active layer monitoring; autonomous electrical resistivity tomography; open-source data processing tool; permafrost; Active Layer; Active layer monitoring; Autonomous electrical resistivity tomography; Electrical resistivity tomography; Low-costs; Monitoring network; Open source datum; Open-source data processing tool; Processing tools; Work-flows; Geophysics; Earth and Planetary Sciences (all)
Abstract :
[en] Permafrost is a widespread phenomenon in the cold regions of the globe and is under-represented in global monitoring networks. This study presents a novel low-cost, low-power, and robust Autonomous Electrical Resistivity Tomography (A-ERT) monitoring system and open-source processing tools for permafrost monitoring. The processing workflow incorporates diagnostic and filtering tools and utilizes open-source software, ResIPy, for data inversion. The workflow facilitates quick and efficient extraction of key information from large data sets. Field experiments conducted in Antarctica demonstrated the system's capability to operate in harsh and remote environments and provided high-temporal-resolution imaging of ground freezing and thawing dynamics. This data set and processing workflow allow for a detailed investigation of how meteorological conditions impact subsurface processes. The A-ERT setup can complement existing monitoring networks on permafrost and is suitable for continuous monitoring in polar and mountainous regions, contributing to cryosphere research and gaining deeper insights into permafrost and active layer dynamics.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Farzamian, M. ; Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal ; Centre for Geographical Studies, Associate Laboratory TERRA, IGOT, Universidade de Lisboa, Lisbon, Portugal
Blanchy, Guillaume ; Université de Liège - ULiège > Urban and Environmental Engineering
McLachlan, P. ; Aarhus University, Aarhus, Denmark
Vieira, G. ; Centre for Geographical Studies, Associate Laboratory TERRA, IGOT, Universidade de Lisboa, Lisbon, Portugal
Esteves, M.; Centre for Geographical Studies, Associate Laboratory TERRA, IGOT, Universidade de Lisboa, Lisbon, Portugal
de Pablo, M.A.; Universidad de Alcalá, Alcalá de Henares, Spain
Triantifilis, J.; Manaaki Whenua Landcare Research, Palmerston North, New Zealand
The research received logistical support from the Portuguese Polar Program (PROPOLAR-FCT) within the ANTERMON and PERMANTAR projects and the Spanish Polar Program within the PERMATHERMAL project. The University of Fribourg and the Centre of Geographical Studies, IGOT - University of Lisbon provided financial support to develop the A-ERT system. This work received funding from the Swiss Polar Institute (grant number TEG-2021-003) and the Fundação para a Ciência e a Tecnologia under the project THAWIMPACT (2022.06628.PTDC). We thank the Spanish Antarctic Station “Juan Carlos I,” and the BIO “Hespérides” personnel for logistical support and the continued support of the Spanish Polar Committee for the research on Livingston Island.The research received logistical support from the Portuguese Polar Program (PROPOLAR‐FCT) within the ANTERMON and PERMANTAR projects and the Spanish Polar Program within the PERMATHERMAL project. The University of Fribourg and the Centre of Geographical Studies, IGOT ‐ University of Lisbon provided financial support to develop the A‐ERT system. This work received funding from the Swiss Polar Institute (grant number TEG‐2021‐003) and the Fundação para a Ciência e a Tecnologia under the project THAWIMPACT (2022.06628.PTDC). We thank the Spanish Antarctic Station “Juan Carlos I,” and the BIO “Hespérides” personnel for logistical support and the continued support of the Spanish Polar Committee for the research on Livingston Island.
Binley, A. (2015). Tools and techniques: Electrical methods. In G. Schubert (Ed.), Treatise on geophysics (2nd ed., pp. 233–259). Elsevier. https://doi.org/10.1016/B978-0-444-53802-4.00192-5
Binley, A., Ramirez, A., & Daily, W. (1995). Regularised image reconstruction of noisy electrical resistance tomography data. In Proceedings of the 4th workshop of the European concerted action on process tomography (pp. 6–8).
Biskaborn, B. K., Lanckman, J. P., Lantuit, H., Elger, K., Streletskiy, D. A., Cable, W. L., & Romanovsky, V. E. (2015). The new database of the global terrestrial network for permafrost (GTN-P). Earth System Science Data, 7(2), 245–259. https://doi.org/10.5194/essd-7-245-2015
Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P., & Binley, A. (2020). ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling. Computers & Geosciences, 137, 104423. https://doi.org/10.1016/j.cageo.2020.104423
Brown, J., Nelson, F. E., & Hinkel, K. M. (2000). The circumpolar active layer monitoring (CALM) program research designs and initial results. Polar Geography, 3, 165–258.
Doetsch, J., Ingeman-Nielsen, T., Christiansen, A. V., Fiandaca, G., Auken, E., & Elberling, B. (2015). Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution. Cold Regions Science and Technology, 119, 16–28. https://doi.org/10.1016/j.coldregions.2015.07.002
Etzelmüller, B., Guglielmin, M., Hauck, C., Hilbich, C., Hoelzle, M., Isaksen, K., et al. (2020). Twenty years of European mountain permafrost dynamics-the PACE legacy. Environmental Research Letters, 15(10), 104070. https://doi.org/10.1088/1748-9326/abae9d
Farzamian, M., Blanchy, G., McLachlan, P., Vieira, G., Esteves, M., de Pablo, M. A., et al. (2023). Advancing permafrost monitoring with autonomous electrical resistivity tomography (A-ERT): Low-cost instrumentation and open-source data processing tool (v1.0.0) [Software]. Zenodo. https://doi.org/10.5281/zenodo.10183126
Farzamian, M., Vieira, G., Monteiro Santos, F. A., Yaghoobi Tabar, B., Hauck, C., Catarina Paz, M., et al. (2020). Detailed detection of active layer freeze-thaw dynamics using quasi-continuous electrical resistivity tomography (Deception Island, Antarctica). The Cryosphere, 14(3), 1105–1120. https://doi.org/10.5194/tc-14-1105-2020
Hauck, C. (2002). Frozen ground monitoring using DC resistivity tomography. Geophysical Research Letters, 29(21), 2016. https://doi.org/10.1029/2002GL014995
Hauck, C., Vieira, G., Gruber, S., Blanco, J. J., & Ramos, M. (2007). Geophysical identification of permafrost in Livingston Island, maritime Antarctica. Geophysical Research Letters, 112(F2), F02S19. https://doi.org/10.1029/2006JF000544
Herring, T., Lewkowicz, A. G., Hauck, C., Hilbich, C., Mollaret, C., Oldenborger, G. A., et al. (2023). Best practices for using electrical resistivity tomography to investigate permafrost. Permafrost and Periglacial Processes, 34(4), 494–512. https://doi.org/10.1002/ppp.2207
Hilbich, C., Fuss, C., & Hauck, C. (2011). Automated time-lapse ERT for improved process analysis and monitoring of frozen ground. Permafrost and Periglacial Processes, 22(4), 306–319. https://doi.org/10.1002/ppp.732
Hilbich, C., Hauck, C., Hoelzle, M., Scherler, M., Schudel, L., Völksch, I., et al. (2008). Monitoring mountain permafrost evolution using electrical resistivity tomography: A 7-year study of seasonal, annual, and long-term variations at Schilthorn, Swiss Alps. Journal of Geophysical Research, 113(1), 1–12. https://doi.org/10.1029/2007JF000799
Hilbich, C., Hauck, C., Mollaret, C., Wainstein, P., & Arenson, L. U. (2022). Towards accurate quantification of ice content in permafrost of the Central Andes—Part 1: Geophysics-based estimates from three different regions. The Cryosphere, 16(5), 1845–1872. https://doi.org/10.5194/tc-16-1845-2022
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., et al. (2019). High mountain areas. In H. O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, et al. (Eds.), The ocean and cryosphere in a changing climate, Intergovernmental panel on climate change (pp. 2-1–2-90). Retrieved from https://report.ipcc.ch/srocc/pdf/SROCC_FinalDraft_FullReport.pdf
Keuschnig, M., Krautblatter, M., Hartmeyer, I., Fuss, C., & Schrott, L. (2017). Automated electrical resistivity tomography testing for early warning in unstable permafrost rock walls around Alpine infrastructure. Permafrost and Periglacial Processes, 28(1), 158–171. https://doi.org/10.1002/ppp.1916
LaBrecque, D. J., & Yang, X. (2001). Difference inversion of ERT data: A fast inversion method for 3-D in situ monitoring. Journal of Environmental & Engineering Geophysics, 6(2), 83–89. https://doi.org/10.4133/jeeg6.2.83
Lesparre, N., Nguyen, F., Kemna, A., Robert, T., Hermans, T., Daoudi, M., & Flores-Orozco, A. (2017). A new approach for time-lapse data weighting in ERT. Geophysics, 1–35. https://doi.org/10.1190/geo2017-0024.1
Lewkowicz, A. G. (2008). Evaluation of miniature temperature-loggers to monitor snowpack evolution at mountain permafrost sites, northwestern Canada. Permafrost Periglac, 19(3), 323–331. https://doi.org/10.1002/ppp.625
McLachlan, P., Chambers, J., Uhlemann, S., & Binley, A. (2020). Electrical resistivity and induced polarization imaging of riverbed sediments: Observations from laboratory, field and synthetic experiments. Journal of Applied Geophysics, 183, 104173. https://doi.org/10.1016/j.jappgeo.2020.104173
Mewes, B., Hilbich, C., Delaloye, R., & Hauck, C. (2017). Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes. The Cryosphere, 11(6), 2957–2974. https://doi.org/10.5194/tc-11-2957-2017
Mollaret, C., Hilbich, C., Pellet, C., Flores-Orozco, A., Delaloye, R., & Hauck, C. (2019). Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites. The Cryosphere, 13(10), 2557–2578. https://doi.org/10.5194/tc-13-2557-2019
Oldenborger, G. A., & LeBlanc, A. M. (2018). Monitoring changes in unfrozen water content with electrical resistivity surveys in cold continuous permafrost. Geophysical Journal International, 215(2), 965–977. https://doi.org/10.1093/GJI/GGY321
Pimpirev, C., Stoykova, K., Ivanov, M., & Dimov, D. (2006). The sedimentary sequences of Hurd Peninsula, Livingston Island, South Shetland Islands: Part of the late Jurassic—Cretaceous depositional history of the Antarctic Peninsula. In D. K. Fütterer, D. Damaske, G. Kleinschmidt, H. Miller, & F. Tessensohn (Eds.), Antarctica. Springer. https://doi.org/10.1007/3-540-32934-X_30
Ramos, M., & Vieira, G. (2009). Ground surface Enthalpy balance based on borehole temperatures (Livingston Island, Maritime Antarctic). The Cryosphere, 3(1), 133–145. https://doi.org/10.5194/tc-3-133-2009
Ramos, M., Vieira, G., Blanco, J. J., Gruber, S., Hauck, C., Hidalgo, M. A., & Tome, D. (2008). Active layer temperature monitoring in two boreholes in Livingston Island, Maritime Antarctic: First results for 2000–2006. In D. L. Kane & K. M. Hinkel (Eds.), Ninth international conference on permafrost—Extended abstracts, June 29–July 3 (pp. 1463–1467). University of Alaska, Fair banks.
Ramos, M., Vieira, G., De Pablo, M. A., Molina, A., Abramov, A., & Goyanes, G. (2017). Recent shallowing of the thaw depth at crater lake, Deception Island, Antarctica (2006–2014). Catena, 149, 519–528. https://doi.org/10.1016/j.catena.2016.07.019
Ramos, M., Vieira, G., de Pablo, M. A., Molina, A., & Jimenez, J. J. (2020). Transition from a subaerial to a subnival permafrost temperature regime following increased snow cover (Livingston Island, Maritime Antarctica). Atmosphere, 11(12), 1332. https://doi.org/10.3390/atmos11121332
Ramos, M., Vieira, G., Gruber, S., Blanco, J. J., Hauck, C., Hidalgo, M. A., et al. (2008). Permafrost and active layer monitoring in the Maritime Antarctic: Preliminary results from CALM sites on Livingston and deception islands. U.S. Geological Survey and the National Academies. USGS OF-2007–1047, Short Research Paper 070. https://doi.org/10.3133/of2007-1047srp07
Scandroglio, R., Draebing, D., Offer, M., & Krautblatter, M. (2021). 4D quantification of alpine permafrost degradation in steep rock walls using a laboratory-calibrated electrical resistivity tomography approach. Near Surface Geophysics, 19(2), 241–260. https://doi.org/10.1002/nsg.12149
Shiklomanov, N. I., Nelson, F. E., Streletskiy, D. A., Hinkel, K. M., & Brown, J. (2008). The circumpolar active layer monitoring (CALM) program: Data collection, management, and dissemination strategies. In Proceedings of the 9th international conference on permafrost (Vol. 1, pp. 1647–1652). Institute of Northern Engineering, University of Alaska.
Supper, R., Ottowitz, D., Jochum, B., Römer, A., Pfeiler, S., Kauer, S., et al. (2014). Geoelectrical monitoring of frozen ground and permafrost in alpine areas: Field studies and considerations towards an improved measuring technology. Near Surface Geophysics, 12(1), 93–115. https://doi.org/10.3997/1873-0604.2013057
Tomaškovičová, S., & Ingeman-Nielsen, T. (2023). Quantification of freeze–thaw hysteresis of unfrozen water content and electrical resistivity from time lapse measurements in the active layer and permafrost. Permafrost and Periglacial Processes, 1, 19. https://doi.org/10.1002/ppp.2201
Tso, C.-H. M., Kuras, O., Wilkinson, P. B., Uhlemann, S., Chambers, J. E., Meldrum, P. I., et al. (2017). Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys. Journal of Applied Geophysics, 146, 103–119. https://doi.org/10.1016/j.jappgeo.2017.09.009
Uhlemann, S., Dafflon, B., Peterson, J., Ulrich, C., Shirley, I., Michail, S., & Hubbard, S. S. (2021). Geophysical monitoring shows that spatial heterogeneity in thermohydrological dynamics reshapes a transitional permafrost system. Geophysical Research Letters, 48(6), e2020GL091149. https://doi.org/10.1029/2020GL091149