[en] Mild cognitive impairment (MCI) and dementia due to Alzheimer's disease (AD) are neurological disorders that affect cognition, brain function, and memory. Magnetoencephalography (MEG) is a neuroimaging technique used to study changes in brain oscillations caused by neural pathologies. However, MEG studies often use fixed frequency bands, assuming a common frequency structure and overlooking both subject-specific variations and the potential influence of pathologies on frequency distribution. To address this issue, a novel methodology called Connectivity-based Meta-Bands (CMB) was applied to obtain a subject-specific functional connectivity-based frequency bands segmentation. Resting-state MEG activity was acquired from 161 participants: 67 healthy controls, 44 MCI patients, and 50 AD patients. The CMB algorithm was used to identify “meta-bands” (i.e., recurrent network topologies across frequencies). The meta-bands were used to extract an individualised frequency band segmentation. The network topology of the meta-bands and their sequencing were analysed to identify alterations associated with MCI and AD in the underlying frequency-dependent connectivity structure. We found that MCI and AD alter the neural network topology, leading to connectivity patterns both more widespread in the frequency spectrum and heterogeneous. Furthermore, the meta-band frequency sequencing was modified, with MCI and AD patients exhibiting sequences with increased complexity, suggesting a progressive dilution of the frequency structure. The study highlights the relevance of considering the impact of neural pathologies on the frequency-dependent connectivity structure and the potential bias introduced by using fixed frequency bands in MEG studies.
Disciplines :
Neurology
Author, co-author :
Rodríguez-González, Víctor ; Biomedical Engineering Group, University of Valladolid, Valladolid, Spain ; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain
Nunez Novo, Pablo ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group
Gómez, Carlos ; Biomedical Engineering Group, University of Valladolid, Valladolid, Spain ; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain
Hoshi, Hideyuki ; Hokuto Hospital, Obihiro, Japan
Shigihara, Yoshihito; Hokuto Hospital, Obihiro, Japan
Hornero, Roberto ; Biomedical Engineering Group, University of Valladolid, Valladolid, Spain ; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain ; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Valladolid, Spain
Poza, Jesús; Biomedical Engineering Group, University of Valladolid, Valladolid, Spain ; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain ; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Valladolid, Spain
Language :
English
Title :
Unveiling the alterations in the frequency-dependent connectivity structure of MEG signals in mild cognitive impairment and Alzheimer's disease
UVA - Universidad de Valladolid ERDF - European Regional Development Fund ISCIII - Instituto de Salud Carlos III
Funding text :
This research has been funded by ‘ CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) ’ through ‘ Instituto de Salud Carlos III ’ co-funded with ERDF funds. Vıćtor Rodríguez-González was in receipt of a PIF-UVa grant from the ‘ University of Valladolid ’ and a ‘ Movilidad Doctorandos y Doctorandas UVa 2022 ’ grant. P. Núñez was funded by the ERA-Net FLAG-ERA JTC2021 project ModelDXConsciousness (Human Brain Project Partnering Project).
Singh, S., Magnetoencephalography: Basic principles. Ann. Indian Acad. Neurol., 17, 2014, 107, 10.4103/0972-2327.128676.
Illman, M., Laaksonen, K., Liljeström, M., Jousmäki, V., Piitulainen, H., Forss, N., Comparing MEG and EEG in detecting the 20-Hz rhythm modulation to tactile and proprioceptive stimulation. NeuroImage, 215, 2020, 116804, 10.1016/j.neuroimage.2020.116804.
Supek, S., Aine, C.J., (eds.) Magnetoencephalography, second ed., 2019, Springer International Publishing, Cham, Switzerland, 1358, 10.1007/978-3-030-00087-5.
Rodríguez-González, V., Núñez, P., Gómez, C., Shigihara, Y., Hoshi, H., Tola-Arribas, M.Á., Cano, M., Guerrero, Á., García-Azorín, D., Hornero, R., Poza, J., Connectivity-based Meta-Bands: A new approach for automatic frequency band identification in connectivity analyses. NeuroImage 280:120332 (2023), 1–18, 10.1016/j.neuroimage.2023.120332.
Mandal, P.K., Banerjee, A., Tripathi, M., Sharma, A., A comprehensive review of magnetoencephalography (MEG) studies for brain functionality in healthy aging and Alzheimer's Disease (AD). Front. Comput. Neurosci., 12, 2018, 10.3389/fncom.2018.00060.
Engels, M., van der Flier, W., Stam, C., Hillebrand, A., Scheltens, P., van Straaten, E., Alzheimer's disease: The state of the art in resting-state magnetoencephalography. Clin. Neurophysiol. 128 (2017), 1426–1437, 10.1016/j.clinph.2017.05.012.
López-Sanz, D., Serrano, N., Maestú, F., The role of magnetoencephalography in the early stages of Alzheimer's disease. Front. Neurosci., 12, 2018, 10.3389/fnins.2018.00572.
Sun, J., Wang, B., Niu, Y., Tan, Y., Fan, C., Zhang, N., Xue, J., Wei, J., Xiang, J., Complexity analysis of EEG, MEG, and fMRI in mild cognitive impairment and alzheimer's disease: A review. Entropy, 22, 2020, 239, 10.3390/e22020239.
Stam, C.J., van Straaten, E.C.W., The organization of physiological brain networks. Clin. Neurophysiol. 123 (2012), 1067–1087, 10.1016/j.clinph.2012.01.011.
Dauwels, J., Srinivasan, K., Reddy, M.R., Musha, T., Vialatte, F.-B., Latchoumane, C., Jeong, J., Cichocki, A., Slowing and loss of complexity in Alzheimer's EEG: Two sides of the same coin?. Int. J. Alzheimer's Dis. 2011 (2011), 1–10, 10.4061/2011/539621.
Gómez, C., Hornero, R., Entropy and complexity analyses in Alzheimer's Disease: An MEG study. Open Biomed. Eng. J. 4 (2010), 223–235, 10.2174/1874120701004010223.
Ruiz-Gómez, S.J., Gómez, C., Poza, J., Martínez-Zarzuela, M., Tola-Arribas, M.A., Cano, M., Hornero, R., Measuring alterations of spontaneous EEG neural coupling in Alzheimer's disease and mild cognitive impairment by means of cross-entropy metrics. Front. Neuroinform. 12 (2018), 1–11, 10.3389/fninf.2018.00076.
Vallet, G.T., Hudon, C., Simard, M., Versace, R., The disconnection syndrome in the Alzheimer's disease: The cross-modal priming example. Cortex 49 (2013), 2402–2415, 10.1016/j.cortex.2012.10.010.
Delbeuck, X., Linden, M.V.D., Collette, F., Alzheimer's disease as a disconnection syndrome?. Neuropsychol. Rev., 13, 2003.
Delbeuck, X., Collette, F., der Linden, M.V., Is Alzheimer's disease a disconnection syndrome?. Neuropsychologia 45 (2007), 3315–3323, 10.1016/j.neuropsychologia.2007.05.001.
Schumacher, J., Peraza, L.R., Firbank, M., Thomas, A.J., Kaiser, M., Gallagher, P., O'Brien, J.T., Blamire, A.M., Taylor, J.-P., Dynamic functional connectivity changes in dementia with Lewy bodies and Alzheimer's disease. NeuroImage: Clin., 22, 2019, 101812, 10.1016/j.nicl.2019.101812.
nez, P.N., Poza, J., Gómez, C., Rodríguez-González, V., Hillebrand, A., Tola-Arribas, M.A., Cano, M., Hornero, R., Characterizing the fluctuations of dynamic resting-state electrophysiological functional connectivity: reduced neuronal coupling variability in mild cognitive impairment and dementia due to Alzheimer's disease. J. Neural Eng., 16, 2019, 056030, 10.1088/1741-2552/ab234b.
nez, P.N., Poza, J., Gómez, C., Rodríguez-González, V., Hillebrand, A., Tewarie, P., Tola-Arribas, M.Á., Cano, M., Hornero, R., Abnormal meta-state activation of dynamic brain networks across the alzheimer spectrum. NeuroImage, 232, 2021, 117898, 10.1016/j.neuroimage.2021.117898.
nez, P.N., Gómez, C., Rodríguez-González, V., Hillebrand, A., Tewarie, P., Gomez-Pilar, J., Molina, V., Hornero, R., Poza, J., Schizophrenia induces abnormal frequency-dependent patterns of dynamic brain network reconfiguration during an auditory oddball task. J. Neural Eng., 19, 2022, 016033, 10.1088/1741-2552/ac514e.
Newson, J.J., Thiagarajan, T.C., EEG frequency bands in psychiatric disorders: A review of resting state studies. Front. Hum. Neurosci. 12 (2019), 1–24, 10.3389/fnhum.2018.00521.
Núñez, P., Poza, J., Gómez, C., Barroso-García, V., Maturana-Candelas, A., Tola-Arribas, M.A., Cano, M., Hornero, R., Characterization of the dynamic behavior of neural activity in Alzheimer's disease: exploring the non-stationarity and recurrence structure of EEG resting-state activity. J. Neural Eng., 17(1), 2020, 016071, 10.1088/1741-2552/ab71e9.
Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Gamst, A., Holtzman, D.M., Jagust, W.J., Petersen, R.C., Snyder, P.J., Carrillo, M.C., Thies, B., Phelps, C.H., The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for alzheimer's disease. Alzheimer's Dement. 7 (2011), 270–279, 10.1016/j.jalz.2011.03.008.
McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Kawas, C.H., Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R., Mohs, R.C., Morris, J.C., Rossor, M.N., Scheltens, P., Carrillo, M.C., Thies, B., Weintraub, S., Phelps, C.H., The diagnosis of dementia due to alzheimer's disease: Recommendations from the national institute on aging-alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement. 7 (2011), 263–269, 10.1016/j.jalz.2011.03.005.
Rodríguez-González, V., Gómez, C., Shigihara, Y., Hoshi, H., Revilla-Vallejo, M., Hornero, R., Poza, J., Consistency of local activation parameters at sensor- and source-level in neural signals. J. Neural Eng., 17, 2020, 056020, 10.1088/1741-2552/abb582.
Mutanen, T.P., Metsomaa, J., Liljander, S., Ilmoniemi, R.J., Automatic and robust noise suppression in EEG and MEG: The SOUND algorithm. NeuroImage 166 (2018), 135–151, 10.1016/j.neuroimage.2017.10.021.
Lin, F.-H., Witzel, T., Hämäläinen, M.S., Dale, A.M., Belliveau, J.W., Stufflebeam, S.M., Spectral spatiotemporal imaging of cortical oscillations and interactions in the human brain. NeuroImage 23 (2004), 582–595, 10.1016/j.neuroimage.2004.04.027.
Tait, L., Özkan, A., Szul, M.J., Zhang, J., A systematic evaluation of source reconstruction of resting MEG of the human brain with a new high-resolution atlas: Performance, precision, and parcellation. Hum. Brain Mapp. 42 (2021), 4685–4707, 10.1002/hbm.25578.
Rizkallah, J., Amoud, H., Fraschini, M., Wendling, F., Hassan, M., Exploring the correlation between M/EEG source–space and fMRI networks at rest. Brain Topogr. 33 (2020), 151–160, 10.1007/s10548-020-00753-w.
Larson-Prior, L., Oostenveld, R., Penna, S.D., Michalareas, G., Prior, F., Babajani-Feremi, A., Schoffelen, J.-M., Marzetti, L., de Pasquale, F., Pompeo, F.D., Stout, J., Woolrich, M., Luo, Q., Bucholz, R., Fries, P., Pizzella, V., Romani, G., Corbetta, M., Snyder, A., Adding dynamics to the Human Connectome Project with MEG. NeuroImage 80 (2013), 190–201, 10.1016/j.neuroimage.2013.05.056.
Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M., Brainstorm: A user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011 (2011), 1–13, 10.1155/2011/879716.
Fonov, V.S., Evans, A.C., McKinstry, R.C., Almli, C.R., Collins, D.L., Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, 47, 2009, S102, 10.1016/S1053-8119(09)70884-5.
Douw, L., Nieboer, D., Stam, C.J., Tewarie, P., Hillebrand, A., Consistency of magnetoencephalographic functional connectivity and network reconstruction using a template versus native MRI for co-registration. Hum. Brain Mapp. 39 (2018), 104–119, 10.1002/hbm.23827.
Gramfort, A., Papadopoulo, T., Olivi, E., Clerc, M., OpenMEEG: opensource software for quasistatic bioelectromagnetics. BioMed. Eng. OnLine, 9, 2010, 45, 10.1186/1475-925X-9-45.
Vidaurre, D., Quinn, A.J., Baker, A.P., Dupret, D., Tejero-Cantero, A., Woolrich, M.W., Spectrally resolved fast transient brain states in electrophysiological data. NeuroImage 126 (2016), 81–95, 10.1016/j.neuroimage.2015.11.047.
Lai, M., Demuru, M., Hillebrand, A., Fraschini, M., A comparison between scalp- and source-reconstructed EEG networks. Sci. Rep., 8, 2018, 12269, 10.1038/s41598-018-30869-w.
Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31 (2006), 968–980, 10.1016/j.neuroimage.2006.01.021.
Rodriguez-Gonzalez, V., de Pablo, V.G., Gómez, C., Shigihara, Y., Hoshi, H., Hornero, R., Tola-Arribas, M.Á., Cano, M., Poza, J., High frequential resolution networks: Considerations on a new functional brain connectivity framework. 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2021, IEEE, 722–725.
Lempel, A., Ziv, J., On the complexity of finite sequences. IEEE Trans. Inform. Theory 22 (1976), 75–81, 10.1109/TIT.1976.1055501.
Rousselet, G.A., Pernet, C.R., Wilcox, R.R., The percentile bootstrap: A primer with step-by-step instructions in r. Adv. Methods Pract. Psychol. Sci., 4, 2021, 251524592091188, 10.1177/2515245920911881.
Haraguchi, R., Hoshi, H., Ichikawa, S., Hanyu, M., Nakamura, K., Fukasawa, K., Poza, J., Rodríguez-González, V., Gómez, C., Shigihara, Y., The menstrual cycle alters resting-state cortical activity: A magnetoencephalography study. Front. Hum. Neurosci., 15, 2021, 10.3389/fnhum.2021.652789.
Benjamini, Y., Hochberg, Y., Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57 (1995), 289–300, 10.1111/j.2517-6161.1995.tb02031.x.
Florin, E., Baillet, S., The brain's resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations. NeuroImage 111 (2015), 26–35, 10.1016/j.neuroimage.2015.01.054.
Schäfer, C.B., Morgan, B.R., Ye, A.X., Taylor, M.J., Doesburg, S.M., Oscillations, networks, and their development: MEG connectivity changes with age. Hum. Brain Mapp. 35 (2014), 5249–5261, 10.1002/hbm.22547.
Smit, D.J.A., Boersma, M., Schnack, H.G., Micheloyannis, S., Boomsma, D.I., Pol, H.E.H., Stam, C.J., de Geus, E.J.C., The brain matures with stronger functional connectivity and decreased randomness of its network. PLoS One, 7, 2012, e36896, 10.1371/journal.pone.0036896.
Wen, X., He, H., Dong, L., Chen, J., Yang, J., Guo, H., Luo, C., Yao, D., Alterations of local functional connectivity in lifespan: A resting-state fMRI study. Brain Behav., 10, 2020, 10.1002/brb3.1652.
Badhwar, A., Tam, A., Dansereau, C., Orban, P., Hoffstaedter, F., Bellec, P., Resting-state network dysfunction in Alzheimer's disease: A systematic review and meta-analysis. Alzheimer's Dement.: Diagn. Assess. Dis. Monit. 8 (2017), 73–85, 10.1016/j.dadm.2017.03.007.
Ishii, R., Canuet, L., Aoki, Y., Hata, M., Iwase, M., Ikeda, S., Nishida, K., Ikeda, M., Healthy and pathological brain aging: From the perspective of oscillations, functional connectivity, and signal complexity. Neuropsychobiology 75 (2017), 151–161, 10.1159/000486870.
Engels, M.M., Stam, C.J., van der Flier, W.M., Scheltens, P., de Waal, H., van Straaten, E.C., Declining functional connectivity and changing hub locations in Alzheimer's disease: an EEG study. BMC Neurol., 15, 2015, 145, 10.1186/s12883-015-0400-7.
Sheline, Y.I., Raichle, M.E., Resting state functional connectivity in preclinical Alzheimer's disease. Biol. Psychiat. 74 (2013), 340–347, 10.1016/j.biopsych.2012.11.028.
Koelewijn, L., Bompas, A., Tales, A., Brookes, M.J., Muthukumaraswamy, S.D., Bayer, A., Singh, K.D., Alzheimer's disease disrupts alpha and beta-band resting-state oscillatory network connectivity. Clin. Neurophysiol. 128:11 (2017), 2347–2357, 10.1016/j.clinph.2017.04.018.
Morabito, F.C., Ieracitano, C., Mammone, N., An explainable Artificial Intelligence approach to study MCI to AD conversion via HD-EEG processing. Clin. EEG Neurosci. 54:1 (2023), 51–60, 10.1177/15500594211063662.
Knyazeva, M.G., Jalili, M., Brioschi, A., Bourquin, I., Fornari, E., Hasler, M., Meuli, R., Maeder, P., Ghika, J., Topography of EEG multivariate phase synchronization in early Alzheimer's disease. Neurobiol. Aging 31 (2010), 1132–1144, 10.1016/j.neurobiolaging.2008.07.019.
Knyazeva, M.G., Carmeli, C., Khadivi, A., Ghika, J., Meuli, R., Frackowiak, R.S., Evolution of source EEG synchronization in early Alzheimer's disease. Neurobiol. Aging 34 (2013), 694–705, 10.1016/j.neurobiolaging.2012.07.012.
Tóth, B., File, B., Boha, R., Kardos, Z., Hidasi, Z., Gaál, Z.A., Csibri, É., Salacz, P., Stam, C.J., Molnár, M., EEG network connectivity changes in mild cognitive impairment — Preliminary results. Int. J. Psychophysiol. 92 (2014), 1–7, 10.1016/j.ijpsycho.2014.02.001.
Handayani, N., Haryanto, F., Khotimah, S.N., Arif, I., Taruno, W.P., Coherence and phase synchrony analyses of EEG signals in mild cognitive impairment (MCI): A study of functional brain connectivity. Polish J. Med. Phys. Eng. 24 (2018), 1–9, 10.2478/pjmpe-2018-0001.
Musaeus, C.S., Nielsen, M.S., Høgh, P., Altered low-frequency EEG connectivity in mild cognitive impairment as a sign of clinical progression. J. Alzheimer's Dis. 68 (2019), 947–960, 10.3233/JAD-181081.
Gómez, C., Stam, C.J., Hornero, R., Fernández, A., Maestú, F., Disturbed beta band functional connectivity in patients with mild cognitive impairment: An MEG study. IEEE Trans. Biomed. Eng. 56 (2009), 1683–1690, 10.1109/TBME.2009.2018454.
de Haan, W., Pijnenburg, Y.A., Strijers, R.L., van der Made, Y., van der Flier, W.M., Scheltens, P., Stam, C.J., Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory. BMC Neurosci., 10, 2009, 101, 10.1186/1471-2202-10-101.
Stam, C.J., de Haan, W., Daffertshofer, A., Jones, B.F., Manshanden, I., van Cappellen van Walsum, A.M., Montez, T., Verbunt, J.P.A., de Munck, J.C., van Dijk, B.W., Berendse, H.W., Scheltens, P., Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain 132 (2009), 213–224, 10.1093/brain/awn262.
Moretti, D.V., Babiloni, C., Binetti, G., Cassetta, E., Forno, G.D., Ferreric, F., Ferri, R., Lanuzza, B., Miniussi, C., Nobili, F., Rodriguez, G., Salinari, S., Rossini, P.M., Individual analysis of EEG frequency and band power in mild Alzheimer's disease. Clin. Neurophysiol. 115 (2004), 299–308, 10.1016/S1388-2457(03)00345-6.
Zalesky, A., Fornito, A., Cocchi, L., Gollo, L.L., Breakspear, M., Time-resolved resting-state brain networks. Proc. Natl. Acad. Sci. 111 (2014), 10341–10346, 10.1073/pnas.1400181111.
Franciotti, R., Falasca, N.W., Arnaldi, D., Famà, F., Babiloni, C., Onofrj, M., Nobili, F.M., Bonanni, L., Cortical network topology in prodromal and mild dementia due to Alzheimer's Disease: Graph theory applied to resting state EEG. Brain Topogr. 32 (2019), 127–141, 10.1007/S10548-018-0674-3/TABLES/4.
Jalili, M., Functional brain networks: Does the choice of dependency estimator and binarization method matter?. Sci. Rep., 6, 2016, 29780, 10.1038/srep29780.
Gates, K.M., Henry, T., Steinley, D., Fair, D.A., A Monte Carlo evaluation of weighted community detection algorithms. Front. Neuroinform. 10 (2016), 1–16, 10.3389/fninf.2016.00045.