X-ray absorption spectroscopy; density functional theory; excitonic propagation; interfacial orbital hybridization; oxide heterostructures; spectroscopic ellipsometry; Density-functional-theory; Excitonics; Orbital hybridization; Orbitals; SrTiO 3; Synthesised; Materials Science (all); Engineering (all); Physics and Astronomy (all)
Abstract :
[en] The interaction of atomic orbitals at the interface of perovskite oxide heterostructures has been investigated for its profound impact on the band structures and electronic properties, giving rise to unique electronic states and a variety of tunable functionalities. In this study, we conducted an extensive investigation of the optical and electronic properties of epitaxial NdNiO3 synthesized on a series of single-crystal substrates. Unlike nanofilms synthesized on other substrates, NdNiO3 on SrTiO3 (NNO/STO) gives rise to a unique band structure featuring an additional unoccupied band situated above the Fermi level. Our comprehensive investigation, which incorporated a wide array of experimental techniques and density functional theory calculations, revealed that the emergence of the interfacial band structure is primarily driven by orbital hybridization between the Ti 3d orbitals of the STO substrate and the O 2p orbitals of the NNO thin film. Furthermore, exciton peaks have been detected in the optical spectra of the NNO/STO film, attributable to the pronounced electron-electron (e-e) and electron-hole (e-h) interactions propagating from the STO substrate into the NNO film. These findings underscore the substantial influence of interfacial orbital hybridization on the electronic structure of oxide thin films, thereby offering key insights into tuning their interfacial properties.
Disciplines :
Physics
Author, co-author :
Chen, Mingyao; Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
Liu, Huimin; Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
He, Xu ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Li, Minjuan; Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
Tang, Chi Sin ; Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China ; Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore 117603, Singapore
Sun, Mengxia ; Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
Koirala, Krishna Prasad; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
Bowden, Mark E ; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
Li, Yangyang ; School of Physics, Shandong University, Jinan, Shandong 250100, China
Liu, Xiongfang; Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
Zhou, Difan; Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
Sun, Shuo ; Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
Breese, Mark B H; Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore 117603, Singapore ; Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
Cai, Chuanbing; Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
Wang, Le ; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
Du, Yingge ; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
Wee, Andrew T S ; Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore ; Centre for Advanced 2D Materials and Graphene Research, National University of Singapore, Singapore 117546, Singapore
Yin, Xinmao ; Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
NUS - National University of Singapore F.R.S.-FNRS - Fonds de la Recherche Scientifique NSCF - National Natural Science Foundation of China Chinese Academy of Sciences
Funding text :
The authors would like to acknowledge the Singapore Synchrotron Light Source for providing the facility necessary for conducting the research. The Laboratory is a National Research Infrastructure under the National Research Foundation, Singapore. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not reflect the views of National Research Foundation, Singapore. This work was supported by the National Natural Science Foundation of China (Grant Nos. 52172271, 12374378, and 52307026); the National Key R&D Program of China (Grant No. 2022YFE03150200); Shanghai Science and Technology Innovation Program (Grant No. 22511100200); and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000). XRD and STEM measurements along with the corresponding analysis and manuscript writing were supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering, Synthesis and Processing Science Program, under Award #10122. C.S.T acknowledges the support from the NUS Emerging Scientist Fellowship. X.H. acknowledges the financial support from F.R.S.-FNRS Belgium through the PDR project PROMOSPAN (Grant No. T.0107.20).
Han, S.; Tang, C. S.; Li, L.; Liu, Y.; Liu, H.; Gou, J.; Wu, J.; Zhou, D.; Yang, P.; Diao, C.; Ji, J.; Bao, J.; Zhang, L.; Zhao, M.; Milošević, M. V.; Guo, Y.; Tian, L.; Breese, M. B. H.; Cao, G.; Cai, C.; Wee, A. T. S.; Yin, X. Orbital-Hybridization-Driven Charge Density Wave Transition in CsV3Sb5 Kagome Superconductor. Adv. Mater. 2023, 35 ( 8), e2209010 10.1002/adma.202209010
Yin, X.; Tang, C. S.; Zeng, S.; Asmara, T. C.; Yang, P.; Naradipa, M. A.; Trevisanutto, P. E.; Shirakawa, T.; Kim, B. H.; Yunoki, S.; Breese, M. B. H.; Venkatesan, T.; Wee, A. T. S.; Ariando, A.; Rusydi, A. Quantum Correlated Plasmons and Their Tunability in Undoped and Doped Mott-Insulator Cuprates. ACS Photonics 2019, 6 ( 12), 3281- 3289, 10.1021/acsphotonics.9b01294
Liu, C.; Yan, X.; Jin, D.; Ma, Y.; Hsiao, H.-W.; Lin, Y.; Bretz-Sullivan, T. M.; Zhou, X.; Pearson, J.; Fisher, B.; Jiang, J. S.; Han, W.; Zuo, J.-M.; Wen, J.; Fong, D. D.; Sun, J.; Zhou, H.; Bhattacharya, A. Two-dimensional superconductivity and anisotropic transport at KTaO3 (111) interfaces. Science 2021, 371 ( 6530), 716- 721, 10.1126/science.aba5511
Ren, T.; Li, M.; Sun, X.; Ju, L.; Liu, Y.; Hong, S.; Sun, Y.; Tao, Q.; Zhou, Y.; Xu, Z.-A.; Xie, Y. Two-dimensional superconductivity at the surfaces of KTaO3 gated with ionic liquid. Sci. Adv. 2022, 8 ( 22), eabn4273 10.1126/sciadv.abn4273
Liu, T.; Shen, L.; Cheng, S. D.; Wang, H.; Li, Y.; Liu, M. Interfacial Modulation on Co(0.2)Fe(2.8)O(4) Epitaxial Thin Films for Anomalous Hall Sensor Applications. ACS Appl. Mater. Interfaces 2022, 14 ( 33), 37887- 37893, 10.1021/acsami.2c07575
Lim, S.-M.; Yeon, H.-W.; Lee, G.-B.; Jin, M.-G.; Lee, S.-Y.; Jo, J.; Kim, M.; Joo, Y.-C. Thermally Stable Amorphous Oxide-based Schottky Diodes through Oxygen Vacancy Control at Metal/Oxide Interfaces. Sci. Rep. 2019, 9 ( 1), 7872, 10.1038/s41598-019-44421-x
Grisolia, M. N.; Varignon, J.; Sanchez-Santolino, G.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J. E.; Rueff, J. P.; Barthelemy, A.; Santamaria, J.; Bibes, M. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces. Nat. Phys. 2016, 12 ( 5), 484- 492, 10.1038/nphys3627
Wang, L.; Yang, Z.; Bowden, M. E.; Freeland, J. W.; Sushko, P. V.; Spurgeon, S. R.; Matthews, B.; Samarakoon, W. S.; Zhou, H.; Feng, Z.; Engelhard, M. H.; Du, Y.; Chambers, S. A. Hole-Trapping-Induced Stabilization of Ni4 + in SrNiO3/LaFeO3 Superlattices. Adv. Mater. 2020, 32 ( 45), e2005003 10.1002/adma.202005003
Tang, C. S.; Yin, X.; Zeng, S.; Wu, J.; Yang, M.; Yang, P.; Diao, C.; Feng, Y. P.; Breese, M. B. H.; Chia, E. E. M.; Venkatesan, T.; Chhowalla, M.; Ariando, A.; Rusydi, A.; Wee, A. T. S. Interfacial Oxygen-Driven Charge Localization and Plasmon Excitation in Unconventional Superconductors. Adv. Mater. 2020, 32 ( 34), e2000153 10.1002/adma.202000153
Chen, X.; Zhang, S.; Liu, B.; Hu, F.; Shen, B.; Sun, J. Theoretical investigation of magnetic anisotropy at the La0.5Sr0.5MnO3/LaCoO2.5 interface. Phys. Rev. B 2019, 100 ( 14), 144413 10.1103/PhysRevB.100.144413
Liao, Z.; Gauquelin, N.; Green, R. J.; Macke, S.; Gonnissen, J.; Thomas, S.; Zhong, Z.; Li, L.; Si, L.; Van Aert, S.; Hansmann, P.; Held, K.; Xia, J.; Verbeeck, J.; Van Tendeloo, G.; Sawatzky, G. A.; Koster, G.; Huijben, M.; Rijnders, G. Thickness Dependent Properties in Oxide Heterostructures Driven by Structurally Induced Metal-Oxygen Hybridization Variations. Adv. Funct. Mater. 2017, 27 ( 17), 1606717 10.1002/adfm.201606717
Nichols, J.; Gao, X.; Lee, S.; Meyer, T. L.; Freeland, J. W.; Lauter, V.; Yi, D.; Liu, J.; Haskel, D.; Petrie, J. R.; Guo, E.-J.; Herklotz, A.; Lee, D.; Ward, T. Z.; Eres, G.; Fitzsimmons, M. R.; Lee, H. N. Emerging magnetism and anomalous Hall effect in iridate-Manganite heterostructures. Nat. Commun. 2016, 7, 12721 10.1038/ncomms12721
Yi, D.; Liu, J.; Hsu, S. L.; Zhang, L.; Choi, Y.; Kim, J. W.; Chen, Z.; Clarkson, J. D.; Serrao, C. R.; Arenholz, E.; Ryan, P. J.; Xu, H.; Birgeneau, R. J.; Ramesh, R. Atomic-scale control of magnetic anisotropy via novel spin-orbit coupling effect in La2/3Sr1/3MnO3/SrIrO3 superlattices. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 ( 23), 6397- 402, 10.1073/pnas.1524689113
Liao, Z.; Huijben, M.; Zhong, Z.; Gauquelin, N.; Macke, S.; Green, R. J.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Held, K.; Sawatzky, G. A.; Koster, G.; Rijnders, G. Controlled lateral anisotropy in correlated Manganite heterostructures by interface-engineered oxygen octahedral coupling. Nat. Mater. 2016, 15 ( 4), 425- 31, 10.1038/nmat4579
Zhang, P.; Das, A.; van Rijn, J. J. L.; Watson, A. J.; Banerjee, T. Tunable magnetic anisotropy in SrMnO3/SrRuO3 bilayers studied by angle and temperature dependence of magneto-transport. Appl. Phys. Lett. 2022, 121 ( 15), 152401, 10.1063/5.0120418
Sanchez-Manzano, D.; Mesoraca, S.; Cuellar, F. A.; Cabero, M.; Rouco, V.; Orfila, G.; Palermo, X.; Balan, A.; Marcano, L.; Sander, A.; Rocci, M.; Garcia-Barriocanal, J.; Gallego, F.; Tornos, J.; Rivera, A.; Mompean, F.; Garcia-Hernandez, M.; Gonzalez-Calbet, J. M.; Leon, C.; Valencia, S.; Feuillet-Palma, C.; Bergeal, N.; Buzdin, A. I.; Lesueur, J.; Villegas, J. E.; Santamaria, J. Extremely long-range, high-temperature Josephson coupling across a half-metallic ferromagnet. Nat. Mater. 2022, 21 ( 2), 188, 10.1038/s41563-021-01162-5
Singh, S.; Basu, S. Investigation of interface magnetism of complex oxide heterostructures using polarized neutron reflectivity. CURRENT APPLIED PHYSICS 2017, 17 ( 5), 615- 625, 10.1016/j.cap.2017.02.017
Ren, Z.; Wu, M.; Chen, X.; Li, W.; Li, M.; Wang, F.; Tian, H.; Chen, J.; Xie, Y.; Mai, J.; Li, X.; Lu, X.; Lu, Y.; Zhang, H.; Van Tendeloo, G.; Zhang, Z.; Han, G. Electrostatic Force-Driven Oxide Heteroepitaxy for Interface Control. Adv. Mater. 2018, 30 ( 38), 1707017 10.1002/adma.201707017
Flint, C. L.; Jang, H.; Lee, J.-S.; N’Diaye, A. T.; Shafer, P.; Arenholz, E.; Suzuki, Y. Role of polar compensation in interfacial ferromagnetism of LaNiO3/CaMnO3 superlattices. Phys. Rev. Mater. 2017, 1 ( 2), 024404 10.1103/PhysRevMaterials.1.024404
Chen, H.; Millis, A. Charge transfer driven emergent phenomena in oxide heterostructures. J. Phys.: Condens. Matter 2017, 29 ( 24), 243001, 10.1088/1361-648X/aa6efe
Chakhalian, J.; Freeland, J. W.; Habermeier, H. U.; Cristiani, G.; Khaliullin, G.; van Veenendaal, M.; Keimer, B. Orbital reconstruction and covalent bonding at an oxide interface. Science 2007, 318 ( 5853), 1114- 7, 10.1126/science.1149338
Bert, J. A.; Kalisky, B.; Bell, C.; Kim, M.; Hikita, Y.; Hwang, H. Y.; Moler, K. A. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat. Phys. 2011, 7 ( 10), 767- 771, 10.1038/nphys2079
Li, D.; Lee, K.; Wang, B. Y.; Osada, M.; Crossley, S.; Lee, H. R.; Cui, Y.; Hikita, Y.; Hwang, H. Y. Superconductivity in an infinite-layer nickelate. Nature 2019, 572 ( 7771), 624- 627, 10.1038/s41586-019-1496-5
Sakakibara, H.; Usui, H.; Suzuki, K.; Kotani, T.; Aoki, H.; Kuroki, K. Model Construction and a Possibility of Cupratelike Pairing in a New d(9) Nickelate Superconductor (Nd,Sr)NiO2. Phys. Rev. Mater. 2020, 125 ( 7), 077003 10.1103/PhysRevLett.125.077003
Hepting, M.; Li, D.; Jia, C. J.; Lu, H.; Paris, E.; Tseng, Y.; Feng, X.; Osada, M.; Been, E.; Hikita, Y.; Chuang, Y.-D.; Hussain, Z.; Zhou, K. J.; Nag, A.; Garcia-Fernandez, M.; Rossi, M.; Huang, H. Y.; Huang, D. J.; Shen, Z. X.; Schmitt, T.; Hwang, H. Y.; Moritz, B.; Zaanen, J.; Devereaux, T. P.; Lee, W. S. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 2020, 19 ( 4), 381, 10.1038/s41563-019-0585-z
Middey, S.; Chakhalian, J.; Mahadevan, P.; Freeland, J. W.; Millis, A. J.; Sarma, D. D. Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates. Annu. Rev. Mater. Res. 2016, 46 ( 1), 305- 334, 10.1146/annurev-matsci-070115-032057
Wang, L.; Stoerzinger, K. A.; Chang, L.; Zhao, J.; Li, Y.; Tang, C. S.; Yin, X.; Bowden, M. E.; Yang, Z.; Guo, H.; You, L.; Guo, R.; Wang, J.; Ibrahim, K.; Chen, J.; Rusydi, A.; Wang, J.; Chambers, S. A.; Du, Y. Tuning Bifunctional Oxygen Electrocatalysts by Changing the A-Site Rare-Earth Element in Perovskite Nickelates. Adv. Funct. Mater. 2018, 28 ( 39), 1803712 10.1002/adfm.201803712
Catalano, S.; Gibert, M.; Fowlie, J.; Íñiguez, J.; Triscone, J. M.; Kreisel, J. Rare-earth nickelates RNiO3: thin films and heterostructures. Rep. Prog. Phys. 2018, 81 ( 4), 046501 10.1088/1361-6633/aaa37a
Gogoi, P. K.; Sponza, L.; Schmidt, D.; Asmara, T. C.; Diao, C.; Lim, J. C. W.; Poh, S. M.; Kimura, S.-i.; Trevisanutto, P. E.; Olevano, V.; Rusydi, A. Anomalous excitons and screenings unveiling strong electronic correlations in ${\mathrm{SrTi}}_{1\ensuremath{-}x}{\mathrm{Nb}}_{x}{\mathrm{O}}_{3} (0\ensuremath{\le}x\ensuremath{\le}0.005)$. Phys. Rev. B 2015, 92 ( 3), 035119 10.1103/PhysRevB.92.035119
Gogoi, P. K.; Trevisanutto, P. E.; Yang, M.; Santoso, I.; Asmara, T. C.; Terentjevs, A.; Della Sala, F.; Breese, M. B. H.; Venkatesan, T.; Feng, Y. P.; Loh, K. P.; Neto, A. H. C.; Rusydi, A. Optical conductivity renormalization of graphene on $\mathrm{SrTiO}{}_{3}$ due to resonant excitonic effects mediated by Ti $3d$ orbitals. Phys. Rev. B 2015, 91 ( 3), 035424 10.1103/PhysRevB.91.035424
Yin, X.; Tang, C. S.; Majidi, M. A.; Ren, P.; Wang, L.; Yang, P.; Diao, C.; Yu, X.; Breese, M. B. H.; Wee, A. T. S.; Wang, J.; Rusydi, A. Modulation of Manganite Nanofilm Properties Mediated by Strong Influence of Strontium Titanate Excitons. ACS Appl. Mater. Interfaces 2018, 10 ( 41), 35563- 35570, 10.1021/acsami.7b15347
Yin, X.; Yang, M.; Tang, C. S.; Wang, Q.; Xu, L.; Wu, J.; Trevisanutto, P. E.; Zeng, S.; Chin, X. Y.; Asmara, T. C.; Feng, Y. P.; Ariando, A.; Chhowalla, M.; Wang, S. J.; Zhang, W.; Rusydi, A.; Wee, A. T. S. Modulation of New Excitons in Transition Metal Dichalcogenide-Perovskite Oxide System. Adv. Sci. 2019, 6 ( 12), 1900446 10.1002/advs.201900446
Tang, C. S.; Yin, X.; Zeng, S.; Wu, J.; Yang, M.; Yang, P.; Diao, C.; Feng, Y. P.; Breese, M. B. H.; Chia, E. E. M.; Venkatesan, T.; Chhowalla, M.; Ariando, A.; Rusydi, A.; Wee, A. T. S. Interfacial Oxygen-Driven Charge Localization and Plasmon Excitation in Unconventional Superconductors. Adv. Mater. 2020, 32 ( 34), 2000153 10.1002/adma.202000153
Zaanen, J.; Sawatzky, G. A.; Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 1985, 55 ( 4), 418- 421, 10.1103/PhysRevLett.55.418
Zeng, S. W.; Yin, X. M.; Li, C. J.; Chow, L. E.; Tang, C. S.; Han, K.; Huang, Z.; Cao, Y.; Wan, D. Y.; Zhang, Z. T.; Lim, Z. S.; Diao, C. Z.; Yang, P.; Wee, A. T. S.; Pennycook, S. J.; Ariando, A. Observation of perfect diamagnetism and interfacial effect on the electronic structures in infinite layer Nd0.8Sr0.2NiO2 superconductors. Nat. Commun. 2022, 13 ( 1), 743, 10.1038/s41467-022-28390-w
Zhang, Y.; Lin, L.-F.; Hu, W.; Moreo, A.; Dong, S.; Dagotto, E. Similarities and differences between nickelate and cuprate films grown on a ${\mathrm{SrTiO}}_{3}$ substrate. Phys. Rev. B 2020, 102 ( 19), 195117 10.1103/PhysRevB.102.195117
Geisler, B.; Pentcheva, R. Fundamental difference in the electronic reconstruction of infinite-layer versus perovskite neodymium nickelate films on SrTiO3(001). Phys. Rev. B 2020, 102 ( 2), 020502 10.1103/PhysRevB.102.020502
He, R.; Jiang, P.; Lu, Y.; Song, Y.; Chen, M.; Jin, M.; Shui, L.; Zhong, Z. Polarity-induced electronic and atomic reconstruction at NdNiO2/SrTiO3 interfaces. Phys. Rev. B 2020, 102 ( 3), 035118 10.1103/PhysRevB.102.035118
Bernardini, F.; Cano, A. Stability and electronic properties of LaNiO2/SrTiO(3)heterostructures. J. Phys.: Mater. 2020, 3 ( 3), 03LT01 10.1088/2515-7639/ab9d0f
Peng, J. J.; Song, C.; Wang, M.; Li, F.; Cui, B.; Wang, G. Y.; Yu, P.; Pan, F. Manipulating the metal-to-insulator transition ofNdNiO3films by orbital polarization. Phys. Rev. B 2016, 93 ( 23), 235102 10.1103/PhysRevB.93.235102
Disa, A. S.; Kumah, D. P.; Ngai, J. H.; Specht, E. D.; Arena, D. A.; Walker, F. J.; Ahn, C. H. Phase diagram of compressively strained nickelate thin films. APL Mater. 2013, 1 ( 3), 032110 10.1063/1.4820431
Goodge, B. H.; Geisler, B.; Lee, K.; Osada, M.; Wang, B. Y.; Li, D.; Hwang, H. Y.; Pentcheva, R.; Kourkoutis, L. F. Resolving the polar interface of infinite-layer nickelate thin films. Nat. Mater. 2023, 22 ( 4), 466- 473, 10.1038/s41563-023-01510-7
Wang, L.; Stoerzinger, K. A.; Chang, L.; Yin, X.; Li, Y.; Tang, C. S.; Jia, E.; Bowden, M. E.; Yang, Z.; Abdelsamie, A.; You, L.; Guo, R.; Chen, J.; Rusydi, A.; Wang, J.; Chambers, S. A.; Du, Y. Strain Effect on Oxygen Evolution Reaction Activity of Epitaxial NdNiO(3) Thin Films. ACS Appl. Mater. Interfaces 2019, 11 ( 13), 12941- 12947, 10.1021/acsami.8b21301
Chandrasena, R. U.; Yang, W.; Lei, Q.; Delgado-Jaime, M. U.; Wijesekara, K. D.; Golalikhani, M.; Davidson, B. A.; Arenholz, E.; Kobayashi, K.; Kobata, M.; de Groot, F. M. F.; Aschauer, U.; Spaldin, N. A.; Xi, X.; Gray, A. X. Strain-Engineered Oxygen Vacancies in CaMnO3 Thin Films. Nano Lett. 2017, 17 ( 2), 794- 799, 10.1021/acs.nanolett.6b03986
Petrie, J. R.; Jeen, H.; Barron, S. C.; Meyer, T. L.; Lee, H. N. Enhancing Perovskite Electrocatalysis through Strain Tuning of the Oxygen Deficiency. J. Am. Chem. Soc. 2016, 138 ( 23), 7252- 7255, 10.1021/jacs.6b03520
Stewart, M. K.; Liu, J.; Kareev, M.; Chakhalian, J.; Basov, D. N. Mott Physics near the Insulator-To-Metal Transition in NdNiO3. Phys. Rev. Lett. 2011, 107 ( 17), 176401 10.1103/PhysRevLett.107.176401
Chang, L.; Wang, L.; You, L.; Yang, Z.; Abdelsamie, A.; Zhang, Q.; Zhou, Y.; Gu, L.; Chambers, S. A.; Wang, J. Tuning Photovoltaic Performance of Perovskite Nickelates Heterostructures by Changing the A-Site Rare-Earth Element. ACS Appl. Mater. Interfaces 2019, 11 ( 17), 16191- 16197, 10.1021/acsami.9b01851
Stewart, M. K.; Brownstead, D.; Liu, J.; Kareev, M.; Chakhalian, J.; Basov, D. N. Heterostructuring and strain effects on the infrared optical properties of nickelates. Phys. Rev. B 2012, 86 ( 20), 205102 10.1103/PhysRevB.86.205102
Stewart, M. K.; Liu, J.; Kareev, M.; Chakhalian, J.; Basov, D. N. Mott Physics near the Insulator-To-Metal Transition in ${\mathrm{NdNiO}}_{3}$. Phys. Rev. Lett. 2011, 107 ( 17), 176401 10.1103/PhysRevLett.107.176401
Ruppen, J.; Teyssier, J.; Ardizzone, I.; Peil, O. E.; Catalano, S.; Gibert, M.; Triscone, J. M.; Georges, A.; van der Marel, D. Impact of antiferromagnetism on the optical properties of rare-earth nickelates. Phys. Rev. B 2017, 96 ( 4), 045120 10.1103/PhysRevB.96.045120
Ruppen, J.; Teyssier, J.; Peil, O. E.; Catalano, S.; Gibert, M.; Mravlje, J.; Triscone, J. M.; Georges, A.; van der Marel, D. Optical spectroscopy and the nature of the insulating state of rare-earth nickelates. Phys. Rev. B 2015, 92 ( 15), 155145 10.1103/PhysRevB.92.155145
Yin, X.; Majidi, M. A.; Chi, X.; Ren, P.; You, L.; Palina, N.; Yu, X.; Diao, C.; Schmidt, D.; Wang, B.; Yang, P.; Breese, M. B. H.; Wang, J.; Rusydi, A. Unraveling how electronic and spin structures control macroscopic properties of Manganite ultra-thin films. NPG Asia Materials 2015, 7 ( 7), e196- e196, 10.1038/am.2015.65
Rusydi, A.; Rauer, R.; Neuber, G.; Bastjan, M.; Mahns, I.; Müller, S.; Saichu, P.; Schulz, B.; Singer, S. G.; Lichtenstein, A. I.; Qi, D.; Gao, X.; Yu, X.; Wee, A. T. S.; Stryganyuk, G.; Dörr, K.; Sawatzky, G. A.; Cooper, S. L.; Rübhausen, M. Metal-insulator transition in manganites: Changes in optical conductivity up to 22 eV. Phys. Rev. B 2008, 78 ( 12), 125110 10.1103/PhysRevB.78.125110
Ruppen, J.; Teyssier, J.; Ardizzone, I.; Peil, O. E.; Catalano, S.; Gibert, M.; Triscone, J. M.; Georges, A.; van der Marel, D. Impact of antiferromagnetism on the optical properties of rare earth nickelates. Phys. Rev. B 2017, 96 ( 4), 045120 10.1103/PhysRevB.96.045120
Trevisanutto, P. E.; Olevano, V.; Rusydi, A.; Gogoi, P. K.; Sponza, L.; Schmidt, D.; Asmara, T. C.; Diao, C.; Lim, J. C. W.; Poh, S. M.; Kimura, S.-i Anomalous excitons and screenings unveiling strong electronic correlations inSrTi1-xNbxO3 (0 ≤ x ≤ 0.005). Phys. Rev. B 2015, 92 ( 3), 035119 10.1103/PhysRevB.92.035119
Goodge, B. H.; Li, D.; Lee, K.; Osada, M.; Wang, B. Y.; Sawatzky, G. A.; Hwang, H. Y.; Kourkoutis, L. F. Doping evolution of the Mott-Hubbard landscape in infinite-layer nickelates. Proc. Natl. Acad. Sci. U. S. A. 2021, 118 ( 2), e2007683118 10.1073/pnas.2007683118
Liu, J.; Kargarian, M.; Kareev, M.; Gray, B.; Ryan, P. J.; Cruz, A.; Tahir, N.; Chuang, Y.-D.; Guo, J.; Rondinelli, J. M.; Freeland, J. W.; Fiete, G. A.; Chakhalian, J. Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films. Nat. Commun. 2013, 4, 2714, 10.1038/ncomms3714
Palina, N.; Wang, L.; Dash, S.; Yu, X.; Breese, M. B. H.; Wang, J.; Rusydi, A. Investigation of the metal-insulator transition in NdNiO(3) films by site-selective X-ray absorption spectroscopy. Nanoscale 2017, 9 ( 18), 6094- 6102, 10.1039/C7NR00742F
Wang, L.; Yang, Z.; Yin, X.; Taylor, S. D.; He, X.; Tang, C. S.; Bowden, M. E.; Zhao, J.; Wang, J.; Liu, J.; Perea, D. E.; Wangoh, L.; Wee, A. T. S.; Zhou, H.; Chambers, S. A.; Du, Y. Spontaneous phase segregation of Sr2NiO3 and SrNi2O3 during SrNiO3 heteroepitaxy. Sci. Adv. 2021, 7 ( 10), eabe2866 10.1126/sciadv.abe2866
Mundet, B.; Domínguez, C.; Fowlie, J.; Gibert, M.; Triscone, J.-M.; Alexander, D. T. L. Near-Atomic-Scale Mapping of Electronic Phases in Rare Earth Nickelate Superlattices. Nano Lett. 2021, 21 ( 6), 2436- 2443, 10.1021/acs.nanolett.0c04538
Lee, J.; Kim, G.-Y.; Jeong, S.; Yang, M.; Kim, J.-W.; Cho, B.-G.; Choi, Y.; Kim, S.; Choi, J. S.; Lee, T. K.; Kim, J.; Lee, D. R.; Chang, S. H.; Park, S.; Jung, J. H.; Bark, C. W.; Koo, T.-Y.; Ryan, P. J.; Ihm, K.; Kim, S.; Choi, S.-Y.; Kim, T. H.; Lee, S. Template Engineering of Metal-to-Insulator Transitions in Epitaxial Bilayer Nickelate Thin Films. ACS APPLIED MATERIALS & INTERFACES 2021, 13 ( 45), 54466- 54475, 10.1021/acsami.1c13675
Liu, J.; Kareev, M.; Meyers, D.; Gray, B.; Ryan, P.; Freeland, J. W.; Chakhalian, J. Metal-Insulator Transition and Orbital Reconstruction in Mott-Type Quantum Wells Made of NdNiO3. Phys. Rev. Lett. 2012, 109 ( 10), 107402 10.1103/PhysRevLett.109.107402
Freeland, J. W.; van Veenendaal, M.; Chakhalian, J. Evolution of electronic structure across the rare-earth RNiO3 series. J. Electron Spectrosc. Relat. Phenom. 2016, 208, 56- 62, 10.1016/j.elspec.2015.07.006
Bodenthin, Y.; Staub, U.; Piamonteze, C.; Garcia-Fernandez, M.; Martinez-Lope, M. J.; Alonso, J. A. Magnetic and electronic properties of RNiO3 (R = Pr, Nd, Eu, Ho and Y) perovskites studied by resonant soft x-ray magnetic powder diffraction. J. Phys.: Condens. Matter 2011, 23 ( 3), 036002 10.1088/0953-8984/23/3/036002
Gauquelin, N.; Benckiser, E.; Kinyanjui, M. K.; Wu, M.; Lu, Y.; Christiani, G.; Logvenov, G.; Habermeier, H.-U.; Kaiser, U.; Keimer, B.; Botton, G. A. Atomically resolved EELS mapping of the interfacial structure of epitaxially strained LaNiO3/LaAlO3 superlattices. Phys. Rev. B 2014, 90 ( 19), 195140 10.1103/PhysRevB.90.195140
Tang, C. S.; Yin, X.; Yang, M.; Wu, D.; Birowosuto, M. D.; Wu, J.; Li, C.; Hettiarachchi, C.; Chin, X. Y.; Chang, Y. H.; Ouyang, F.; Dang, C.; Pennycook, S. J.; Feng, Y. P.; Wang, S.; Chi, D.; Breese, M. B. H.; Zhang, W.; Rusydi, A.; Wee, A. T. S. Three-Dimensional Resonant Exciton in Monolayer Tungsten Diselenide Actuated by Spin-Orbit Coupling. ACS Nano 2019, 13 ( 12), 14529- 14539, 10.1021/acsnano.9b08385
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15- 50, 10.1016/0927-0256(96)00008-0
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169- 11186, 10.1103/physrevb.54.11169
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558- 561, 10.1103/PhysRevB.47.558
Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal ─amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251- 14269, 10.1103/PhysRevB.49.14251
Park, H.; Millis, A. J.; Marianetti, C. A. Site-Selective Mott Transition in Rare-Earth-Element Nickelates. Phys. Rev. Lett. 2012, 109 ( 15), 156402 10.1103/PhysRevLett.109.156402
Varignon, J.; Grisolia, M. N.; Íñiguez, J.; Barthélémy, A.; Bibes, M. Complete phase diagram of rare-earth nickelates from first-principles. npj Quantum Mater. 2017, 2 ( 1), 21, 10.1038/s41535-017-0024-9
José, M. S.; Emilio, A.; Julian, D. G.; Alberto, G.; Javier, J.; Pablo, O.; Daniel, S.-P. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 2002, 14 ( 11), 2745, 10.1088/0953-8984/14/11/302
García, A.; Papior, N.; Akhtar, A.; Artacho, E.; Blum, V.; Bosoni, E.; Brandimarte, P.; Brandbyge, M.; Cerdá, J. I.; Corsetti, F.; Cuadrado, R.; Dikan, V.; Ferrer, J.; Gale, J.; García-Fernández, P.; García-Suárez, V. M.; García, S.; Huhs, G.; Illera, S.; Korytár, R.; Koval, P.; Lebedeva, I.; Lin, L.; López-Tarifa, P.; Mayo, S. G.; Mohr, S.; Ordejón, P.; Postnikov, A.; Pouillon, Y.; Pruneda, M.; Robles, R.; Sánchez-Portal, D.; Soler, J. M.; Ullah, R.; Yu, V. W.-z.; Junquera, J. Siesta: Recent developments and applications. J. Chem. Phys. 2020, 152 ( 20), 204108, 10.1063/5.0005077
van Setten, M. J.; Giantomassi, M.; Bousquet, E.; Verstraete, M. J.; Hamann, D. R.; Gonze, X.; Rignanese, G. M. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 2018, 226, 39- 54, 10.1016/j.cpc.2018.01.012
Vladimir, I. A.; Aryasetiawan, F.; Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method. J. Phys.: Condens. Matter 1997, 9 ( 4), 767, 10.1088/0953-8984/9/4/002