Frontiers in plant science-Metabolomics analysis reveals enhanced salt tolerance in maize through exogenous Valine-Threonine-Isoleucine-Aspartic acid application_compressed.pdf
exogenous; maize; metabolomics; salt stress; short peptide; Plant Science
Abstract :
[en] Salt stress is a well-known abiotic constraint that hampers crop productivity, affecting more than 424 million hectares of topsoil worldwide. Applying plant growth regulators externally has proven effective in enhancing crop resilience to salt stress. Previous metabolomics studies revealed an accumulation of Valine-Threonine-Isoleucine-Aspartic acid (VTID) in salt-stressed maize seedlings, suggesting its potential to assist maize adaptation to salt stress. To explore the effectiveness of VTID in enhancing salt tolerance in maize, 10 nM VTID was applied to salt-stressed maize seedlings. The results showed a remarkable 152.29% increase in plant height and a 122.40% increase in fresh weight compared to salt-stressed seedlings. Moreover, the addition of VTID enhanced the activity of antioxidant enzymes, specifically superoxide dismutase (SOD) and catalase (CAT), while reducing the level of malondialdehyde (MDA), a marker of oxidative stress. Additionally, VTID supplementation resulted in a significant increase in osmoregulatory substances such as proline. Metabolomic analysis revealed substantial changes in the metabolite profile of maize seedlings when treated with VTID during salt stress. Differential metabolites (DMs) analysis revealed that the identified DMs primarily belonged to lipids and lipid-like molecules. The receiver operating characteristic curve and linear regression analysis determined a correlation between isodolichantoside and the height of maize seedlings under salt-stress conditions. In conclusion, these findings validate that VTID effectively regulates tolerance in maize seedlings and offers valuable insights into the potential of short peptides for mitigating salt stress.
Disciplines :
Agriculture & agronomy
Author, co-author :
Wu, Kaihua ✱; North Minzu University, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan, China
Liang, Xiaoyan ✱; Université de Liège - ULiège > TERRA Research Centre ; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
Zhang, Xiu; North Minzu University, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan, China
Yang, Guoping; North Minzu University, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan, China
Wang, Huaxiao; North Minzu University, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan, China
Xia, Yining; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
Ishfaq, Shumila; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
Ji, Hongfei; North Minzu University, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan, China
Qi, Yuxi; North Minzu University, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan, China
Guo, Wei; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
✱ These authors have contributed equally to this work.
Language :
English
Title :
Metabolomics analysis reveals enhanced salt tolerance in maize through exogenous Valine-Threonine-Isoleucine-Aspartic acid application.
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. The authors declare financial support was received for the research, authorship, and/or publication of this article This research received financial support from the National Natural Science Foundation of China (32060424 and 32072377), the Ningxia Key Research and Development Plan (2023BCF01014), Science and Technology Leading Talents of Ningxia Hui Autonomous Region (2022GKLRLX06) and National Major Agricultural Science and Technology Project.
Achenbach H. Lottes M. Waibel R. Karikas G. A. Correa M. D. Gupta M. P. (1995). Alkaloids and other compounds from Psychotria correae. Phytochemistry 38, 1537–1545. doi: 10.1016/0031-9422(94)00823-C
Achenbach H. Lottes M. Waibel R. Karikas G. Gupta M. (1993). New alkaloids from the leaves of Cephaelis correae. Planta Med. 59, 619. doi: 10.1055/s-2006-959849
Ali B. Hayat S. Ahmad A. (2007). 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environ. Exp. Bot. 59, 217–223. doi: 10.1016/j.envexpbot.2005.12.002
Borges C. V. Orsi R. O. Maraschin M. Lima G. P. P. (2023). ““Chapter 27 - Oxidative stress in plants and the biochemical response mechanisms,”,” in Plant Stress Mitigators. Eds. Ghorbanpour M. Shahid M. A. (Academic Press, NewYork), 455–468.
Choudhary S. Wani K. I. Naeem M. Khan M. M. A. Aftab T. (2023). Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: polyamines and nitric oxide crosstalk. J. Plant Growth Regul. 42, 539–553. doi: 10.1007/s00344-022-10584-7
Cirillo V. Molisso D. Aprile A. M. Maggio A. Rao R. (2022). Systemin peptide application improves tomato salt stress tolerance and reveals common adaptation mechanisms to biotic and abiotic stress in plants. Environ. Exp. Bot. 199, 104865. doi: 10.1016/j.envexpbot.2022.104865
Colla G. Nardi S. Cardarelli M. Ertani A. Lucini L. Canaguier R. et al. (2015). Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 196, 28–38. doi: 10.1016/j.scienta.2015.08.037
del Mar Gómez-Ramos M. Rajski Ł. Heinzen H. Fernández-Alba A. R. (2015). Liquid chromatography Orbitrap mass spectrometry with simultaneous full scan and tandem MS/MS for highly selective pesticide residue analysis. Anal. Bioanal. Chem. 407, 6317–6326. doi: 10.1007/s00216-015-8709-z
Devnarain N. Crampton B. G. Chikwamba R. Becker J. V. W. O’Kennedy M. M. (2016). Physiological responses of selected African sorghum landraces to progressive water stress and re-watering. S. Afr. J. Bot. 103, 61–69. doi: 10.1016/j.sajb.2015.09.008
Food and Agriculture Organization. (2023). Global map of salt-affected soils (GSASmap). Available online at: https://www.fao.org/global-soil-partnership/gsasmap/en (Accessed December 5, 2023).
Gai Z. S. Wang Y. Ding Y. Q. Qian W. J. Qiu C. Xie H. et al. (2020). Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress. Sci. Rep. 10, 12275. doi: 10.1038/s41598-020-69080-1
Gill S. S. Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. doi: 10.1016/j.plaphy.2010.08.016
Guo Q. Liu L. Rupasinghe T. W. T. Roessner U. Barkla B. J. (2022). Salt stress alters membrane lipid content and lipid biosynthesis pathways in the plasma membrane and tonoplast. Plant Physiol. 189, 805–826. doi: 10.1093/plphys/kiac123
Hassani A. Azapagic A. Shokri N. (2021). Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 12, 6663. doi: 10.1038/s41467-021-26907-3
He M. Ren T. Jin Z. D. Deng L. Liu H. Cheng Y. et al. (2023). Precise analysis of potassium isotopic composition in plant materials by multi-collector inductively coupled plasma mass spectrometry. Spectrochim. Acta B 209, 106781. doi: 10.1016/j.sab.2023.106781
Hu Q. Zhao Y. Hu X. Qi J. Suo L. Pan Y. et al. (2022). Effect of saline land reclamation by constructing the “Raised Field -Shallow Trench” pattern on agroecosystems in Yellow River Delta. Agr. Water Manage. 261, 107345. doi: 10.1016/j.agwat.2021.107345
Jan R. Asaf S. Numan M. LubnaKim K.-M. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 11, 968. doi: 10.3390/agronomy11050968
Ji H. Yang G. Zhang X. Zhong Q. Qi Y. Wu K. et al. (2022). Regulation of salt tolerance in the roots of Zea mays by L-histidine through transcriptome analysis. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1049954
Jiang M. Chen S. Lu X. Guo H. Chen S. Yin X. et al. (2023). Integrating genomics and metabolomics for the targeted discovery of new cyclopeptides with antifungal activity from a marine-derived fungus Beauveria felina. J. Agric. Food Chem. 71, 9782–9795. doi: 10.1021/acs.jafc.3c02415
Khan Z. Jan R. Asif S. Farooq M. Jang Y. H. Kim E. G. et al. (2024). Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system. Sci. Rep. 14, 1214. doi: 10.1038/s41598-024-51369-0
Khan A. Zhao X. Q. Tariq Javed M. Khan K. S. Bano A. Shen R. F. et al. (2016). Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ. Exp. Bot. 124, 120–129. doi: 10.1016/j.envexpbot.2015.12.011
Kim D. W. Shibato J. Agrawal G. K. Fujihara S. Iwahashi H. Kim D. H. et al. (2007). Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). Mol. Cells 24, 45–59. doi: 10.1016/S1016-8478(23)10755-2
Kohli S. K. Bali S. Tejpal R. Bhalla V. Verma V. Bhardwaj R. et al. (2019). In-situ localization and biochemical analysis of bio-molecules reveals Pb-stress amelioration in Brassica juncea L. by co-application of 24-epibrassinolide and salicylic acid. Sci. Rep. 9, 3524. doi: 10.1038/s41598-019-39712-2
Kong W. Liu F. Zhang C. Zhang J. Feng H. (2016). Non-destructive determination of malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging. Sci. Rep. 6, 35393. doi: 10.1038/srep35393
Kumari S. Nazir F. Jain K. Khan K. M. I. (2023). GABA and potassium modulates defence systems, assimilation of nitrogen and carbon, and yield traits under salt stress in wheat. J. Plant Growth Regul. 42, 6721–6740. doi: 10.1007/s00344-023-10992-3
Lei P. Pang X. Feng X. Li S. Chi B. Wang R. et al. (2017). The microbe-secreted isopeptide poly-γ-glutamic acid induces stress tolerance in Brassica napus L. seedlings by activating crosstalk between H2O2 and Ca2+. Sci. Rep. 7, 41618. doi: 10.1038/srep41618
Li S. Jin H. Zhang Q. (2016). The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in zoysiagrass (zoysia japonica steud) subjected to short-term salinity stress. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.01221
Liu Y. Pan J. Ni S. Xing B. Cheng K. Peng X. (2022). Transcriptome and metabonomics combined analysis revealed the defense mechanism involved in hydrogen-rich water-regulated cold stress response of Tetrastigma hemsleyanum. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.889726
Lodeyro A. F. Giró M. Poli H. O. Bettucci G. Cortadi A. Ferri A. M. et al. (2016). Suppression of reactive oxygen species accumulation in chloroplasts prevents leaf damage but not growth arrest in salt-stressed tobacco plants. PloS One 11, e0159588. doi: 10.1371/journal.pone.0159588
Matsuura H. N. Porto D. D. Fett-Neto A. G. (2013). ““Bioactive alkaloids from south american Psychotria and related rubiaceae,”,” in Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes. Eds. Ramawat K. G. Mérillon J.-M. (Springer, Berlin), 119–147.
Matsuura H. N. Rau M. R. Fett-Neto A. G. (2014). Oxidative stress and production of bioactive monoterpene indole alkaloids: biotechnological implications. Biotechnol. Lett. 36, 191–200. doi: 10.1007/s10529-013-1348-6
Mo X. Zhou M. Li Y. Yu L. Bai H. Shen P. et al. (2023). Safety assessment of a novel marine multi-stress-tolerant yeast Meyerozyma guilliermondii GXDK6 according to phenotype and whole genome-sequencing analysis. Food Sci. Hum. Well. 13. doi: 10.26599/FSHW.2022.9250170
Muchate N. S. Nikalje G. C. Rajurkar N. S. Suprasanna P. Nikam T. D. (2016). Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot. Rev. 82, 371–406. doi: 10.1007/s12229-016-9173-y
Noreen Z. Ashraf M. (2009). Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J. Plant Physiol. 166, 1764–1774. doi: 10.1016/j.jplph.2009.05.005
Omoto E. Iwasaki Y. Miyake H. Taniguchi M. (2016). Salinity induces membrane structure and lipid changes in maize mesophyll and bundle sheath chloroplasts. Physiol. Plant 157, 13–23. doi: 10.1111/ppl.12404
Pandey D. S. Patel M. Mishra A. Jha B. (2015). Physio-biochemical composition and untargeted metabolomics of cumin (Cuminum cyminum L.) make it promising functional food and help in mitigating salinity stress. PloS One 10, e0144469. doi: 10.1371/journal.pone.0144469
Punia H. Tokas J. Malik A. Bajguz A. El-Sheikh M. A. Ahmad P. (2021). Ascorbate-glutathione oxidant scavengers, metabolome analysis and adaptation mechanisms of ion exclusion in sorghum under salt stress. Int. J. Mol. Sci. 22, 13249. doi: 10.3390/ijms222413249
Qin X. Zhang K. Fan Y. Fang H. Nie Y. Wu X. (2022). The bacterial MtrAB two-component system regulates the cell wall homeostasis responding to environmental alkaline stress. Microbiol. Spectr. 10, e02311–e02322. doi: 10.1128/spectrum.02311-22
Ren Y. Yu G. Shi C. Liu L. Guo Q. Han C. et al. (2022). Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses. iMeta 1, e12. doi: 10.1002/imt2.12
Ru C. Hu X. Chen D. Wang W. Zhen J. (2023). Photosynthetic, antioxidant activities, and osmoregulatory responses in winter wheat differ during the stress and recovery periods under heat, drought, and combined stress. Plant Sci. 327, 111557. doi: 10.1016/j.plantsci.2022.111557
Ryu H. Cho Y.-G. (2015). Plant hormones in salt stress tolerance. J. Plant Biol. 58, 147–155. doi: 10.1007/s12374-015-0103-z
Sharma I. Ching E. Saini S. Bhardwaj R. Pati P. K. (2013). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol. Biochem. 69, 17–26. doi: 10.1016/j.plaphy.2013.04.013
Tian H. Fan G. Xiong X. Wang H. Zhang S. Geng G. (2024). Characterization and transformation of the CabHLH18 gene from hot pepper to enhance waterlogging tolerance. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1285198
Wang H. (2020). Studies on the growth promotion of maize induced by Bacillus amyloliquefaciens YM6 under salt stress and its mechanisms of salt-tolerance. North Minzu University, Ningxia (China.
Wang Y. Gu W. Meng Y. Xie T. Li L. Li J. et al. (2017). γ-aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving photosynthesis and upregulating osmoprotectants and antioxidants. Sci. Rep. 7, 43609. doi: 10.1038/srep43609
Wei X. Gao C. Chang C. Tang Z. Li D. (2023). Metabonomics reveals the mechanism of trehalose protecting Catharanthus roseus against low-temperature. J. Plant Growth Regul. 42, 3730–3742. doi: 10.1007/s00344-022-10833-9
Xia J. Broadhurst D. I. Wilson M. Wishart D. S. (2013). Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 9, 280–299. doi: 10.1007/s11306-012-0482-9
Xia X. J. Gao C. J. Song L. X. Zhou Y. H. Shi K. Yu J. Q. (2014). Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. Plant Cell Environ. 37, 2036–2050. doi: 10.1111/pce.12275
Xiao Q. Mu X. Liu J. Li B. Liu H. Zhang B. et al. (2022). Plant metabolomics: a new strategy and tool for quality evaluation of Chinese medicinal materials. Chin. Med. 17, 45. doi: 10.1186/s13020-022-00601-y
Xiao F. Zhou H. (2023). Plant salt response: Perception, signaling, and tolerance. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1053699
Xiong Q. Zhang J. Sun C. Wang R. Wei H. He H. et al. (2023). Metabolomics revealed metabolite biomarkers of antioxidant properties and flavonoid metabolite accumulation in purple rice after grain filling. Food Chem. X 18, 100720. doi: 10.1016/j.fochx.2023.100720
Xue Y. Bai X. Zhao C. Tan Q. Li Y. Yun L. et al. (2023). Spring photosynthetic phenology of Chinese vegetation in response to climate change and its impact on net primary productivity. Agr. For. Meteorol. 342, 109734. doi: 10.1016/j.agrformet.2023.109734
Yang Y. Guo Y. (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 217, 523–539. doi: 10.1111/nph.14920
Yi J. Li H. Zhao Y. Shao M. Zhang H. Liu M. (2022). Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region. Agr. Water Manage. 265, 107543. doi: 10.1016/j.agwat.2022.107543
Yu Z. Xu Y. Zhu L. Zhang L. Liu L. Zhang D. et al. (2020). The Brassicaceae-specific secreted peptides, STMPs, function in plant growth and pathogen defense. J. Integr. Plant Biol. 62, 403–420. doi: 10.1111/jipb.12817
Zhang H. Sun X. Dai M. (2021). Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. Plant Commun. 3, 100228. doi: 10.1016/j.xplc.2021.100228
Zhao K.-F. Song J. Fan H. Zhou S. Zhao M. (2010). Growth response to ionic and osmotic stress of nacl in salt-tolerant and salt-sensitive maize. J. Integr. Plant Biol. 52, 468–475. doi: 10.1111/j.1744-7909.2010.00947.x
Zhao S. Zhang Q. Liu M. Zhou H. Ma C. Wang P. (2021). Regulation of plant responses to salt stress. Int. J. Mol. Sci. 22, 4609. doi: 10.3390/ijms22094609
Zheng T. Zeng H. T. Sun B. Y. Liu S. M. (2023). Multi-environment evaluations across ecological regions reveal climate and soil effects on amides contents in Chinese prickly ash peels (Zanthoxylum bungeanum Maxim.). BMC Plant Biol. 23, 313. doi: 10.1186/s12870-023-04328-2