correlated plasmons; orbital hybridization; perovskite nickelates; spectroscopic ellipsometry; X-ray absorption spectroscopy; Collective excitations; Correlated plasmon; Doping concentration; Many-body interactions; Nickelates; Orbital hybridization; Perovskite nickelate; Physical principles; Tunables; Electronic, Optical and Magnetic Materials; Biotechnology; Atomic and Molecular Physics, and Optics; Electrical and Electronic Engineering
Abstract :
[en] The formation of plasmons through the collective excitation of charge density has generated intense discussions, offering insights into fundamental sciences and potential applications. While the underlying physical principles have been well-established, the effects of many-body interactions and orbital hybridization on plasmonic dynamics remain understudied. In this work, we present the observation of conventional metallic and correlated plasmons in epitaxial La1-xSrxNiO3 (LSNO) films with varying Sr doping concentrations (x = 0, 0.125, 0.25), unveiling their intriguing evolution. Unlike samples at other doping concentrations, the x = 0.125 intermediate doping sample does not exhibit the correlated plasmons despite showing high optical conductivity. Through a comprehensive experimental investigation using spectroscopic ellipsometry and X-ray absorption spectroscopy, the O2p-Ni3d orbital hybridization for LSNO with a doping concentration of x = 0.125 is found to be significantly enhanced, alongside a considerable weakening of its effective correlation U*. These factors account for the absence of correlated plasmons and the high optical conductivity observed in LSNO (0.125). Our results underscore the profound impact of orbital hybridization on the electronic structure and the formation of plasmons in strongly correlated systems. This in turn suggests that LSNO could serve as a promising alternative material in optoelectronic devices.
Disciplines :
Physics
Author, co-author :
Sun, Mengxia ; Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai, China
He, Xu ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Chen, Mingyao; Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai, China
Tang, Chi Sin ; Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai, China ; Singapore Synchrotron Light Source, National University of Singapore, Singapore, Singapore
Liu, Xiongfang; Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai, China
Dai, Liang; Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai, China
Liu, Jishan; State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
Zeng, Zhigang ; Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai, China
Sun, Shuo ; Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai, China
Breese, Mark B. H.; Singapore Synchrotron Light Source, National University of Singapore, Singapore, Singapore ; Department of Physics, Faculty of Science, National University of Singapore, Singapore, Singapore
Cai, Chuanbing; Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai, China
Wang, Le ; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, United States
Du, Yingge ; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, United States
Wee, Andrew T. S. ; Department of Physics, Faculty of Science, National University of Singapore, Singapore, Singapore ; Centre for Advanced 2D Materials and Graphene Research, National University of Singapore, Singapore, Singapore
Yin, Xinmao ; Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai, China
NUS - National University of Singapore F.R.S.-FNRS - Fonds de la Recherche Scientifique NSCF - National Natural Science Foundation of China Chinese Academy of Sciences
Funding text :
This work was supported by the National Natural Science Foundation of China (Grant Nos. 52172271, 12374378, and 52307026), the National Key R&D Program of China (Grant No. 2022YFE03150200), Shanghai Science and Technology Innovation Program (Grant No. 22511100200 and 23511101600), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000). X.H. acknowledges financial support from F.R.S. through the PDR Grants PROMOSPAN (T.0107.20). Work at PNNL was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering, Synthesis and Processing Science Program, under Award #10122. C.S.T. acknowledges the support from the NUS Emerging Scientist Fellowship.
Inoue, J.; Maekawa, S. Spiral State and Giant Magnetoresistance in Perovskite Mn Oxides. Phys. Rev. Lett. 1995, 74 ( 17), 3407- 3410, 10.1103/PhysRevLett.74.3407
Tokura, Y.; Kawasaki, M.; Nagaosa, N. Emergent Functions of Quantum Materials. Nat. Phys. 2017, 13 ( 11), 1056- 1068, 10.1038/nphys4274
Balents, L.; Dean, C. R.; Efetov, D. K.; Young, A. F. Superconductivity and Strong Correlations in Moiré Flat Bands. Nat. Phys. 2020, 16 ( 7), 725- 733, 10.1038/s41567-020-0906-9
Rau, J. G.; Lee, E. K.-H.; Kee, H.-Y. Spin-Orbit Physics Giving Rise to Novel Phases in Correlated Systems: Iridates and Related Materials. Annu. Rev. Mater. Res. 2016, 7 ( 1), 195- 221, 10.1146/annurev-conmatphys-031115-011319
Shi, J.; Zhou, Y.; Ramanathan, S. Colossal Resistance Switching and Band Gap Modulation in a Perovskite Nickelate by Electron Doping. Nat. Commun. 2014, 5 ( 1), 4860, 10.1038/ncomms5860
Miller, T. A.; Chhajlany, R. W.; Tagliacozzo, L.; Green, B.; Kovalev, S.; Prabhakaran, D.; Lewenstein, M.; Gensch, M.; Wall, S. Terahertz Field Control of in-Plane Orbital Order in La0.5Sr1.5MnO4. Nat. Commun. 2015, 6 ( 1), 8175, 10.1038/ncomms9175
Yadav, A. K.; Nelson, C. T.; Hsu, S. L.; Hong, Z.; Clarkson, J. D.; Schleputz, C. M.; Damodaran, A. R.; Shafer, P.; Arenholz, E.; Dedon, L. R.; Chen, D.; Vishwanath, A.; Minor, A. M.; Chen, L. Q.; Scott, J. F.; Martin, L. W.; Ramesh, R. Observation of Polar Vortices in Oxide Superlattices. Nature 2016, 530 ( 7589), 198- 201, 10.1038/nature16463
Asmara, T. C.; Wan, D.; Zhao, Y.; Majidi, M. A.; Nelson, C. T.; Scott, M. C.; Cai, Y.; Yan, B.; Schmidt, D.; Yang, M.; Zhu, T.; Trevisanutto, P. E.; Motapothula, M. R.; Feng, Y. P.; Breese, M. B. H.; Sherburne, M.; Asta, M.; Minor, A.; Venkatesan, T.; Rusydi, A. Tunable and Low-Loss Correlated plasmons in Mott-Like Insulating Oxides. Nat. Commun. 2017, 8 ( 1), 15271 10.1038/ncomms15271
Khandelwal, A.; Mohammad Tashrif, S.; Rusydi, A. Coupled Harmonic Oscillator Models for Correlated plasmons in One-Dimensional and Quasi-One-Dimensional Systems. J. Phys.: Condens. Matter 2021, 34 ( 6), 065601 10.1088/1361-648X/ac19e4
Yin, X.; Tang, C. S.; Zeng, S.; Asmara, T. C.; Yang, P.; Naradipa, M. A.; Trevisanutto, P. E.; Shirakawa, T.; Kim, B. H.; Yunoki, S.; Breese, M. B. H.; Venkatesan, T.; Wee, A. T. S.; Ariando, A.; Rusydi, A. Quantum Correlated plasmons and Their Tunability in Undoped and Doped Mott-Insulator Cuprates. ACS Photonics 2019, 6 ( 12), 3281- 3289, 10.1021/acsphotonics.9b01294
Vast, N.; Reining, L.; Olevano, V.; Schattschneider, P.; Jouffrey, B. Local Field Effects in the Electron Energy Loss Spectra of Rutile TiO2. Phys. Rev. Lett. 2002, 88 ( 3), 037601 10.1103/PhysRevLett.88.037601
Tang, C. S.; Yin, X.; Zeng, S.; Wu, J.; Yang, M.; Yang, P.; Diao, C.; Feng, Y. P.; Breese, M. B. H.; Chia, E. E. M.; Venkatesan, T.; Chhowalla, M.; Ariando, A.; Rusydi, A.; Wee, A. T. S. Interfacial Oxygen-Driven Charge Localization and Plasmon Excitation in Unconventional Superconductors. Adv. Mater. 2020, 32 ( 34), e2000153 10.1002/adma.202000153
Zhu, T.; Trevisanutto, P. E.; Asmara, T. C.; Xu, L.; Feng, Y. P.; Rusydi, A. Generation of Multiple plasmons in Strontium Niobates Mediated by Local Field Effects. Phys. Rev. B 2018, 98 ( 23), 235115 10.1103/PhysRevB.98.235115
van Loon, E. G.; Hafermann, H.; Lichtenstein, A. I.; Rubtsov, A. N.; Katsnelson, M. I. plasmons in Strongly Correlated Systems: Spectral Weight Transfer and Renormalized Dispersion. Phys. Rev. Lett. 2014, 113 ( 24), 246407 10.1103/PhysRevLett.113.246407
Whitcher, T. J.; Silly, M. G.; Yang, M.; Das, P. K.; Peyrot, D.; Chi, X.; Eddrief, M.; Moon, J.; Oh, S.; Castro-Neto, A. H.; Breese, M. B. H.; Wee, A. T. S.; Silly, F.; Rusydi, A. Correlated plasmons in the Topological Insulator Bi2Se3 Induced by Long-Range Electron Correlations. NPG Asia Mater. 2020, 12 ( 1), 37, 10.1038/s41427-020-0218-7
Middey, S.; Rivero, P.; Meyers, D.; Kareev, M.; Liu, X.; Cao, Y.; Freeland, J. W.; Barraza-Lopez, S.; Chakhalian, J. Polarity Compensation in Ultra-Thin Films of Complex Oxides: The Case of a Perovskite Nickelate. Sci. Rep. 2014, 4 ( 1), 6819, 10.1038/srep06819
Hidaka, M.; Soejima, M.; Wijesundera, R. P.; Soda, M.; Sato, M.; Choi, S.-H.; Sung, N. E.; Kim, M. G.; Lee, J. M. Metal-Insulator Transition Induced by Electronic and Structural Modulations in Oxygen-Deficient Perovskite-Type TbBaCo2O5.5. phys. stat. sol. (b) 2006, 243 ( 8), 1813- 1822, 10.1002/pssb.200541073
Nakao, H.; Tabata, C.; Murakami, Y.; Yamasaki, Y.; Yamada, H.; Ishihara, S.; Kawasaki, M. Charge Disproportionation of Mn 3d and O 2p Electronic States Depending on Strength of p-d Hybridization in (LaMnO3)2(SrMnO3)2 Superlattices. Phys. Rev. B 2018, 98 ( 24), 245146 10.1103/PhysRevB.98.245146
Catalano, S.; Gibert, M.; Fowlie, J.; Iniguez, J.; Triscone, J. M.; Kreisel, J. Rare-Earth Nickelates RNiO3: Thin Films and Heterostructures. Rep. Prog. Phys. 2018, 81 ( 4), 046501 10.1088/1361-6633/aaa37a
Wang, L.; Yang, Z.; Yin, X.; Taylor, S. D.; He, X.; Tang, C. S.; Bowden, M. E.; Zhao, J.; Wang, J.; Liu, J.; Perea, D. E.; Wangoh, L.; Wee, A. T. S.; Zhou, H.; Chambers, S. A.; Du, Y. Spontaneous Phase Segregation of Sr2NiO3 and SrNi2O3 During SrNiO3 Heteroepitaxy. Sci. Adv. 2021, 7 ( 10), 2866, 10.1126/sciadv.abe2866
Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science 2011, 334 ( 6061), 1383- 1385, 10.1126/science.1212858
Petrie, J. R.; Cooper, V. R.; Freeland, J. W.; Meyer, T. L.; Zhang, Z. Y.; Lutterman, D. A.; Lee, H. N. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites. J. Am. Chem. Soc. 2016, 138 ( 8), 2488- 2491, 10.1021/jacs.5b11713
Liu, J.; Jia, E.; Wang, L.; Stoerzinger, K. A.; Zhou, H.; Tang, C. S.; Yin, X.; He, X.; Bousquet, E.; Bowden, M. E.; Wee, A. T. S.; Chambers, S. A.; Du, Y. Tuning the Electronic Structure of LaNiO3 through Alloying with Strontium to Enhance Oxygen Evolution Activity. Adv. Sci. 2019, 6 ( 19), 1901073 10.1002/advs.201901073
Wang, L.; Stoerzinger, K. A.; Chang, L.; Zhao, J.; Li, Y.; Tang, C. S.; Yin, X.; Bowden, M. E.; Yang, Z.; Guo, H.; You, L.; Guo, R.; Wang, J.; Ibrahim, K.; Chen, J.; Rusydi, A.; Wang, J.; Chambers, S. A.; Du, Y. Tuning Bifunctional Oxygen Electrocatalysts by Changing the a-Site Rare-Earth Element in Perovskite Nickelates. Adv. Funct. Mater. 2018, 28 ( 39), 1803712 10.1002/adfm.201803712
Osada, M.; Wang, B. Y.; Goodge, B. H.; Harvey, S. P.; Lee, K. H.; Li, D. F.; Kourkoutis, L. F.; Hwang, H. Y. Nickelate Superconductivity without Rare-Earth Magnetism: (La,Sr)NiO2. Adv. Mater. 2021, 33 ( 45), 2104083 10.1002/adma.202104083
Lin, J. Q.; Villar Arribi, P.; Fabbris, G.; Botana, A. S.; Meyers, D.; Miao, H.; Shen, Y.; Mazzone, D. G.; Feng, J.; Chiuzbaian, S. G.; Nag, A.; Walters, A. C.; Garcia-Fernandez, M.; Zhou, K. J.; Pelliciari, J.; Jarrige, I.; Freeland, J. W.; Zhang, J.; Mitchell, J. F.; Bisogni, V.; Liu, X.; Norman, M. R.; Dean, M. P. M. Strong Superexchange in a D9-Delta Nickelate Revealed by Resonant Inelastic X-Ray Scattering. Phys. Rev. Lett. 2021, 126 ( 8), 087001 10.1103/PhysRevLett.126.087001
Zhang, J.; Phelan, D.; Botana, A. S.; Chen, Y. S.; Zheng, H.; Krogstad, M.; Wang, S. G.; Qiu, Y.; Rodriguez-Rivera, J. A.; Osborn, R.; Rosenkranz, S.; Norman, M. R.; Mitchell, J. F. Intertwined Density Waves in a Metallic Nickelate. Nat. Commun. 2020, 11 ( 1), 6003, 10.1038/s41467-020-19836-0
Kang, C.-J.; Kotliar, G. Optical Properties of the Infinite-Layer La1-XSrxNiO2 and Hidden Hund’s Physics. Phys. Rev. Lett. 2021, 126 ( 12), 127401 10.1103/PhysRevLett.126.127401
Medarde, M. L. Structural, Magnetic and Electronic Properties RNiO3 of Perovskites (R = Rare Earth). J. Phys.: Condens. Matter 1997, 9 ( 9), 1697, 10.1088/0953-8984/9/8/003
Middey, S.; Chakhalian, J.; Mahadevan, P.; Freeland, J. W.; Millis, A. J.; Sarma, D. D. Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates. Annu. Rev. Mater. Res. 2016, 46 ( 1), 305- 334, 10.1146/annurev-matsci-070115-032057
Palina, N.; Wang, L.; Dash, S.; Yu, X.; Breese, M. B. H.; Wang, J.; Rusydi, A. Investigation of the Metal-Insulator Transition in NdNiO3 Films by Site-Selective X-Ray Absorption Spectroscopy. Nanoscale 2017, 9 ( 18), 6094- 6102, 10.1039/C7NR00742F
Kuzmenko, A. B. Kramers-Kronig Constrained Variational Analysis of Optical Spectra. Rev. Sci. Instrum. 2005, 76 ( 8), 083108 10.1063/1.1979470
Stewart, M. K.; Liu, J.; Smith, R. K.; Chapler, B. C.; Yee, C. H.; Baumbach, R. E.; Maple, M. B.; Haule, K.; Chakhalian, J.; Basov, D. N. Optical Probe of Strong Correlations in LaNiO3 Thin Films. J. Appl. Phys. 2011, 110 ( 3), 033514 10.1063/1.3614019
Stewart, M. K.; Yee, C. H.; Liu, J.; Kareev, M.; Smith, R. K.; Chapler, B. C.; Varela, M.; Ryan, P. J.; Haule, K.; Chakhalian, J.; Basov, D. N. Optical Study of Strained Ultrathin Films of Strongly Correlated LaNiO3. Phys. Rev. B 2011, 83 ( 7), 075125 10.1103/PhysRevB.83.075125
Yin, X.; Majidi, M. A.; Chi, X.; Ren, P.; You, L.; Palina, N.; Yu, X.; Diao, C.; Schmidt, D.; Wang, B.; Yang, P.; Breese, M. B. H.; Wang, J.; Rusydi, A. Unraveling How Electronic and Spin Structures Control Macroscopic Properties of Manganite Ultra-Thin Films. NPG Asia Mater. 2015, 7 ( 7), e196 10.1038/am.2015.65
Drude, P. Zur Elektronentheorie Der Metalle. Ann. Phys. 1900, 306 ( 3), 566- 613, 10.1002/andp.19003060312
Ruppen, J.; Teyssier, J.; Peil, O. E.; Catalano, S.; Gibert, M.; Mravlje, J.; Triscone, J. M.; Georges, A.; van der Marel, D. Optical Spectroscopy and the Nature of the Insulating State of Rare-Earth Nickelates. Phys. Rev. B 2015, 92 ( 15), 155145 10.1103/PhysRevB.92.155145
Katsufuji, T.; Okimoto, Y.; Arima, T.; Tokura, Y.; Torrance, J. B. Optical Spectroscopy of the Metal-Insulator Transition in NdNiO3. Phys. Rev. B 1995, 51 ( 8), 4830- 4835, 10.1103/PhysRevB.51.4830
Pines, D. Collective Energy Losses in Solids. Rev. Mod. Phys. 1956, 28 ( 3), 184- 198, 10.1103/RevModPhys.28.184
Chaudhuri, A.; Chanda, A.; Chi, X.; Yu, X.; Diao, C.; Breese, M. B. H.; Mahendiran, R.; Rusydi, A. Tunable Spin Correlated-plasmons Ranging from Infrared to Ultraviolet in Pr0.6Sr0.4Co1-xMnxO3. Phys. Status Solidi RRL 2020, 15 ( 2), 2000257 10.1002/pssr.202000257
Ulybyshev, M.; Winterowd, C.; Zafeiropoulos, S. Collective Charge Excitations and the Metal-Insulator Transition in the Square Lattice Hubbard-Coulomb Model. Phys. Rev. B 2017, 96 ( 20), 205115 10.1103/PhysRevB.96.205115
Hansmann, P.; Toschi, A.; Yang, X.; Andersen, O. K.; Held, K. Electronic Structure of Nickelates: From Two-Dimensional Heterostructures to Three-Dimensional Bulk Materials. Phys. Rev. B 2010, 82 ( 23), 235123 10.1103/PhysRevB.82.235123
Sakai, E.; Tamamitsu, M.; Yoshimatsu, K.; Okamoto, S.; Horiba, K.; Oshima, M.; Kumigashira, H. Gradual Localization of Ni 3d States in LaNiO3 Ultrathin Films Induced by Dimensional Crossover. Phys. Rev. B 2013, 87 ( 7), 075132 10.1103/PhysRevB.87.075132
Kumar, Y.; Singh, A. P.; Sharma, S. K.; Choudhary, R. J.; Thakur, P.; Knobel, M.; Brookes, N. B.; Kumar, R. Irradiation Induced Modification in Transport Properties of LaNiO3 Thin Films: An X-Ray Absorption Study. Appl. Phys. Lett. 2012, 101 ( 11), 112103 10.1063/1.4752005
Kumar, Y.; Singh, A. P.; Sharma, S. K.; Choudhary, R. J.; Thakur, P.; Knobel, M.; Brookes, N. B.; Kumar, R. Ni 3d - O 2p Hybridization Dependent Magnetic Properties of LaNiO3 Thin Films. Thin Solid Films 2016, 619 ( 30), 144- 147, 10.1016/j.tsf.2016.11.008
Grisolia, M. N.; Varignon, J.; Sanchez-Santolino, G.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J. E.; Rueff, J. P.; Barthelemy, A.; Santamaria, J.; Bibes, M. Hybridization-Controlled Charge Transfer and Induced Magnetism at Correlated Oxide Interfaces. Nat. Phys. 2016, 12 ( 5), 484- 492, 10.1038/nphys3627
Mizokawa, T.; Fujimori, A.; Arima, T.; Tokura, Y.; Mori, N.; Akimitsu, J. Electronic Structure of PrNiO3 Studied by Photoemission and X-Ray-Absorption Spectroscopy: Band Gap and Orbital Ordering. Phys. Rev. B 1995, 52 ( 19), 13865- 13873, 10.1103/PhysRevB.52.13865
Piamonteze, C.; de Groot, F. M. F.; Tolentino, H. C. N.; Ramos, A. Y.; Massa, N. E.; Alonso, J. A.; Martínez-Lope, M. J. Spin-Orbit-Induced Mixed-Spin Ground State in RNiO3 Perovskites Probed by X-Ray Absorption Spectroscopy: Insight into the Metal-to-Insulator Transition. Phys. Rev. B 2005, 71 ( 2), 020406 10.1103/PhysRevB.71.020406
Stavitski, E.; de Groot, F. M. The Ctm4xas Program for Eels and XAS Spectral Shape Analysis of Transition Metal L Edges. Micron 2010, 41 ( 7), 687- 694, 10.1016/j.micron.2010.06.005
Guo, E. J.; Liu, Y.; Sohn, C.; Desautels, R. D.; Herklotz, A.; Liao, Z.; Nichols, J.; Freeland, J. W.; Fitzsimmons, M. R.; Lee, H. N. Oxygen Diode Formed in Nickelate Heterostructures by Chemical Potential Mismatch. Adv. Mater. 2018, 30 ( 15), 1705904 10.1002/adma.201705904
Wang, L.; Chang, L.; Yin, X.; You, L.; Zhao, J.-L.; Guo, H.; Jin, K.; Ibrahim, K.; Wang, J.; Rusydi, A.; Wang, J. Self-Powered Sensitive and Stable Uv-Visible Photodetector Based on GdNiO3/Nb-Doped SrTiO3 Heterojunctions. Appl. Phys. Lett. 2017, 110 ( 4), 043504 10.1063/1.4974144
Ding, H.; Park, K.; Gao, Y. Evolution of the Unoccupied States in Alkali Metal-Doped Organic Semiconductor. J. Electron Spectrosc. Relat. Phenom. 2009, 174 ( 1-3), 45- 49, 10.1016/j.elspec.2009.02.011
Winkler, S.; Amsalem, P.; Frisch, J.; Oehzelt, M.; Heimel, G.; Koch, N. Probing the Energy Levels in Hole-Doped Molecular Semiconductors. Mater. Horiz. 2015, 2 ( 4), 427- 433, 10.1039/C5MH00023H
West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for Better plasmonic Materials. Laser Photonics Rev. 2010, 4 ( 6), 795- 808, 10.1002/lpor.200900055
Olmon, R. L.; Slovick, B.; Johnson, T. W.; Shelton, D.; Oh, S.-H.; Boreman, G. D.; Raschke, M. B. Optical Dielectric Function of Gold. Phys. Rev. B 2012, 86 ( 23), 235147 10.1103/PhysRevB.86.235147
Jablan, M.; Soljacic, M.; Buljan, H. plasmons in Graphene: Fundamental Properties and Potential Applications. Proc. IEEE 2013, 101 ( 7), 1689- 1704, 10.1109/JPROC.2013.2260115
Goldflam, M. D.; Liu, M. K.; Chapler, B. C.; Stinson, H. T.; Sternbach, A. J.; McLeod, A. S.; Zhang, J. D.; Geng, K.; Royal, M.; Kim, B.-J.; Averitt, R. D.; Jokerst, N. M.; Smith, D. R.; Kim, H. T.; Basov, D. N. Voltage Switching of a VO2 Memory Metasurface Using Ionic Gel. Appl. Phys. Lett. 2014, 105 ( 4), 041117 10.1063/1.4891765
Markov, P.; Appavoo, K.; Haglund, R. F., Jr.; Weiss, S. M. Hybrid Si-VO2-Au Optical Modulator Based on near-Field plasmonic Coupling. Opt. Express 2015, 23 ( 5), 6878- 6887, 10.1364/OE.23.006878
Kresse, G.; Furthmiiller, J. Efficiency of Ab initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6 ( 1), 15- 50, 10.1016/0927-0256(96)00008-0
Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54 ( 16), 11169- 11186, 10.1103/PhysRevB.54.11169
Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47 ( 1), 558- 561, 10.1103/PhysRevB.47.558
Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal ─Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B 1994, 49 ( 20), 14251- 14269, 10.1103/PhysRevB.49.14251
Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59 ( 3), 1758- 1775, 10.1103/PhysRevB.59.1758
Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100 ( 13), 136406 10.1103/PhysRevLett.100.136406