[en] Abstract
Species’ traits and environmental conditions determine the abundance of tree species across the globe. The extent to which traits of dominant and rare tree species differ remains untested across a broad environmental range, limiting our understanding of how species traits and the environment shape forest functional composition. We use a global dataset of tree composition of >22,000 forest plots and 11 traits of 1663 tree species to ask how locally dominant and rare species differ in their trait values, and how these differences are driven by climatic gradients in temperature and water availability in forest biomes across the globe. We find three consistent trait differences between locally dominant and rare species across all biomes; dominant species are taller, have softer wood and higher loading on the multivariate stem strategy axis (related to narrow tracheids and thick bark). The difference between traits of dominant and rare species is more strongly driven by temperature compared to water availability, as temperature might affect a larger number of traits. Therefore, climate change driven global temperature rise may have a strong effect on trait differences between dominant and rare tree species and may lead to changes in species abundances and therefore strong community reassembly.
S. Fauset et al. Hyperdominance in Amazonian forest carbon cycling Nat. Commun. 6 1 9 10.1038/ncomms7857
J.P. Grime Benefits of plant diversity to ecosystems: immediate, filter and founder effects J. Ecol. 86 902 910 10.1046/j.1365-2745.1998.00306.x
Jain, M. et al. The importance of rare species: A trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecol. Evol. 4, 104–112 (2014).
Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. Mace G. M., editor. PLoS Biol. 11, e1001569 (2013).
J. HilleRisLambers P.B. Adler W.S. Harpole J.M. Levine M.M. Mayfield Rethinking community assembly through the lens of coexistence theory Annu. Rev. Ecol. Evol. Syst. 43 227 248 10.1146/annurev-ecolsys-110411-160411
J. Kutzbach et al. Climate and Biome simulations for the past 21,000 years Quat. Sci. Rev. 17 473 506 1998QSRv..17.473K 10.1016/S0277-3791(98)00009-2
F.I. Woodward M.R. Lomas C.K. Kelly Global climate and the distribution of plant biomes Philos. Trans. R. Soc. B: Biol. Sci. 359 1465 1476 1:STN:280:DC%2BD2crkvVKrtA%3D%3D 10.1098/rstb.2004.1525
M.U.F. Kirschbaum Forest growth and species distribution in a changing climate Tree Physiol. 20 309 322 12651447 10.1093/treephys/20.5-6.309
Woodward, F. I. Climate and plant distribution. Cambridge University Press. (1987).
J.S. Joswig et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation Nat. Ecol. Evol. 6 36 50 34949824 10.1038/s41559-021-01616-8
N. Kühn et al. Globally important plant functional traits for coping with climate change Front Biogeogr. 13 1 18 10.21425/F5FBG53774
N. Madani et al. Future global productivity will be affected by plant trait response to climate Sci. Rep. 8 2018NatSR..8.2870M 29434266 5809371 10.1038/s41598-018-21172-9 2870
Avolio, M. L. et al. Demystifying dominant species. N. Phytol. 223, 1106–1126 (2019).
H. Bruelheide et al. Global trait–environment relationships of plant communities Nat. Ecol. Evol. 2 1906 1917 30455437 10.1038/s41559-018-0699-8
Weiher, P., Keddy, E. Ecological assembly rules: perspectives, advances, retreats [Internet]. Cambridge University Press; 2001. Available from: https://books.google.co.in/books?hl=en&lr=&id=RIZDYJ0zKaAC&oi=fnd&pg=PR12&dq=Wilson,+J.+B.++(1999a).+Assembly+rules+in+plant+communities.+Ecological+Assembly+Rules:+Perspectives,+Advances,+Retreats+(eds+E.+Weiher+and+P.+A.+Keddy),+pp.+130%E2%80%93164.+Cambri&redir_esc=y#v=onepage&q&f=false.
Hulshof, C. M. et al. Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. de Bello F., editor. J. Veg. Sci.24, 921–931 (2013).
R.H. Whittaker Dominance and diversity in land plant communities Science 147 250 260 1965Sci..147.250W 1:STN:280:DC%2BC3cvgvFWkug%3D%3D 17788203 10.1126/science.147.3655.250
Violle, C. et al. Let the concept of trait be functional! Oikos [Internet]. 116, 882–892 (2007).
Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature. 529, 204–207 (2016).
M. Aiba T. Nakashizuka Architectural differences associated with adult stature and wood density in 30 temperate tree species Funct. Ecol. 23 265 273 10.1111/j.1365-2435.2008.01500.x
L. Poorter L. Bongers F. Bongers Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups Ecol. Soc. Am. 87 1289 1301
Wright, S. J. et al. Functional traits and the growth-mortality trade-off in tropical trees. Ecology. 91, 3664–3474 (2010).
Ü. Niinemets A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance Ecol. Res. 25 693 714 10.1007/s11284-010-0712-4
H. Poorter Ü. Niinemets L. Poorter I.J. Wright R. Villar Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis N. Phytol. 182 565 588 10.1111/j.1469-8137.2009.02830.x
A.T. Moles et al. Which is a better predictor of plant traits: Temperature or precipitation? J. Veg. Sci. 25 1167 1180 10.1111/jvs.12190
S.P. Harrison et al. Ecophysiological and bioclimatic foundations for a global plant functional classification J. Veg. Sci. 21 300 317 10.1111/j.1654-1103.2009.01144.x
Lambers, H., Chapin, F. S., Pons, T. L. Leaf Energy Budgets: Effects of Radiation and Temperature. In: Plant Physiological Ecology., 210–229. (1998).
F.W. Went The effect of temperature on plant growth Annu. Rev. Plant Physiol. 4 347 362 10.1146/annurev.pp.04.060153.002023
B.R. Murray A.H.D. Brown C.R. Dickman M.S. Crowther Geographical gradients in seed mass in relation to climate J. Biogeogr. 31 379 388 10.1046/j.0305-0270.2003.00993.x
Swenson, N. G., Enquist, B. J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 94, 451–459 (2007).
M.J. O’Brien et al. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones J. Appl. Ecol. 54 1669 1686 10.1111/1365-2664.12874
I.J. Wright P.B. Reich M. Westoby Least-cost input mixtures of water and nitrogen for photosynthesis Am. Nat. 161 98 111 12650465 10.1086/344920
A. Lintunen T. Hölttä M. Kulmala Anatomical regulation of ice nucleation and cavitation helps trees to survive freezing and drought stress Sci. Rep. 3 1:STN:280:DC%2BC3sjjslKhtA%3D%3D 23778457 3686780 10.1038/srep02031 2031
M. Pollastrini N. Puletti F. Selvi G. Iacopetti F. Bussotti Widespread crown defoliation after a drought and heat wave in the forests of Tuscany (Central Italy) and their recovery—a case study from summer 2017 Front Glob. Chang. 2 74 10.3389/ffgc.2019.00074
N.K. Ruehr A. Gast C. Weber B. Daub A. Arneth Water availability as dominant control of heat stress responses in two contrasting tree species Tree Physiol. 36 164 178 26491055
Magurran, A. E., Henderson, P. A. Explaining the excess of rare species in natural species abundance distributions. Nature. 422, 714–716 (2003).
L.E. Dee et al. When do ecosystem services depend on rare species? Trends Ecol. Evol. 34 746 758 31104954 10.1016/j.tree.2019.03.010
M. Hermy K. Verheyen Legacies of the past in the present-day forest biodiversity: A review of past land-use effects on forest plant species composition and diversity Ecol. Res. 22 361 371 10.1007/s11284-007-0354-3
A.C. Roosevelt The Amazon and the Anthropocene: 13,000 years of human influence in a tropical rainforest Anthropocene 4 69 87 10.1016/j.ancene.2014.05.001
J.J. Wiens The niche, biogeography and species interactions Philos. Trans. R. Soc. B: Biol. Sci. 366 2336 2350 10.1098/rstb.2011.0059
Hubbell, S. P., Foster, R. B. Commonness and rarity in a neotropical forest: implications for tropical tree conservation. In: Soulé ME (ed) Conservation biology. Sunderland: Sinauer asociates; 1986. p. 205–231.
Markham, J. Rare species occupy uncommon niches. Sci.4, 6012 (2014).
Maire, V. et al. Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytol. 196, 497–509. (2012).
Díaz, S. et al. The global spectrum of plant form and function. Nature. 529, 167–171 (2016).
D.S. Maynard et al. Global relationships in tree functional traits Nat. Commun. 13 2022NatCo.13.3185M 1:CAS:528:DC%2BB38XhsF2msLvO 35676261 9177664 10.1038/s41467-022-30888-2 3185
D.A. Coomes R.B. Allen Effects of size, competition and altitude on tree growth J. Ecol. 95 1084 1097 10.1111/j.1365-2745.2007.01280.x
W. Li et al. Human fingerprint on structural density of forests globally Nat. Sustain 6 368 379 10.1038/s41893-022-01020-5
N. Rüger et al. Successional shifts in tree demographic strategies in wet and dry Neotropical forests Glob. Ecol. Biogeogr. 32 1002 1014 10.1111/geb.13669
F.C. Draper et al. Amazon tree dominance across forest strata Nat. Ecol. Evol. 5 757 767 33795854 10.1038/s41559-021-01418-y
D.A. King S.J. Wright J.H. Connell The contribution of interspecific variation in maximum tree height to tropical and temperate diversity J. Trop. Ecol. 22 11 24 10.1017/S0266467405002774
Boyce, A. J., Shakya, S., Sheldon, F. H., Moyle, R. G., Martin, T. E. Biotic interactions are the dominant drivers of phylogenetic and functional structure in bird communities along a tropical elevational gradient. Auk. 136, ukz054 (2019).
Miller, E. T. et al. Fighting over food unites the birds of North America in a continental dominance hierarchy. Stephens D., editor. Behav. Ecol.28, 1454–1463 (2017).
M. Delgado-baquerizo et al. A Gobal Atlas of the dominant bacteria found in soil Science. 325 320 325 2018Sci..359.320D 10.1126/science.aap9516
F. Dalerum E.Z. Cameron K. Kunkel M.J. Somers Interactive effects of species richness and species traits on functional diversity and redundancy Theor. Ecol. 5 129 139 10.1007/s12080-010-0104-y
C.R. Fonseca G. Ganade Species functional redundancy, random extinctions and the stability of ecosystems J. Ecol. 89 118 125 10.1046/j.1365-2745.2001.00528.x
M.L. Monge-González N. Guerrero-Ramírez T. Krömer H. Kreft D. Craven Functional diversity and redundancy of tropical forests shift with elevation and forest-use intensity J. Appl. Ecol., Biodivers. Data J. 58 1827 1837 10.1111/1365-2664.13955
S. Zhang R. Zang D. Sheil Rare and common species contribute disproportionately to the functional variation within tropical forests J. Environ. Manag. 304 114332 10.1016/j.jenvman.2021.114332
P.B. Reich et al. The evolution of plant functional variation: Traits, spectra, and strategies Int. J. Plant Sci. 164 S143 S164 10.1086/374368
F. Valladares Ü. Niinemets Shade tolerance, a key plant feature of complex nature and consequences Annu. Rev. Ecol. Evol. Syst. 39 237 257 10.1146/annurev.ecolsys.39.110707.173506
S. Greenwood et al. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area Ecol. Lett. 20 539 553 28220612 10.1111/ele.12748
N. Legner S. Fleck C. Leuschner Within-canopy variation in photosynthetic capacity, SLA and foliar N in temperate broad-leaved trees with contrasting shade tolerance Trees - Struct. Funct. 28 263 280 1:CAS:528:DC%2BC2cXhsVCju78%3D 10.1007/s00468-013-0947-0
J.A. Ramírez-Valiente J. Cavender-Bares Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides) Tree Physiol. 37 889 901 28419347 10.1093/treephys/tpx040
L. Finér et al. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.) Plant Biosyst. 141 394 405 10.1080/11263500701625897
L. Loram-Lourenço et al. A structure shaped by fire, but also water: ecological consequences of the variability in bark properties across 31 species from the Brazilian Cerrado Front. Plant Sci. 10 1718 32038687 6987451 10.3389/fpls.2019.01718
S. Yang et al. Stem Trait Spectra underpin multiple functions of temperate tree species Front. Plant Sci. 13 769551 35310622 8930200 10.3389/fpls.2022.769551
I. Boulangeat S. Lavergne J. Van Es L. Garraud W. Thuiller Niche breadth, rarity and ecological characteristics within a regional flora spanning large environmental gradients J. Biogeogr. 39 204 214 10.1111/j.1365-2699.2011.02581.x
H. Cai F. Li G. Jin Forest strata-dependent effects of vegetation attributes and soil nutrients on decadal changes in aboveground net carbon stock in two temperate forests Catena 194 104776 1:CAS:528:DC%2BB3cXhtlyjtbzP 10.1016/j.catena.2020.104776
A. Crivellaro A. Piermattei J. Dolezal P. Dupree U. Büntgen Biogeographic implication of temperature-induced plant cell wall lignification Commun. Biol. 5 767 35906325 9338036 10.1038/s42003-022-03732-y
Y. Song L. Poorter A. Horsting S. Delzon F. Sterck Pit and tracheid anatomy explain hydraulic safety but not hydraulic efficiency of 28 conifer species J. Exp. Bot. 73 1033 1048 1:CAS:528:DC%2BB38XisFGltbbF 34626106 10.1093/jxb/erab449
I.J. Wright et al. The worldwide leaf economics spectrum Nature 428 821 827 2004Natur.428.821W 1:CAS:528:DC%2BD2cXjt1Crt74%3D 15103368 10.1038/nature02403
R.F. Adler G. Gu M. Sapiano J.J. Wang G.J. Huffman Global precipitation: means, variations and trends during the satellite era (1979–2014) Surv. Geophys. 38 1 21 10.1007/s10712-017-9416-4
J. Liang et al. Co-limitation towards lower latitudes shapes global forest diversity gradients Nat. Ecol. Evol. 6 1423 1437 35941205 10.1038/s41559-022-01831-x
D. Rind Latitudinal temperature gradients and climate change J. Geophys. Res Atmos. 103 5943 5971 1998JGR..103.5943R 10.1029/97JD03649
K. Yamahira D.O. Conover Intra- vs. interspecific latitudinal variation in growth: Adaptation to temperature or seasonality? Ecology 83 1252 1262 10.1890/0012-9658(2002)083[1252:IVILVI]2.0.CO;2
I. Brunner C. Herzog M.A. Dawes M. Arend C. Sperisen How tree roots respond to drought Front. Plant Sci. 6 547 26284083 4518277 10.3389/fpls.2015.00547
H. Poorter et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control N. Phytologist 193 30 50 1:CAS:528:DC%2BC38XitVKgtr0%3D 10.1111/j.1469-8137.2011.03952.x
C. Lamanna et al. Functional trait space and the latitudinal diversity gradient Proc. Natl Acad. Sci. 111 13745 13750 2014PNAS.11113745L 1:CAS:528:DC%2BC2cXhsFCitr7E 25225365 4183280 10.1073/pnas.1317722111
I. Hordijk et al. Evenness mediates the global relationship between forest productivity and richness J. Ecol. 111 1308 1326 10.1111/1365-2745.14098
I. Khaine et al. Species diversity, stand structure, and species distribution across a precipitation gradient in tropical forests in Myanmar Forests 8 282 10.3390/f8080282
J. Liang et al. Positive biodiversity-productivity relationship predominant in global forests Science 354 aaf8957 27738143 10.1126/science.aaf8957
M. Weemstra et al. The role of fine-root mass, specific root length and life span in tree performance: A whole-tree exploration Funct. Ecol. 34, 575 585 10.1111/1365-2435.13520
M.E. Olson T. Anfodillo S.M. Gleason K.A. McCulloh Tip-to-base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities N. Phytol. 229 1877 1893 1:CAS:528:DC%2BB3MXmtFSnsL8%3D 10.1111/nph.16961
R. Goorman A. Bartual S. Paula F. Ojeda Enhancement of photosynthesis in post-disturbance resprouts of two co-occurring Mediterranean Erica species Plant Ecol. 212 2023 2033 10.1007/s11258-011-9967-2
N. Bréda R. Huc A. Granier E. Dreyer Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences Ann. Sci. 63 625 644 10.1051/forest:2006042
M. Lohbeck L. Poorter M. Mart J. Rodriguez- Changing drivers of species dominance during tropical forest succession Funct. Ecol. 27 1052 1058 10.1111/1365-2435.12240
van Der Sande, M. T. et al. Tropical forest succession increases tree taxonomic and functional richness but decreases evenness. Glob. Ecol. Biogeogr. (2024).
Karadimou. E. K., Kallimanis, A. S., Tsiripidis, I., Dimopoulos, P. Functional diversity exhibits a diverse relationship with area, even a decreasing one. Sci. Rep. 6, 35420 (2016).
Poulter. B. et al. The global forest age dataset and its uncertainties (GFADv1.1). NASA National Aeronautics and Space Administration, PANGAEA. (2019).
Hordijk, I. et al. Dominance and rarity in tree communities across the globe: Patterns, predictors and threats. Glob. Ecol. Biogeogr. (2024).
Dinerstein, E. et al. An Ecoregion-Based approach to protecting half the terrestrial realm. Bioscience. 67, 534–545 (2017).
The Plant List. The Plant List (2013). Version 1.1. 2013 [cited 2019 Jan 1]. Available from: www.theplantlist.org/
GBIF Backbone Taxonomy. (2020) [cited 2020 Aug 3]. Available from: https://doi.org/10.15468/39omei
Bracken, M. E. S., Low, N. H. N. Realistic losses of rare species disproportionately impact higher trophic levels. Ecol. Lett.15, 461–467 (2012).
Gaston, K. Rarity, 13. Chapman & Hall; (1994).
Magurran, A. E. Measuring biological diversity. Blackwell Science Ltd. (2004).
Molina, N. Conservation of rare or little-known species: biological, social, and economic considerations. Island Press; (2013).
Roughgarden, J. J. D. Overview: the role of species interactions in community ecology. In: Diamond J. and Case T. J., eds Community Ecology. New York: Harper & Row Publishers. p. 333–343 (1986).
J.T. Stroud et al. Is a community still a community? Reviewing definitions of key terms in community ecology Ecol. Evol. 5 4757 4765 26640657 4662321 10.1002/ece3.1651
Bartelink, H. Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Ann des Sci For [Internet]. 54, 39–50 (1997).
Jonckheere. I., Muys. B., Coppin. P. Allometry and evaluation of in situ optical LAI determination in Scots pine: a case study in Belgium. Tree Physiol.25, 723–732 (2005).
A. Sumida T. Miyaura H. Torii Relationships of tree height and diameter at breast height revisited: Analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand Tree Physiol. 33 106 118 23303367 3556985 10.1093/treephys/tps127
Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).
Ordonez, A., Wright, I. J., Olff, H. Functional differences between native and alien species: a global-scale comparison. Funct. Ecol. 24, 1353–1361 (2010).
J. Chave et al. Towards a worldwide wood economics spectrum Ecol. Lett. 12 351 366 19243406 10.1111/j.1461-0248.2009.01285.x
Trabucco, A., Zomer, R. J. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database v2. CGIAR Consortium for Spatial Information(CGIAR-CSI). [Internet]. (2018). Available from: https://cgiarcsi.community
Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data. 4, 170122 (2017).
U. Grömping Relative importance for linear regression in R: The Package relaimpo J. Stat. Softw. 17 1 27 10.18637/jss.v017.i01
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2024).
Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 5–159 (2002).
H.C. Muller-Landau S.J. Wright O. Calderón R. Condit S.P. Hubbell Interspecific variation in primary seed dispersal in a tropical forest J. Ecol. 96 653 667 10.1111/j.1365-2745.2008.01399.x
Y. Fan G. Miguez-Macho E.G. Jobbágy R.B. Jackson C. Otero-Casal Hydrologic regulation of plant rooting depth Proc. Natl Acad. Sci. USA 114 10572 10577 2017PNAS.11410572F 1:CAS:528:DC%2BC2sXhsFajsbbJ 28923923 5635924 10.1073/pnas.1712381114
B.C. Nicoll B.A. Gardiner B. Rayner A.J. Peace Anchorage of coniferous trees in relation to species, soil type, and rooting depth Can. J. Res 36 1871 1883 10.1139/x06-072
M.T. Tyree J.S. Sperry Vulnerability of Xylem to cavitation and embolism Annu Rev. Plant Physiol. Plant Mol. Biol. 40 19 36 10.1146/annurev.pp.40.060189.000315
L. Markesteijn L. Poorter H. Paz L. Sack F. Bongers Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits Plant, Cell Environ. 34 137 148 20946587 10.1111/j.1365-3040.2010.02231.x
S.T. O’Brien S.P. Hubbell P. Spiro R. Condit R.B. Foster Diameter, height, crown, and age relationships in eight neotropical tree species Ecology 76 1926 1939 10.2307/1940724
J.A. Rosell Bark thickness across the angiosperms: More than just fire N. Phytol. 211 90 102 1:CAS:528:DC%2BC28XoslOqt7Y%3D 10.1111/nph.13889
J.A. Rosell S. Gleason R. Méndez-Alonzo Y. Chang M. Westoby Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity N. Phytol. 201 299 311 10.1111/nph.12541
W.J. Mattson Herbivory in Relation to Plant Nitrogen Content Annu Rev. Ecol. Syst. 11 199 161 10.1146/annurev.es.11.110180.001003
Güsewell, S. N: P ratios in terrestrial plants: variation and functional significance [Internet]. New Phytologist John Wiley & Sons, Ltd. p. 243–266. (2004). Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2004.01192.x
A.T. Moles M. Westoby Seedling survival and seed size: A synthesis of the literature J. Ecol. 92 372 383 10.1111/j.0022-0477.2004.00884.x