMV + SPLCV + SPLV + SPLCV, have been observed. This study is the first to document the significant presence of SPSMV-1 and SPLCV in sweetpotato fields in Benin. The findings could provide a valuable foundation for further research into the impact of these viruses on sweetpotato productivity in Benin. Additionally, the findings of this study could assist agricultural policymakers in developing strategies to control sweetpotato viruses in the region.
Disciplines :
Agriculture & agronomy
Author, co-author :
Chabi, Nadia Kèmi Assana; Faculty of Agronomy, University of Parakou, Parakou, Benin
Name, Pakyendou Estel; Laboratoire de Virologie et de Biotechnologie Végétale (LVBV), Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
Tibiri, Ezechiel Bionimian; Laboratoire de Virologie et de Biotechnologie Végétale (LVBV), Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
Moumouni-Moussa, Ismail; Laboratoire de Virologie et de Biotechnologie Végétale (LVBV), Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
Sikirou, Rachidatou; Laboratoire de Défense des Cultures (LDC), Institut National des Recherches Agricoles du Bénin (INRAB), Cotonou, Benin
Desoignies, Nicolas ; Université de Liège - ULiège > Département GxABT ; Phytopathology, Microbial and Molecular Farming Lab (PMMF), Centre D’Etudes et Recherche Appliquée-Haute Ecole Provinciale du Hainaut Condorcet, Ath, Belgium
Zinsou, Valérien Amégnikin; Laboratoire de Virologie et de Biotechnologie Végétale (LVBV), Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
Tiendrebeogo, Fidèle; Laboratoire de Virologie et de Biotechnologie Végétale (LVBV), Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
Afouda, Chaffara Léonard Antoine; Laboratoire de Virologie et de Biotechnologie Végétale (LVBV), Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
Language :
English
Title :
Identification of viruses infecting sweetpotato (Ipomoea batatas Lam.) in Benin
We extend our appreciation to the producers who facilitated sample collection, as well as to the members of the Laboratoire de Virologie et de Biotechnologie V\u00E9g\u00E9tale (LVBV) in Burkina Faso, without whom this study would not have been feasible. Funding information: This work was funded by the Orange Fleshed Sweetpotato Project (Grant number AURG-II-2-247).Funding information: This work was funded by the Orange Fleshed Sweetpotato Project (Grant number AURG-II-2-247).
FAOSTAT. https://www.fao.org/faostat/en/#data/QCL. [Accessed 21 December 2023]. 2023. Available: http://www.fao.org/faostat.
Akomeah B, Quain MD, Ramesh SA, Anand L, Rodríguez López CM. Common garden experiment reveals altered nutritional values and DNA methylation profiles in micropropagated three elite Ghanaian sweet potato genotypes. PLoS One. 2019;14:e0208214. doi: 10.1371/ journal.pone.0208214.
Tadda SA, Kui X, Yang H, Li M, Huang Z, Chen X, et al. The response of vegetable sweet potato (Ipomoea batatas lam) nodes to different concentrations of encapsulation agent and ms salts. Agronomy. 2022;12:19. doi: 10.3390/agronomy12010019.
El Sheikha AF, Ray RC. Potential impacts of bioprocessing of sweet potato: Review. Crit Rev Food Sci Nutr. 2017;57:455–71. doi: 10. 1080/10408398.2014.960909.
Tang C, Lu Y, Jiang B, Chen J, Mo X, Yang Y, et al. Energy, economic, and environmental assessment of sweet potato production on plantations of various sizes in South China. Agronomy. 2022;12:1290. doi: 10.3390/agronomy12061290.
Batcho A, Nwogwugwu JO, Adeyinka SO, Mohsin A, Murtaza S. Evaluation of the agronomic characteristics of 16 varieties of sweet potato (ipomea batatas) grown in the agro-ecological conditions of Southern Benin. J Agric Sci. 2019;9:20–8. doi: 10.31901/24566535. 2018/09.1-2.121.
Wasswa P, Otto B, Maruthi MN, Mukasa SB, Monger W, Gibson RW. First identification of a sweet potato begomovirus (sweepovirus) in Uganda: characterization, detection and distribution. Plant Pathol. 2011;60:1030–9. doi: 10.1111/j.1365-3059.2011.02464.x.
Adjatin A, Aboudou R, Loko LY, Bonou-gbo Z, Sanoussi F, Orobiyi A, et al. Ethnobotanical investigation and diversity of sweet potato (Ipomea batatas L.) landraces grown in Northern Benin. Int J Adv Res Biol Sci. 2018;5:59–73. doi: 10.22192/ijarbs.2018.05.08.008.
Abrham T, Beshir HM, Haile A. Sweetpotato production practices, constraints, and variety evaluation under different storage types. Food Energy Secur. 2021;10:e263. doi: 10.1002/fes3.263.
Clark CA, Davis JA, Abad JA, Cuellar WJ, Fuentes S, Kreuze JF, et al. Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Dis. 2012;96:168–85.
Tibiri EB, Pita JS, Tiendrébéogo F, Bangratz M, Néya JB, Brugidou C, et al. Characterisation of virus species associated with sweetpotato virus diseases in Burkina Faso. Plant Pathol. 2020;69:1003–17. doi: 10.1111/ppa.13190.
Valverde RA, Clark CA, Valkonen JPT. Viruses and virus disease complexes of sweetpotato. Plant Viruses. 2007;1:116–26.
Abidin PE, Akansake DA, Asare KB, Acheremu K, Carey EE. Effect of sources of sweetpotato planting material for quality vine and root yield. Open Agric. 2017;2:244–9. doi: 10.1515/opag-2017-0026.
Untiveros M, Fuentes S, Kreuze JF. Molecular variability of sweet potato feathery mottle virus and other potyviruses infecting sweet potato in Peru. Arch Virol. 2008;153:473–83. doi: 10.1007/s00705-007-0019-0.
Adams MJ, Carstens EB. Ratification vote on taxonomic proposals to the ICTV (2012). Arch Virol. 2012;157:1411–22.
Buko DH, Gedebo A, Spetz C, Hvoslef-Eide AK. An update of sweet potato viral disease incidence and spread in Ethiopia. Afr J Agric Res. 2020;16:1116–26. doi: 10.5897/ajar2020.14918.
Mbanzibwa DR, Tairo F, Gwandu C, Kullaya A, Valkonen JPT. First report of Sweetpotato symptomless virus 1 and Sweetpotato virus A in Sweetpotatoes in Tanzania. Plant Dis. 2011;95:224. doi: 10. 1094/PDIS-10-10-0707.
Kim J, Yang J, Kwak H-R, Kim M-K, Seo J-K, Chung M-N, et al. Virus incidence of sweet potato in Korea from 2011 to 2014. Plant Pathol J. 2017;33:467–77.
El Sheikha AF, Ray RC. Is PCR-DGGE an innovative molecular tool for the detection of microbial plant pathogens?. Vol. 6. Chichester: John Wiley & Sons Ltd; 2014. p. 409–33. doi: 10.1002/ 9781118533024.ch17.
López MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E. Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol. 2009;11:13–46. doi: 10.21775/cimb.011.013.
Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–5.
Kwak H-R, Kim M-K, Shin J-C, Lee Y-J, Seo J-K, Lee H-U, et al. The current incidence of viral disease in Korean sweet potatoes and development of multiplex RT-PCR assays for simultaneous detection of eight sweet potato viruses. Plant Pathol J. 2014;30:416–24. doi: 10.5423/PPJ.OA.04.2014.0029.
Bao Y, Chetvernin V, Tatusova T. Improvements to pairwise sequence comparison (PASC): a genome-based web tool for virus classification. Arch Virol. 2014;159:3293–304. doi: 10.1007/s00705-014-2197-x.
Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4. doi: 10.1093/molbev/msw054.
Loebenstein G. Control of sweet potato virus diseases. Adv Virus Res. 2015;91:33–45. doi: 10.1016/bs.aivir.2014.10.005. 1st edn.
Listihani L, Yuniti IGAD, Lestari PFK, Ariati PEP. First report of Sweet potato leaf curl virus (SPLCV) on Ipomoea batatas in Bali, Indonesia. Indian Phytopathol. 2022;75:595–8. doi: 10.1007/ s42360-022-00489-6.
Fiallo-Olivé E, García-Merenciano AC, Navas-Castillo J. Sweet potato symptomless virus 1: First detection in europe and generation of an infectious clone. Microorganisms. 2022;10:1736. doi: 10.3390/ microorganisms10091736.
Ssamula A, Okiror A, Avrahami-Moyal L, Tam Y, Gaba V, Gibson RW, et al. Factors influencing reversion from virus infection in sweetpotato. Ann Appl Biol. 2020;176:109–21. doi: 10.1111/aab.12551.
Mohammed HS, El Siddig MA, El Hussein AA, Ibrahim FA, Navas-Castillo J, Fiallo-Olivé E. First report of sweet potato leaf curl virus infecting sweet potato in Sudan. Plant Dis. 2017;101:8–9.
Tibiri EB, Tiendrébéogo F, Pita JS, Somé K, Bangratz M, Néya JB, et al. Molecular and biological features of sweet potato leaf curl virus in Burkina Faso. Acta Sci Microbiol. 2019;2:170–7.
Ling K-S, Jackson DM, Harrison H, Simmons AM, PesicVanEsbroeck Z. Field evaluation of yield effects on the U.S.A. heirloom sweetpotato cultivars infected by sweet potato leaf curl virus. Crop Prot. 2010;29:757–65. doi: 10.1016/j.cropro.2010.02.017.
Andreason SA, McKenzie-Reynolds P, Whitley KM, Coffey J, Simmons AM, Wadl PA. Tracking sweet potato leaf curl virus through field production: implications for sustainable sweetpotato production and breeding practices. Plants. 2024;13:1267. doi: 10. 3390/plants13091267.
Wang Y-J, Zhang D-S, Zhang Z-C, Wang S, Qiao Q, Qin Y-H, et al. First Report on Sweetpotato symptomless virus 1 (Genus Mastrevirus, Family Geminiviridae) in Sweetpotato in China. Plant Dis. 2015;99:1042. doi: 10.1094/PDIS-12-14-1358-PDN.
Cao M, Lan P, Li F, Abad J, Zhou C, Li R. Genome characterization of sweet potato symptomless virus 1: a mastrevirus with an unusual nonanucleotide sequence. Arch Virol. 2017;2404:2881–4. doi: 10. 1007/s00705-017-3396-z.
Souza CA, Rossato M, Melo FL, Boiteux LS, Pereira-Carvalho RC. First report of sweet potato symptomless virus 1 infecting Ipomoea batatas in Brazil. Plant Dis. 2018;102:2052. doi: 10.1094/PDIS-01-18-0083-PDN.
Li F, Zuo R, Abad J, Xu D, Bao G, Li R. Simultaneous detection and differentiation of four closely related sweet potato potyviruses by a multiplex one-step RT-PCR. J Virol Methods. 2012;186:161–6. doi: 10. 1016/j.jviromet.2012.07.021.
David M, Kante M, Fuentes S, Eyzaguirre R, Diaz F, De Boeck B, et al. Early-stage phenotyping of sweet potato virus disease caused by sweet potato chlorotic stunt virus and sweet potato virus C to support breeding. Plant Dis. 2023;107:2061–9. doi: 10.1094/PDIS-08-21-1650-RE.
Sivparsad BJ, Gubba A. Identification and distribution of viruses infecting sweet potato (Ipomoea batatas L.) in KwaZulu-Natal province, South Africa. S Afr J Plant Soil. 2013;30:179–90. doi: 10. 1080/02571862.2013.854415.