[en] The use of biological agents offers a sustainable alternative to chemical control in managing plant diseases. In this study, Bacillus velezensis IFST-221 was isolated from the rhizosphere of a healthy maize plant amidst a population showing severe disease symptoms. The investigation demonstrated a broad-spectrum antagonistic activity of IFST-221 against eight species of pathogenic ascomycetes and oomycetes, suggesting its potential utility in combating plant diseases like maize ear rot and cotton Verticillium wilt. Additionally, our study unveiled that IFST-221 has demonstrated significant plant growth-promoting properties, particularly in maize, cotton, tomato, and broccoli seedlings. This growth promotion was linked to its ability to produce indole-3-acetic acid, nitrogen fixation, phosphate and potassium solubilization, and biofilm formation in laboratory conditions. A complete genome sequencing of IFST-221 yielded a genome size of 3.858 M bp and a GC content of 46.71%. The genome analysis identified 3659 protein-coding genes, among which were nine secondary metabolite clusters with known antimicrobial properties. Additionally, three unknown compounds with potentially novel properties were also predicted from the genomic data. Genome mining also identified several key genes associated with plant growth regulation, colonization, and biofilm formation. These findings provide a compelling case for the application of B. velezensis IFST-221 in agricultural practices. The isolate's combined capabilities of plant growth promotion and antagonistic activity against common plant pathogens suggest its promise as an integrated biological agent in disease management and plant productivity enhancement.
Disciplines :
Microbiology
Author, co-author :
Liang, Xiaoyan ; Université de Liège - ULiège > TERRA Research Centre
Ishfaq, Shumila; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
Liu, Yang; School of Food Science and Engineering, Foshan University/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043)/Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, Guangdong 528231, China
Jijakli, Haissam ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Zhou, Xueping; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Yang, Xiuling; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address: yangxiuling@caas.cn
Guo, Wei; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China. Electronic address: iewguo@126.com
Language :
English
Title :
Identification and genomic insights into a strain of Bacillus velezensis with phytopathogen-inhibiting and plant growth-promoting properties.
NSCF - National Natural Science Foundation of China
Funding text :
This work was supported by the National Key Research and Development Program of China (2022YFE0139500, 2022YFD1400100), the National Natural Science Foundation of China (No. 32072377), Agricultural Science and Technology Innovation Program of Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS-ASTIP-G2022-IFST-01). We express our gratitude to Dr. Hailei Wei from the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, for providing valuable comments and suggestions.
Borriss, R., Chen, X.H., Rueckert, C., Blom, J., Becker, A., Baumgarth, B., Fan, B., Pukall, R., Schumann, P., Spröer, C., Junge, H., Vater, J., Pühler, A., Klenk, H.P., Relationship of Bacillus amyloliquefaciens clades associated with strains DSM7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int. J. Syst. Evol. Micr. 61:8 (2011), 1786–1801, 10.1099/ijs.0.023267-0.
Cantalapiedra, C.P., Hernández-Plaza, A., Letunic, I., Bork, P., Huerta-Cepas, J., eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38:12 (2021), 5825–5829, 10.1093/molbev/msab293.
Chen, Q., Hu, H., Gao, M., Xu, J., Zhou, Y., Sun, J., Screening and identification of a nitrogen-fixing bacteria with 1-aminocyclopropane-1-carboxylate deaminase activity. J. Plant Nutr. Fertil. 17:6 (2011), 1515–1521, 10.11674/zwyf.2011.1111.
Chen, X.H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W.R., Reva, O., Junge, H., Voigt, B., Jungblut, P.R., Vater, J., Süssmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G., Borriss, R., Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25:9 (2007), 1007–1014, 10.1038/nbt1325.
Chen, X.H., Vater, J., Piel, J., Franke, P., Scholz, R., Schneider, K., Koumoutsi, A., Hitzeroth, G., Grammel, N., Strittmatter, A.W., Gottschalk, G., Süssmuth, R.D., Borriss, R., Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB42. J. Bacteriol. 188:11 (2006), 4024–4036, 10.1128/JB.00052-06.
Chen, C., Wu, Y., Li, J., Wang, X., Zeng, Z., Xu, J., Liu, Y., Feng, J., Chen, H., He, Y., Xia, R., TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 16:11 (2023), 1733–1742, 10.1016/j.molp.2023.09.010.
Chen, Y., Yang, H., Shen, Z., Ye, J., Whole-genome sequencing and potassium-solubilizing mechanism of Bacillus aryabhattai SK1-7. Front Microbiol, 12, 2022, 722379, 10.3389/fmicb.2021.722379.
Cheng, W., Yan, X., Xiao, J., Chen, Y., Chen, M., Jin, J., Bai, Y., Wang, Q., Liao, Z., Chen, Q., Isolation, identification, and whole genome sequence analysis of the alginate-degrading bacterium Cobetia sp. cqz5-12. Sci. Rep., 10(1), 2020, 10920, 10.1038/s41598-020-67921-7.
Chowdhury, S.P., Hartmann, A., Gao, X., Borriss, R., Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front. Microbiol., 6, 2015, 780, 10.3389/fmicb.2015.00780.
Cochrane, S.A., Vederas, J.C., Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med. Res. Rev. 36:1 (2016), 4–31, 10.1002/med.21321.
Ding, Y., Ma, N., Haseeb, H.A., Dai, Z., Zhang, J., Guo, W., Genome-wide transcriptome analysis of toxigenic Fusarium verticillioides in response to variation of temperature and water activity on maize kernels. Int. J. Food Microbiol., 410, 2023, 110494, 10.1016/j.ijfoodmicro.2023.110494.
Dinolfo, M.I., Martínez, M., Castañares, E., Arata, A.F., Fusarium in maize during harvest and storage: a review of species involved, mycotoxins, and management strategies to reduce contamination. Eur. J. Plant Pathol., 26, 2022, 548, 10.3389/fmicb.2016.00548.
Dunlap, C.A., Kim, S.J., Kwon, S.W., Rooney, A.P., Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Micr. 66:3 (2016), 1212–1217, 10.1099/ijsem.0.000858.
Fan, B., Blom, J., Klenk, H.-P., Borriss, R., Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “Operational Group B. amyloliquefaciens” within the B. subtilis species complex. Front. Microbiol., 8, 2017, 22, 10.3389/fmicb.2017.00022.
Fierro-Coronado, R.A., Quiroz-Figueroa, F.R., García-Pérez, L.M., Ramírez-Chávez, E., Molina-Torres, J., Maldonado-Mendoza, I.E., IAA-producing rhizobacteria from chickpea (Cicer arietinum L.) induce changes in root architecture and increase root biomass. Can. J. Microbiol. 60:10 (2014), 639–648, 10.1139/cjm-2014-0399.
González-Estrada, R.R., Blancas-Benitez, F.J., Aguirre-Güitrón, L., Hernandez-Montiel, L.G., Moreno-Hernández, C., Cortés-Rivera, H.J., Herrera-González, J.A., Rayón-Díaz, E., Velázquez-Estrada, R.M., Santoyo-González, M.A., Gutierrez-Martinez, P., Chapter 5 - Alternative management technologies for postharvest disease control. in: Galanakis, C.M. (Eds.), Food losses, sustainable postharvest and food technologies, 2021, Academic Press, New York, 153–190.
Grigoreva, A., Andreeva, J., Bikmetov, D., Rusanova, A., Serebryakova, M., Garcia, A.H., Slonova, D., Nair, S.K., Lippens, G., Severinov, K., Dubiley, S., Identification and characterization of andalusicin: N-terminally dimethylated class III lantibiotic from Bacillus thuringiensis sv. andalousiensis. iScience, 24(5), 2021, 102480, 10.1016/j.isci.2021.102480.
Gundlach, J., Herzberg, C., Kaever, V., Gunka, K., Hoffmann, T., Weiß, M., Gibhardt, J., Thürmer, A., Hertel, D., Daniel, R., Bremer, E., Commichau, F.M., Stülke, J., Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis. Sci. Signal., 10(475), 2017, eaal3011, 10.1126/scisignal.aal3011.
Gupta, K., Dubey, N.K., Singh, S.P., Kheni, J.K., Gupta, S., Varshney, A., Plant Growth-Promoting Rhizobacteria (PGPR): Current and future prospects for crop improvement. Yadav, A.N., Singh, J., Singh, C., Yadav, N., (eds.) Current trends in microbial biotechnology for sustainable agriculture, 2021, Springer, Singapore, 203–226.
Gupta, M., Topgyal, T., Zahoor, A., Gupta, S., Chapter 15 - Rhizobium: Eco-friendly microbes for global food security. in: Kumar, A., Droby, S. (Eds.), Microbial management of plant stresses, 2021, Woodhead Publishing, Cambridgeshire, 221–233.
Harwood, C.R., Mouillon, J.-M., Pohl, S., Arnau, J., Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol. Rev. 42:6 (2018), 721–738, 10.1093/femsre/fuy028.
Haskett, T.L., Tkacz, A., Poole, P.S., Engineering rhizobacteria for sustainable agriculture. ISME J. 15 (2020), 949–964, 10.1038/s41396-020-00835-4.
Heifetz, C.L., Fisher, M.W., Chodubski, J.A., DeCarlo, M.O., Butirosin, a new aminoglycosidic antibiotic complex: antibacterial activity in vitro and in mice. Antimicrob. Agents Ch. 2:2 (1972), 89–94, 10.1128/AAC.2.2.89.
Keswani, C., Singh, S.P., Cueto, L., García-Estrada, C., Mezaache-Aichour, S., Glare, T.R., Borriss, R., Singh, S.P., Blázquez, M.A., Sansinenea, E., Auxins of microbial origin and their use in agriculture. Appl. Microbiol. Biotechnol. 104 (2020), 8549–8565, 10.1007/s00253-020-10890-8.
Kloepper, J.W., Leong, J., Teintze, M., Schroth, M.N., Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:5776 (1980), 885–886, 10.1038/286885a0.
Kujawa, M., 1994. Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins, in: International Agency for Research on Cancer (Eds.), IARC monographs on the evaluation of carcinogenic risks to humans. World Health Organization, Lyon, pp: 351-351.
Li, B., Li, Q., Xu, Z., Zhang, N., Shen, Q., Zhang, R., Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front. Microbiol., 5, 2014, 636, 10.3389/fmicb.2014.00636.
Li, L., Qu, Q., Cao, Z., Guo, Z., Jia, H., Liu, N., Wang, Y., Dong, J., The relationship analysis on corn stalk rot and ear rot according to Fusarium species and fumonisin contamination in kernels. Toxins, 11, 2019, 320, 10.3390/toxins11060320.
Liang, X., Zhang, X., Haseeb, H.A., Tang, T., Shan, J., Yin, B., Guo, W., Development and evaluation of a novel visual and rapid detection assay for toxigenic Fusarium graminearum in maize based on recombinase polymerase amplification and lateral flow analysis. Int. J. Food Microbiol., 372, 2022, 109682, 10.1016/j.ijfoodmicro.2022.109682.
Lin, F., Xue, Y., Huang, Z., Jiang, M., Lu, F., Bie, X., Miao, S., Lu, Z., Bacillomycin D inhibits growth of Rhizopus stolonifer and induces defense-related mechanism in cherry tomato. Appl. Microbiol. Biot. 103:18 (2019), 7663–7674, 10.1007/s00253-019-09991-w.
Ma, R., Zhang, A., Hui, X., Dai, M., Wang, W., Zhu, B., Screening, identification and sporulation conditions optimization of NX-11 strain having the ability of solubilizing phosphorus and potassium. Acta Agric. Boreal. -Sin. 28:2 (2013), 202–208 https://doi.org/10.3969/j.issn.1000-7091.2013.02.036.
Mongkolthanaruk, W., Classification of Bacillus beneficial substances related to plants, humans and animals. J. Microbiol. Biotechn. 22 (2012), 1597–1604, 10.4014/jmb.1204.04013.
Moreno-Letelier, A., Olmedo, G., Eguiarte, L.E., Martinez-Castilla, L., Souza, V., Parallel evolution and horizontal gene transfer of the pst operon in Firmicutes from oligotrophic environments. Int. J. Evol. Biol., 2011, 2011, 781642, 10.4061/2011/781642.
Nautiyal, C.S., An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:1 (1999), 265–270, 10.1111/j.1574-6968.1999.tb13383.x.
Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.L., Thonart, P., Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9:4 (2007), 1084–1090, 10.1111/j.1462-2920.2006.01202.x.
Pereira, P.C.G., Parente, C.E.T., Carvalho, G.O., Torres, J.P.M., Meire, R.O., Dorneles, P.R., Malm, O., A review on pesticides in flower production: A push to reduce human exposure and environmental contamination. Environ. Pollut., 289, 2021, 117817, 10.1016/j.envpol.2021.117817.
Ruiz-García, C., Béjar, V., Martínez-Checa, F., Llamas, I., Quesada, E., Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain. Int. J. Syst. Evol. Micr. 55:1 (2005), 191–195, 10.1099/ijs.0.63310-0.
Ryu, M.H., Zhang, J., Toth, T., Khokhani, D., Geddes, B.A., Mus, F., Garcia-Costas, A., Peters, J.W., Poole, P.S., Ané, J.M., Voigt, C.A., Control of nitrogen fixation in bacteria that associate with cereals. Nat. Microbiol. 5:2 (2020), 314–330, 10.1038/s41564-019-0631-2.
Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., Nelson, A., The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3:3 (2019), 430–439, 10.1038/s41559-018-0793-y.
Sritongon, N., Boonlue, S., Mongkolthanaruk, W., Jogloy, S., Riddech, N., The combination of multiple plant growth promotion and hydrolytic enzyme producing rhizobacteria and their effect on Jerusalem artichoke growth improvement. Sci. Rep., 13(1), 2023, 5917, 10.1038/s41598-023-33099-x.
Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Iqbal-Khan, M.S., Shahid, N., Aaliya, K., Bottlenecks in commercialisation and future prospects of PGPR. Appl. Soil Ecol. 121 (2017), 102–117, 10.1016/j.apsoil.2017.09.030.
Tanaka, H., Watanabe, T., Glucanases and chitinases of Bacillus circulans WL-12. J. Ind. Microbiol. Biot. 14:6 (1995), 478–483, 10.1007/BF01573962.
Torres, P., Altier, N., Beyhaut, E., Fresia, P., Garaycochea, S., Abreo, E., Phenotypic, genomic and in planta characterization of Bacillus sensu lato for their phosphorus biofertilization and plant growth promotion features in soybean. Microbiol Res, 280, 2023, 127566, 10.1016/j.micres.2023.
Tunsagool, P., Jutidamrongphan, W., Phaonakrop, N., Jaresitthikunchai, J., Roytrakul, S., Leelasuphakul, W., Insights into stress responses in mandarins triggered by Bacillus subtilis cyclic lipopeptides and exogenous plant hormones upon Penicillium digitatum infection. Plant Cell Rep. 38:5 (2019), 559–575, 10.1007/s00299-019-02386-1.
Wang, L., Lee, F., Tai, C., Kasai, H., Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. Int. J. Syst. Evol. Micr. 57:8 (2007), 1846–1850, 10.1099/ijs.0.64685-0.
Wang, L., Lee, F., Tai, C., Kuo, H., Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int. J. Syst. Evol. Micr. 58:3 (2008), 671–675, 10.1099/ijs.0.65191-0.
Wang, F., Xiao, J., Zhang, Y., Li, R., Liu, L., Deng, J., Biocontrol ability and action mechanism of Bacillus halotolerans against Botrytis cinerea causing grey mould in postharvest strawberry fruit. Postharvest Biol. Tec., 174, 2021, 111456, 10.1016/j.postharvbio.2020.111456.
Wang, L., Zhang, L., Liu, Z., Zhao, D., Liu, X., Zhang, B., Xie, J., Hong, Y., Li, P., Chen, S., Dixon, R., Li, J., A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genet, 9(10), 2013, e1003865, 10.1371/journal.pgen.1003865.
Wu, G., Liu, Y., Xu, Y., Zhang, G., Shen, Q., Zhang, R., Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways. Mol. Plant Microbe 31:5 (2018), 560–567, 10.1094/MPMI-11-17-0273-R.
Xu, L., Dong, Z., Fang, L., Luo, Y., Wei, Z., Guo, H., Zhang, G., Gu, Y.Q., Coleman-Derr, D., Xia, Q., Wang, Y., OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 47:1 (2019), 52–58, 10.1093/nar/gkz333.
Xu, Z., Shao, J., Li, B., Yan, X., Shen, Q., Zhang, R., Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl. Environ. Microb. 79:3 (2013), 808–815, 10.1128/AEM.02645-12.
Yamamoto, S., Harayama, S., PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol. 61:3 (1995), 1104–1109, 10.1128/aem.61.3.1104-1109.1995.
Yu, Y., Yan, F., Chen, Y., Jin, C., Guo, J.H., Chai, Y., Poly-γ-glutamic acids contribute to biofilm formation and plant root colonization in selected environmental isolates of Bacillus subtilis. Front. Microbiol., 7, 2016, 1811, 10.3389/fmicb.2016.01811.
Zawadzka, A.M., Kim, Y., Maltseva, N., Nichiporuk, R., Fan, Y., Joachimiak, A., Raymond, K.N., Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. Proc. Natl. Acad. Sci. U. S. A. 106:51 (2009), 21854–21859, 10.1073/pnas.0904793106.
Zhang, J., Cui, W., Haseeb, A.H., Guo, W., VdNop12, containing two tandem RRM domains, is a crucial factor for pathogenicity and cold adaption in Verticillium dahliae. Environ. Microbiol. 22:12 (2020), 5387–5401, 10.1111/1462-2920.15268.
Zhang, F., Tang, T., Li, F., Guo, W., Characterization of mating type, spore killing, and pathogenicity of Fusarium verticillioides populations from maize in China. Phytopathol. Res., 5, 2023, 40, 10.1186/s42483-023-00195-9.
Zhang, N., Yang, D., Wang, D., Miao, Y., Shao, J., Zhou, X., Xu, Z., Li, Q., Feng, H., Li, S., Shen, Q., Zhang, R., Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genom., 16(1), 2015, 685, 10.1186/s12864-015-1825-5.
Zhu, H., Feng, Z., Li, Z., Shi, Y., Zhao, L., Yang, J., Characterization of two fungal isolates from cotton and evaluation of their potential for biocontrol of Verticillium wilt of cotton. J. Phytopathol. 161:2 (2013), 70–77, 10.1111/jph.12027.