Antiferromagnetics; Data encoding; Ferromagnetic phasis; Ferromagnetic transitions; Laser-assisted; Magnetic phase; Near room temperature; Thermal; Thermoreflectance; Thin-films; Materials Science (all); Physics and Astronomy (miscellaneous)
Abstract :
[en] FeRh is well known in its bulk form for a temperature-driven antiferromagnetic (AFM) to ferromagnetic (FM) transition near room temperature. It has aroused renewed interest in its thin-film form, with particular focus on its biaxial AFM magnetic anisotropy which could serve for data encoding, and the possibility to investigate laser-assisted phase transitions, with varying contributions from electrons, phonons, and magnons. In order to estimate the typical temperature increase occurring in these experiments, we performed modulated thermoreflectance microscopy to determine the thermal conductivity κ of FeRh. As often occurs upon alloying, and despite the good crystallinity of the layer, κ was found to be lower than the thermal conductivities of its constituting elements. More unexpectedly, given the electrically more conducting nature of the FM phase, it turned out to be three times lower in the FM phase compared to the AFM phase. This trend was confirmed by examining the temporal decay of incoherent phonons generated by a pulsed laser in both phases. To elucidate these results, first- and second-principles simulations were performed to estimate the phonon, magnon, and electron contributions to the thermal conductivity. They were found to be of the same order of magnitude, and to give a quantitative rendering of the experimentally observed κAFM. In the FM phase, however, simulations overestimate the low experimental values, implying very different (shorter) electron and magnon lifetimes.
Research Center/Unit :
Q-MAT - Quantum Materials - ULiège
Disciplines :
Physics
Author, co-author :
Castellano, Aloïs ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Alhada-Lahbabi, K.; Sorbonne Université, CNRS, Institut des Nanosciences de Paris, Paris, France
Arregi, J.A. ; CEITEC BUT, Brno University of Technology, Brno, Czech Republic
Uhlíř, V. ; CEITEC BUT, Brno University of Technology, Brno, Czech Republic ; Institute of Physical Engineering, Brno University of Technology, Brno, Czech Republic
Perrin, B.; Sorbonne Université, CNRS, Institut des Nanosciences de Paris, Paris, France
Gourdon, C. ; Sorbonne Université, CNRS, Institut des Nanosciences de Paris, Paris, France
Fournier, D.; Sorbonne Université, CNRS, Institut des Nanosciences de Paris, Paris, France
Verstraete, Matthieu ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Institute for Theoretical Physics, Physics Department, Utrecht University, Utrecht, Netherlands
Thevenard, L. ; Sorbonne Université, CNRS, Institut des Nanosciences de Paris, Paris, France
Language :
English
Title :
Magnetic phase dependency of the thermal conductivity of FeRh from thermoreflectance experiments and numerical simulations
Publication date :
August 2024
Journal title :
Physical Review Materials
eISSN :
2475-9953
Publisher :
American Physical Society
Volume :
8
Issue :
8
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercalculateur
ANR - Agence Nationale de la Recherche MSMT - Ministerstvo školství, mládeže a tělovýchovy České republiky F.R.S.-FNRS - Fonds de la Recherche Scientifique Waalse Gewest EOS - The Excellence Of Science Program
Funding text :
This work has been partly supported by the French Agence Nationale de la Recherche (ANR ACAF 20-CE30-0027). We acknowledge M. Vabre (Institut des Nanosciences de Paris) for technical assistance. Access to the CEITEC Nano Research Infrastructure was supported by the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic under the project CzechNanoLab (LM2023051). A.C. and M.J.V. acknowledge the Fonds de la Recherche Scientifique (FRS-FNRS Belgium) for PdR Grant No. T.0103.19-ALPS, and ARC project DREAMS (G.A. 21/25-11) funded by Federation Wallonie Bruxelles and ULiege, and the Excellence of Science (EOS) program (Grant No. 40007563-CONNECT) funded by the FWO and F.R.S.-FNRS. Simulation time was awarded by the Belgian share of EuroHPC in LUMI hosted by CSC in Finland, by the CECI (FRS-FNRS Belgium Grant No. 2.5020.11), as well as the Zenobe Tier-1 of the F\u00E9d\u00E9ration Wallonie-Bruxelles (Walloon Region Grant Agreement No. 1117545).ACKNOWLEDGMENTS This work has been partly supported by the French Agence Nationale de la Recherche (ANR ACAF 20-CE30-0027). We acknowledge M. Vabre (Institut des Nanosciences de Paris) for technical assistance. Access to the CEITEC Nano Research Infrastructure was supported by the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic under the project CzechNanoLab (LM2023051). A.C. and M.J.V. acknowledge the Fonds de la Recherche Scientifique (FRS-FNRS Belgium) for PdR Grant No. T.0103.19-ALPS, and ARC project DREAMS (G.A. 21/25-11) funded by Federation Wallonie Bruxelles and ULiege, and the Excellence of Science (EOS) program (Grant No. 40007563-CONNECT) funded by the FWO and F.R.S.-FNRS. Simulation time was awarded by the Belgian share of EuroHPC in LUMI hosted by CSC in Finland, by the CECI (FRS-FNRS Belgium Grant No. 2.5020.11)
M. J. Richardson, D. Melville, and J. A. Ricodeau, Specific heat measurements on an FeRh alloy, Phys. Lett. A 46, 153 (1973) 0375-9601 10.1016/0375-9601(73)90071-6.
M. P. Annaorazov, K. A. Asatryan, G. Myalikgulyev, S. A. Nikitin, A. M. Tishin, and A. L. Tyurin, Alloys of the FeRh system as a new class of working material for magnetic refrigerators, Cryogenics 32, 867 (1992) 0011-2275 10.1016/0011-2275(92)90352-B.
X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R. J. Paull, J. D. Clarkson, J. Kudrnovský, I. Turek, J. Kuneš, D. Yi, J.-H. Chu, C. T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh, Room-temperature antiferromagnetic memory resistor, Nat. Mater. 13, 367 (2014) 1476-1122 10.1038/nmat3861.
J.-U. Thiele, S. Maat, and E. E. Fullerton, FeRh/FePt exchange spring films for thermally assisted magnetic recording media, Appl. Phys. Lett. 82, 2859 (2003) 0003-6951 10.1063/1.1571232.
S. Cervera, M. Trassinelli, M. Marangolo, C. Carrétéro, V. Garcia, S. Hidki, E. Jacquet, E. Lamour, A. Lévy, S. Macé, C. Prigent, J. P. Rozet, S. Steydli, and D. Vernhet, Modulating the phase transition temperature of giant magnetocaloric thin films by ion irradiation, Phys. Rev. Mater. 1, 065402 (2017) 2475-9953 10.1103/PhysRevMaterials.1.065402.
J. U. Thiele, M. Buess, and C. H. Back, Spin dynamics of the antiferromagnetic-to-ferromagnetic phase transition in FeRh on a sub-picosecond time scale, Appl. Phys. Lett. 85, 2857 (2004) 0003-6951 10.1063/1.1799244.
G. Ju, J. Hohlfeld, B. Bergman, R. J. M. van de Veerdonk, O. N. Mryasov, J.-Y. Kim, X. Wu, D. Weller, and B. Koopmans, Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films, Phys. Rev. Lett. 93, 197403 (2004) 0031-9007 10.1103/PhysRevLett.93.197403.
B. Bergman, G. Ju, J. Hohlfeld, R. J. M. van de Veerdonk, J.-Y. Kim, X. Wu, D. Weller, and B. Koopmans, Identifying growth mechanisms for laser-induced magnetization in FeRh, Phys. Rev. B 73, 060407 (R) (2006) 1098-0121 10.1103/PhysRevB.73.060407.
I. Radu, C. Stamm, N. Pontius, T. Kachel, P. Ramm, J.-U. Thiele, H. A. Dürr, and C. H. Back, Laser-induced generation and quenching of magnetization on FeRh studied with time-resolved x-ray magnetic circular dichroism, Phys. Rev. B 81, 104415 (2010) 1098-0121 10.1103/PhysRevB.81.104415.
F. Quirin, M. Vattilana, U. Shymanovich, A.-E. El-Kamhawy, A. Tarasevitch, J. Hohlfeld, D. von der Linde, and K. Sokolowski-Tinten, Structural dynamics in FeRh during a laser-induced metamagnetic phase transition, Phys. Rev. B 85, 020103 (R) (2012) 1098-0121 10.1103/PhysRevB.85.020103.
S. O. Mariager, F. Pressacco, G. Ingold, A. Caviezel, E. Möhr-Vorobeva, P. Beaud, S. L. Johnson, C. J. Milne, E. Mancini, S. Moyerman, E. E. Fullerton, R. Feidenhans'l, C. H. Back, and C. Quitmann, Structural and magnetic dynamics of a laser induced phase transition in FeRh, Phys. Rev. Lett. 108, 087201 (2012) 0031-9007 10.1103/PhysRevLett.108.087201.
F. Pressacco, D. Sangalli, V. Uhlíř, D. Kutnyakhov, J. A. Arregi, S. Y. Agustsson, G. Brenner, H. Redlin, M. Heber, D. Vasilyev, J. Demsar, G. Schönhense, M. Gatti, A. Marini, W. Wurth, and F. Sirotti, Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics, Nat. Commun. 12, 5088 (2021) 2041-1723 10.1038/s41467-021-25347-3.
A. B. Mei, I. Gray, Y. Tang, J. Schubert, D. Werder, J. Bartell, D. C. Ralph, G. D. Fuchs, and D. G. Schlom, Local photothermal control of phase transitions for on-demand room-temperature rewritable magnetic patterning, Adv. Mater. 32, 2001080 (2020) 0935-9648 10.1002/adma.202001080.
G. Li, R. Medapalli, J. H. Mentink, R. V. Mikhaylovskiy, T. G. H. Blank, S. K. K. Patel, A. K. Zvezdin, Th. Rasing, E. E. Fullerton, and A. V. Kimel, Ultrafast kinetics of the antiferromagnetic-ferromagnetic phase transition in FeRh, Nat. Commun. 13, 2998 (2022) 2041-1723 10.1038/s41467-022-30591-2.
M. Mattern, J. Jarecki, J. A. Arregi, V. Uhlíř, M. Rössle, and M. Bargheer, Speed limits of the laser-induced phase transition in FeRh, APL Mater. 12, 051124 (2024) 2166-532X 10.1063/5.0206095.
M. Mattern, J.-E. Pudell, J. A. Arregi, J. Zlámal, R. Kalousek, V. Uhlíř, M. Rössle, and M. Bargheer, Accelerating the laser-induced phase transition in nanostructured FeRh via plasmonic absorption, Adv. Funct. Mater. 16, 2313014 (2024) 10.1002/adfm.202313014.
J. A. Arregi, O. Caha, and V. Uhlíř, Evolution of strain across the magnetostructural phase transition in epitaxial FeRh films on different substrates, Phys. Rev. B 101, 174413 (2020) 2469-9950 10.1103/PhysRevB.101.174413.
D. W. Cooke, F. Hellman, C. Baldasseroni, C. Bordel, S. Moyerman, and E. E. Fullerton, Thermodynamic measurements of Fe-Rh alloys, Phys. Rev. Lett. 109, 255901 (2012) 0031-9007 10.1103/PhysRevLett.109.255901.
S. Shihab, L. Thevenard, A. Lemaître, J. Y. Duquesne, and C. Gourdon, Steady-state thermal gradient induced by pulsed laser excitation in a ferromagnetic layer, J. Appl. Phys. 119, 153904 (2016) 0021-8979 10.1063/1.4947226.
F. Pressacco, V. Uhlíř, M. Gatti, A. Nicolaou, A. Bendounan, J. A. Arregi, S. K. K. Patel, E. E. Fullerton, D. Krizmancic, and F. Sirotti, Laser induced phase transition in epitaxial FeRh layers studied by pump-probe valence band photoemission, Struct. Dyn. 5, 034501 (2018) 2329-7778 10.1063/1.5027809.
Y. Ahn, J. Zhang, Z. Chu, D. A. Walko, S. O. Hruszkewycz, E. E. Fullerton, P. G. Evans, and H. Wen, Ultrafast switching of interfacial thermal conductance, ACS Nano 17, 18843 (2023) 1936-0851 10.1021/acsnano.3c03628.
T. Moriyama, N. Matsuzaki, K.-J. Kim, I. Suzuki, T. Taniyama, and T. Ono, Sequential write-read operations in FeRh antiferromagnetic memory, Appl. Phys. Lett. 107, 122403 (2015) 0003-6951 10.1063/1.4931567.
B. Fogarassy, T. Kemény, L. Pál, and J. Tóth, Electronic specific heat of iron-rhodium and iron-rhodium-iridium alloys, Phys. Rev. Lett. 29, 288 (1972) 0031-9007 10.1103/PhysRevLett.29.288.
U. Aschauer, R. Braddell, S. A. Brechbühl, P. M. Derlet, and N. A. Spaldin, Strain-induced structural instability in FeRh, Phys. Rev. B 94, 014109 (2016) 2469-9950 10.1103/PhysRevB.94.014109.
W. He, H. Huang, and X. Ma, First-principles calculations on elastic and entropy properties in FeRh alloys, Mater. Lett. 195, 156 (2017) 0167577X 10.1016/j.matlet.2017.02.043.
M. Wolloch, M. E. Gruner, W. Keune, P. Mohn, J. Redinger, F. Hofer, D. Suess, R. Podloucky, J. Landers, S. Salamon, F. Scheibel, D. Spoddig, R. Witte, B. Roldan Cuenya, O. Gutfleisch, M. Y. Hu, J. Zhao, T. Toellner, E. E. Alp, M. Siewert, Impact of lattice dynamics on the phase stability of metamagnetic FeRh: Bulk and thin films, Phys. Rev. B 94, 174435 (2016) 2469-9950 10.1103/PhysRevB.94.174435.
M. J. Jiménez, A. B. Schvval, and G. F. Cabeza, Ab initio study of FeRh alloy properties, Comput. Mater. Sci. 172, 109385 (2020) 0927-0256 10.1016/j.commatsci.2019.109385.
C. Cazorla and R. Rurali, Dynamical tuning of the thermal conductivity via magnetophononic effects, Phys. Rev. B 105, 104401 (2022) 2469-9950 10.1103/PhysRevB.105.104401.
Y. J. Hao, L. Zhang, and J. Zhu, The electronic structure, phase transition, elastic, thermodynamic, and thermoelectric properties of FeRh: High-temperature and high-pressure study, Z. Naturforsch. A 75, 789 (2020) 1865-7109 10.1515/zna-2020-0155.
V. Uhlíř, J. A. Arregi, and E. E. Fullerton, Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes, Nat. Commun. 7, 13113 (2016) 2041-1723 10.1038/ncomms13113.
X. Wu, Z. Liu, and T. Luo, Magnon and phonon dispersion, lifetime, and thermal conductivity of iron from spin-lattice dynamics simulations, J. Appl. Phys. 123, 085109 (2018) 0021-8979 10.1063/1.5020611.
D. Fournier, M. Marangolo, and C. Frétigny, Measurement of thermal properties of bulk materials and thin films by modulated thermoreflectance (MTR), J. Appl. Phys. 128, 241101 (2020) 0021-8979 10.1063/5.0019025.
M. Rahimi, K. Sobnath, F. Mallet, P. Lafarge, C. Barraud, W. Daney De Marcillac, Danièle Fournier, and M. L. Della Rocca, Complete determination of thermoelectric and thermal properties of supported few-layer two-dimensional materials, Phys. Rev. Appl. 19, 034075 (2023) 2331-7019 10.1103/PhysRevApplied.19.034075.
C. Frétigny, J. P. Roger, V. Reita, and D. Fournier, Analytical inversion of photothermal measurements: Independent determination of the thermal conductivity and diffusivity of a conductive layer deposited on an insulating substrate, J. Appl. Phys. 102, 116104 (2007) 0021-8979 10.1063/1.2818102.
X. Qian, Z. Ding, J. Shin, A. J. Schmidt, and G. Chen, Accurate measurement of in-plane thermal conductivity of layered materials without metal film transducer using frequency domain thermoreflectance, Rev. Sci. Instrum. 91, 064903 (2020) 10.1063/5.0003770.
V. Saidl, M. Brajer, L. Horák, H. Reichlová, K. Výborný, M. Veis, T. Janda, F. Trojánek, M. Maryško, I. Fina, X. Marti, T. Jungwirth, and P. Němec, Investigation of magneto-structural phase transition in FeRh by reflectivity and transmittance measurements in visible and near-infrared spectral region, New J. Phys. 18, 083017 (2016) 1367-2630 10.1088/1367-2630/18/8/083017.
S. P. Bennett, M. Currie, O. M. J van 't Erve, and I. I. Mazin, Spectral reflectivity crossover at the metamagnetic transition in FeRh thin films, Opt. Mater. Express 9, 2870 (2019) 2159-3930 10.1364/OME.9.002870.
J. A. Arregi, F. Ringe, J. Hajduček, O. Gomonay, T. Molnár, J. Jaskowiec, and V. Uhlíř, Magnetic-field-controlled growth of magnetoelastic phase domains in FeRh, J. Phys. Mater. 6, 034003 (2023) 2515-7639 10.1088/2515-7639/acce6f.
A. Rosencwaig and A. Gersho, Theory of the photoacoustic effect with solids, J. Appl. Phys. 47, 64 (1976) 0021-8979 10.1063/1.322296.
With (Equation presented) tending to infinity, one recovers the usual expression used in thermoreflectance microscopy (Eq. (10) of Ref. [32]). Ignoring the absorption of the pump beam leads to an overestimate of the thermal conductivity of about (Equation presented) when analyzing our data.
C. Frétigny, J.-Y. Duquesne, D. Fournier, and F. Xu, Thermal insulating layer on a conducting substrate. Analysis of thermoreflectance experiments, J. Appl. Phys. 111, 084313 (2012) 0021-8979 10.1063/1.3702823.
Y. Xian, P. Zhang, S. Zhai, P. Yuan, and D. Yang, Experimental characterization methods for thermal contact resistance: A review, Appl. Therm. Eng. 130, 1530 (2018) 1359-4311 10.1016/j.applthermaleng.2017.10.163.
J.-Y. Duquesne, Thermal conductivity of semiconductor superlattices: Experimental study of interface scattering, Phys. Rev. B 79, 153304 (2009) 1098-0121 10.1103/PhysRevB.79.153304.
H.-K. Lyeo and D. G. Cahill, Thermal conductance of interfaces between highly dissimilar materials, Phys. Rev. B 73, 144301 (2006) 1098-0121 10.1103/PhysRevB.73.144301.
J. Zhu, D. Tang, W. Wang, J. Liu, K. W. Holub, and R. Yang, Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films, J. Appl. Phys. 108, 094315 (2010) 10.1063/1.3504213.
C. Frétigny, J. Y. Duquesne, and Danièle Fournier, Perturbation of the heat lateral diffusion by interface resistance in layered structures, Int. J. Thermophys. 36, 1281 (2015) 0195-928X 10.1007/s10765-014-1648-7.
R. B. Wilson and D. G. Cahill, Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments, Nat. Commun. 5, 5075 (2014) 2041-1723 10.1038/ncomms6075.
J. P. Freedman, J. H. Leach, E. A. Preble, Z. Sitar, R. F. Davis, and J. A. Malen, Universal phonon mean free path spectra in crystalline semiconductors at high temperature, Sci. Rep. 3, 2963 (2013) 2045-2322 10.1038/srep02963.
E. Péronne, N. Chuecos, L. Thevenard, and B. Perrin, Acoustic solitons: A robust tool to investigate the generation and detection of ultrafast acoustic waves, Phys. Rev. B 95, 064306 (2017) 2469-9950 10.1103/PhysRevB.95.064306.
In that case, the transient out-of-plane strain induced by a pulsed laser is measured using time-resolved x-ray diffraction. (Equation presented) and (Equation presented) are obtained simultaneously by fitting the time-dependent thickness-averaged strain variations using a layer-resolved 1D thermal transport model, and a DC measurement of the linear thermal expansion.
P. Ruello, B. Perrin, T. Pézeril, V. E. Gusev, S. Gougeon, N. Chigarev, P. Laffez, P. Picart, D. Mounier, and J. M. Breteau, Optoacoustical spectrum of the metal-insulator transition compound (Equation presented): Sub-picosecond pump-probe study, Phys. B: Condens. Matter 363, 43 (2005) 0921-4526 10.1016/j.physb.2005.03.003.
Y. H. Ren, X. H. Zhang, G. Lüpke, M. Schneider, M. Onellion, I. E. Perakis, Y. F. Hu, and Q. Li, Observation of strongly damped GHz phonon-polariton oscillations in (Equation presented), Phys. Rev. B 64, 144401 (2001) 0163-1829 10.1103/PhysRevB.64.144401.
Y. S. Touloukian, Thermophysical Properties of Matter: Thermal Diffusivity (Plenum Press, New York, 1973).
C. W. Kim, J. I. Cho, S. W. Choi, and Y. C. Kim, The Effect of Alloying Elements on Thermal Conductivity of Aluminum Alloys in High Pressure Die Casting, in Metallurgy Technology and Materials II, Advanced Materials Research Vol. 813 (Trans Tech Publications, Wollerau, Switzerland, 2013), pp. 175-178.
G. K. White and S. B. Woods, Thermal and electrical conductivity of rhodium, iridium, and platinum, Can. J. Phys. 35, 248 (1957) 0008-4204 10.1139/p57-029.
M. Omini and A. Sparavigna, An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity, Phys. B: Condens. Matter 212, 101 (1995) 0921-4526 10.1016/0921-4526(95)00016-3.
A. J. H. McGaughey, A. Jain, H.-Y. Kim, and B. Fu, Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation, J. Appl. Phys. 125, 011101 (2019) 0021-8979 10.1063/1.5064602.
O. Hellman and D. A. Broido, Phonon thermal transport in (Equation presented) from first principles, Phys. Rev. B 90, 134309 (2014) 1098-0121 10.1103/PhysRevB.90.134309.
J. Kim, R. Ramesh, and N. Kioussis, Revealing the hidden structural phases of FeRh, Phys. Rev. B 94, 180407 (R) (2016) 2469-9950 10.1103/PhysRevB.94.180407.
N. A. Zarkevich and D. D. Johnson, FeRh ground state and martensitic transformation, Phys. Rev. B 97, 014202 (2018) 2469-9950 10.1103/PhysRevB.97.014202.
M. P. Belov, A. B. Syzdykova, and I. A. Abrikosov, Temperature-dependent lattice dynamics of antiferromagnetic and ferromagnetic phases of FeRh, Phys. Rev. B 101, 134303 (2020) 2469-9950 10.1103/PhysRevB.101.134303.
O. Hellman, I. A. Abrikosov, and S. I. Simak, Lattice dynamics of anharmonic solids from first principles, Phys. Rev. B 84, 180301 (R) (2011) 1098-0121 10.1103/PhysRevB.84.180301.
O. Hellman and I. A. Abrikosov, Temperature-dependent effective third-order interatomic force constants from first principles, Phys. Rev. B 88, 144301 (2013) 1098-0121 10.1103/PhysRevB.88.144301.
I. S. Novikov, K. Gubaev, E. V. Podryabinkin, and A. V. Shapeev, The MLIP package: Moment tensor potentials with MPI and active learning, Mach. Learn.: Sci. Technol. 2, 025002 (2021) 2632-2153 10.1088/2632-2153/abc9fe.
A. V. Shapeev, Moment tensor potentials: A class of systematically improvable interatomic potentials, Multiscale Model. Simul. 14, 1153 (2016) 1540-3459 10.1137/15M1054183.
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A. V. Shapeev, A. P. Thompson, M. A. Wood, and S. P. Ong, Performance and cost assessment of machine learning interatomic potentials, J. Phys. Chem. A 124, 731 (2020) 1089-5639 10.1021/acs.jpca.9b08723.
R. Y. Gu and V. P. Antropov, Dominance of the spin-wave contribution to the magnetic phase transition in FeRh, Phys. Rev. B 72, 012403 (2005) 1098-0121 10.1103/PhysRevB.72.012403.
B. L. Zink, A. D. Avery, R. Sultan, D. Bassett, and M. R. Pufall, Exploring thermoelectric effects and Wiedemann-Franz violation in magnetic nanostructures via micromachined thermal platforms, Solid State Commun. 150, 514 (2010) 0038-1098 10.1016/j.ssc.2009.11.003.
S. Mankovsky, S. Polesya, K. Chadova, H. Ebert, J. B. Staunton, T. Gruenbaum, M. A. W. Schoen, C. H. Back, X. Z. Chen, and C. Song, Temperature-dependent transport properties of FeRh, Phys. Rev. B 95, 155139 (2017) 2469-9950 10.1103/PhysRevB.95.155139.
E. Mancini, F. Pressacco, M. Haertinger, E. E. Fullerton, T. Suzuki, G. Woltersdorf, and C. H. Back, Magnetic phase transition in iron-rhodium thin films probed by ferromagnetic resonance, J. Phys. D 46, 245302 (2013) 0022-3727 10.1088/0022-3727/46/24/245302.
K. Tanaka, T. Moriyama, T. Usami, T. Taniyama, and T. Ono, Spin torque in FeRh alloy measured by spin-torque ferromagnetic resonance, Appl. Phys. Express 11, 013008 (2018) 1882-0778 10.7567/APEX.11.013008.
T. Usami, M. Itoh, and T. Taniyama, Temperature dependence of the effective Gilbert damping constant of FeRh thin films, AIP Adv. 11, 045302 (2021) 2158-3226 10.1063/5.0039577.
F. Mahfouzi and N. Kioussis, Damping and antidamping phenomena in metallic antiferromagnets: An ab initio study, Phys. Rev. B 98, 220410 (R) (2018) 2469-9950 10.1103/PhysRevB.98.220410.
H. T. Simensen, A. Kamra, R. E. Troncoso, and A. Brataas, Magnon decay theory of Gilbert damping in metallic antiferromagnets, Phys. Rev. B 101, 020403 (R) (2020) 2469-9950 10.1103/PhysRevB.101.020403.
A. Castets, D. Tochetti, and B. Hennion, Spin wave spectrum of iron-rhodium alloy in antiferromagnetic and ferromagnetic phases, Physica B+C 86-88, 353 (1977) 0378-4363 10.1016/0378-4363(77)90344-8.
L. M. Sandratskii and P. Buczek, Lifetimes and chirality of spin waves in antiferromagnetic and ferromagnetic FeRh from the perspective of time-dependent density functional theory, Phys. Rev. B 85, 020406 (R) (2012) 1098-0121 10.1103/PhysRevB.85.020406.
E. T. Swartz and R. O. Pohl, Thermal resistance at interfaces, Appl. Phys. Lett. 51, 2200 (1987) 0003-6951 10.1063/1.98939.
E. T. Swartz and R. O. Pohl, Thermal boundary resistance, Rev. Mod. Phys. 61, 605 (1989) 0034-6861 10.1103/RevModPhys.61.605.
X. Gonze, B. Amadon, G. Antonius, F. Arnardi, L. Baguet, J.-M. Beuken, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet, N. Brouwer, F. Bruneval, G. Brunin, T. Cavignac, J.-B. Charraud, W. Chen, M. Côté, S. Cottenier, J. Denier, G. Geneste, The ABINITproject: Impact, environment and recent developments, Comput. Phys. Commun. 248, 107042 (2020) 0010-4655 10.1016/j.cpc.2019.107042.
P. Reddy, K. Castelino, and A. Majumdar, Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion, Appl. Phys. Lett. 87, 211908 (2005) 0003-6951 10.1063/1.2133890.
Note that in the DMM, the orientation around the axis normal (rotation of FeRh by (Equation presented) in our case) is not taken into account.
H. T. Huang, M. F. Lai, Y. F. Hou, and Z. H. Wei, Influence of magnetic domain walls and magnetic field on the thermal conductivity of magnetic nanowires, Nano Lett. 15, 2773 (2015) 1530-6984 10.1021/nl502577y.
A. M. Hofmeister, Thermal diffusivity and thermal conductivity of single-crystal MgO and (Equation presented) and related compounds as a function of temperature, Phys. Chem. Miner. 41, 361 (2014) 0342-1791 10.1007/s00269-014-0655-3.
This is a decent approximation given the weak temperature dependence of (Equation presented) measured experimentally by Arregi et al. [17].
B. Perrin, Microscale and Nanoscale Heat Transfer, edited by S. Volz, Topics in Applied Physics Vol. 107 (Springer, Berlin, 2007).
D. Ourdani, A. Castellano, A. K. Vythelingum, J. A. Arregi, V. Uhlíř, B. Perrin, M. Belmeguenai, Y. Roussigné, C. Gourdon, M. J. Verstraete, and L. Thevenard, Experimental determination of the temperature-and phase-dependent elastic constants of FeRh, Phys. Rev. B 110, 014427 (2024) 2469-9950 10.1103/PhysRevB.110.014427.
D. Royer and E. Dieulesaint, Elastic Waves in Solids I: Free and Guided Propagation, Advanced Texts in Physics (Springer, Berlin, 2000).
J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Spectral and Fermi surface properties from Wannier interpolation, Phys. Rev. B 75, 195121 (2007) 1098-0121 10.1103/PhysRevB.75.195121.
F. Knoop, N. Shulumba, A. Castellano, J. P. A. Batista, R. Farris, M. J. Verstraete, M. Heine, D. Broido, D. S. Kim, J. Klarbring, I. A. Abrikosov, S. I. Simak, and O. Hellman, TDEP: Temperature dependent effective potentials, J. Open Source Software 9, 6150 (2024) 2475-9066 10.21105/joss.06150.
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996) 0031-9007 10.1103/PhysRevLett.77.3865.
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994) 0163-1829 10.1103/PhysRevB.50.17953.
F. Jollet, M. Torrent, and N. Holzwarth, Generation of projector augmented-wave atomic data: A 71 element validated table in the XML format, Comput. Phys. Commun. 185, 1246 (2014) 0010-4655 10.1016/j.cpc.2013.12.023.
A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in 't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, LAMMPS-A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comput. Phys. Commun. 271, 108171 (2022) 0010-4655 10.1016/j.cpc.2021.108171.
Y. Yang, L. Zhao, D. Yi, T. Xu, Y. Chai, C. Zhang, D. Jiang, Y. Ji, D. Hou, W. Jiang, J. Tang, P. Yu, H. Wu, and T. Nan, Acoustic-driven magnetic skyrmion motion, Nat. Commun. 15, 1 (2024) 10.1038/s41467-024-45316-w.