native bees; pollen sources; barcode; gene; plant species
Abstract :
[en] Identifying the main species of plants from where Ecuadorian stingless bees collect pollen is one of the key objectives of management and conservation improvement for these insects. This study aims to determine the botanical origin of pot-pollen using two barcodes, comparing two methodologies (DNA barcoding versus electron microscopy and morphometric tools) and determine the genus and species of pollen source plants of the main honey-producing stingless bees in Ecuador. As main results, Prockia crucis, Coffea canephora, Miconia nervosa, Miconia notabilis, Laurus nobilis, Cecropia ficifolia, Theobroma sp., Artocarpus sp., Croton sp., Euphorbia sp., Mikania sp., and Ophryosporus sp., were the genera and species with the highest presence in the nests (n = 35) of three genera of stingless bees of two provinces located in different climatic regions inside the continental Ecuador. Plant species richness in both areas was statistically similar (p-value = 0.21). We concluded that floral sources' molecular identification with the ITS2 region had a higher number of genera and species detected, than the rbcL gene and microscopy tools, for the Ecuadorian landscapes. We confirmed that the foraging behavior of Melipona sp., Scaptotrigona sp., and Tetragonisca sp., could include non-native flora (27%, 12/44 identifications) that provide a rich source of pollen. Stingless beekeepers could use this information to create flower calendars and establish a schedule for better management of stingless bees in secondary and modified environments.
Disciplines :
Biotechnology
Author, co-author :
Ocaña Cabrera, Joseline ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH)
Martin-Solano, Sarah; Departamento de Ciencias de la Vida y de la Agricultura, Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
Ron-Román, Jorge; Departamento de Ciencias de la Vida y de la Agricultura, Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Agropecuaria, Universidad de las Fuerzas Armadas ESPE, Campus Politécnico Hacienda el Prado Selva Alegre, Sangolquí, Ecuador
Rivas, Jose; Department of Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège (Sart-Tilman), Belgium
Garigliany, Mutien-Marie ; Université de Liège - ULiège > Département de morphologie et pathologie (DMP) > Pathologie générale et autopsies
Saegerman, Claude ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Epidémiologie et analyse des risques appliqués aux sciences vétérinaires
Language :
English
Title :
Pot-pollen DNA barcoding as a tool to determine the diversity of plant species visited by Ecuadorian stingless bees.
Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, et al. Safeguarding pollinators and their values to human well-being. Nature. 2016;540(7632):220–9. https://doi.org/10.1038/nature20588 PMID: 27894123
Sabino W, Costa L, Andrade T, Teixeira J, Araújo G, Acosta AL, et al. Status and trends of pollination services in Amazon agroforestry systems. Agr Ecosyst Environ. 2022;335:108012.
Bawa KS. Plant-pollinator interactions in tropical rain forests. Annu Rev Ecol Evol Syst. 1990;21:399–422.
Borges RC, Brito RM, Imperatriz-Fonseca VL, Giannini TC. The value of crop production and pollination services in the eastern Amazon. Neotrop Entomol. 2020;49(4):545–56.
George TL, Zack S. Spatial and temporal considerations in restoring habitat for wildlife. Restor Ecol. 2001;9(3):272–9.
Anderson EK, Zerriffi H. Seeing the trees for the carbon: agroforestry for development and carbon mitigation. Climatic Change. 2012;115(3–4):741–57. https://doi.org/10.1007/s10584-012-0456-y
Brown AHD, Hodgkin T. Indicators of genetic diversity, genetic erosion, and genetic vulnerability for plant genetic resources. In: Ahuja MR, Jain SM, editors. Genetic Diversity and Erosion in Plants: Indicators and Prevention [Internet]. Cham: Springer International Publishing; 2015. p. 25–53. [cited 2025 Mar 25]. Available from: https://doi.org/10.1007/978-3-319-25637-5_2
Zattara EE, Aizen MA. Worldwide occurrence records suggest a global decline in bee species richness. One Earth. 2021;4(1):114–23. https://doi.org/10.1016/j.oneear.2020.12.005
Nath R, Singh H, Mukherjee S. Insect pollinators decline: an emerging concern of Anthropocene epoch. J Apic Res. 2023;62(1):23–38.
de Morais CR, Travençolo BAN, Carvalho SM, Beletti ME, Vieira Santos VS, Campos CF, et al. Ecotoxicological effects of the insecticide fipronil in Brazilian native stingless bees Melipona scutellaris (Apidae: Meliponini). Chemosphere. 2018;206:632–42.
Padilha AC, Piovesan B, Morais MC, de B. Pazini J, Zotti MJ, Botton M, et al. Toxicity of insecticides on neotropical stingless bees Plebeia emerina (Friese) and Tetragonisca fiebrigi (Schwarz) (Hymenoptera: Apidae: Meliponini). Ecotoxicology. 2020;29(1):119–28.
Piovesan B, Padilha AC, Morais MC, Botton M, Grützmacher AD, Zotti MJ. Effects of insecticides used in strawberries on stingless bees Melipona quadrifasciata and Tetragonisca fiebrigi (Hymenoptera: Apidae). Environ Sci Pollut Res Int. 2020;27(34):42472–80. https://doi.org/10.1007/s11356-020-10191-7 PMID: 32705562
Williams IH. The convention on biological diversity adopts the international pollinator initiative. Bee World. 2003;84(1):27–31.
Dar SA, Farook UB, Javeed K, Mir SH, Yaqoob M, Showkat A, et al. Pesticide legislation, national and international policies to maintain sustainable crop production through insect pollinator intervention. Int J Chem Stud. 2020;8(6):34–41.
Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science. 2006;313(5785):351–4. https://doi.org/10.1126/science.1127863 PMID: 16857940
Paz FS, Pinto CE, de Brito RM, Imperatriz-Fonseca VL, Giannini TC. Edible fruit plant species in the amazon forest rely mostly on bees and beetles as pollinators. J Econ Entomol. 2021;114(2):710–22. https://doi.org/10.1093/jee/toaa284 PMID: 33440000
Schilthuizen M, Kellermann V. Contemporary climate change and terrestrial invertebrates: evolutionary versus plastic changes. Evol Appl. 2014;7(1):56–67. https://doi.org/10.1111/eva.12116 PMID: 24454548
Everatt MJ, Convey P, Bale JS, Worland MR, Hayward SAL. Responses of invertebrates to temperature and water stress: a polar perspective. J Therm Biol. 2015;54:118–32.
Bueno FGB, Kendall L, Alves DA, Tamara ML, Heard T, Latty T, et al. Stingless bee floral visitation in the global tropics and subtropics. Glob Ecol Conserv. 2023;43:e02454.
Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? Oikos. 2011;120(3):321–6. https://doi.org/10.1111/j.1600-0706.2010.18644.x
Abrahamczyk S, Kluge J, Gareca Y, Reichle S, Kessler M. The influence of climatic seasonality on the diversity of different tropical pollinator groups. PLoS One. 2011;6(11):e27115. https://doi.org/10.1371/journal.pone.0027115 PMID: 22073268
Gaona FP, Guerrero A, Gusmán E, Espinosa CI. Pollen resources used by two species of stingless bees (Meliponini) in a tropical dry forest of southern Ecuador. J Insect Sci. 2019;19(6):22. https://doi.org/10.1093/jisesa/iez125 PMID: 31853551
Martins AC, Proença CEB, Vasconcelos TNC, Aguiar AJC, Farinasso HC, de Lima ATF, et al. Contrasting patterns of foraging behavior in neotropical stingless bees using pollen and honey metabarcoding. Sci Rep. 2023;13(1):14474.
Slaa EJ, Sánchez Chaves LA, Malagodi-Braga KS, Hofstede FE. Stingless bees in applied pollination: practice and perspectives. Apidologie. 2006;37(2):293–315. https://doi.org/10.1051/apido:2006022
FAO, IZSLT, Apimondia, CAAS. Good beekeeping practices for sustainable apiculture [Internet]. Vol. 25. Roma: FAO Animal Production and Health Guidelines; 2021. [cited 2022 Sep 25]. Available from: http://www.fao.org/documents/card/en/c/cb5353en.
Roubik D, Aluja M. Flight ranges of Melipona and Trigona in tropical forest. J Kans Entomol Soc. 1983;56(2):217–22.
Rader R, Reilly J, Bartomeus I, Winfree R. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Glob Chang Biol. 2013;19(10):3103–10. https://doi.org/10.1111/gcb.12264 PMID: 23704044
Kellermann V, Overgaard J, Hoffmann AA, Fløjgaard C, Svenning JC, Loeschcke V. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc Natl Acad Sci U S A. 2012;109(40):16228–33.
Li X, Ma W, Jiang Y. Honeybees (Hymenoptera: Apidae) adapt to the shock of high temperature and high humidity through changes in sugars and polyols and free amino acids. J Insect Sci. 2023;23(1):4. https://doi.org/10.1093/jisesa/iead002 PMID: 36695003
Ma C-S, Ma G, Pincebourde S. Survive a warming climate: insect responses to extreme high temperatures. Annu Rev Entomol. 2021;66:163–84. https://doi.org/10.1146/annurev-ento-041520-074454 PMID: 32870704
Vanbergen AJ. Initiative the IP. Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ. 2013;11(5):251–9.
Giannini TC, Alves DA, Alves R, Cordeiro GD, Campbell AJ, Awade M, et al. Unveiling the contribution of bee pollinators to Brazilian crops with implications for bee management. Apidologie. 2020;51(3):406–21. https://doi.org/10.1007/s13592-019-00727-3
Ocaña-Cabrera JS, Liria J, Vizuete K, Cholota-Iza C, Espinoza-Zurita F, Saegerman C, et al. Pollen preferences of stingless bees in the Amazon region and southern highlands of Ecuador by scanning electron microscopy and morphometry. PLoS One. 2022;17(9):e0272580. https://doi.org/10.1371/journal.pone.0272580 PMID: 36126058
Silva MDE, Ramalho M, Monteiro D. Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest. Apidologie. 2013;44(6):699–707. https://doi.org/10.1007/s13592-013-0218-5
Dell’Anna R, Cristofori A, Gottardini E, Monti F. A critical presentation of innovative techniques for automated pollen identification in aerobiological monitoring networks. In: Kaiser B, editor. Pollen, structure, types and effects. NOVA; 2010. p. 21.
Pospiech M, Javůrková Z, Hrabec P, Štarha P, Ljasovská S, Bednář J, et al. Identification of pollen taxa by different microscopy techniques. PLoS One. 2021;16(9):e0256808. https://doi.org/10.1371/journal.pone.0256808 PMID: 34469471
Pappas CS, Tarantilis PA, Harizanis PC, Polissiou MG. New method for pollen identification by FT-IR spectroscopy. Appl Spectrosc. 2003;57(1):23–7.
Zimmermann B. Characterization of pollen by vibrational spectroscopy. Appl Spectrosc. 2010;64(12):1364–73. https://doi.org/10.1366/000370210793561664 PMID: 21144154
Daood A, Ribeiro E, Bush M. Pollen grain recognition using deep learning. In: Bebis G, Boyle R, Parvin B, Koracin D, Porikli F, Skaff S, et al., editors. Advances in visual computing. Cham: Springer International Publishing; 2016. p. 321–30.
Peel N, Dicks LV, Clark MD, Heavens D, Percival‐Alwyn L, Cooper C, et al. Semi‐quantitative characterisation of mixed pollen samples using MinION sequencing and Reverse Metagenomics (RevMet). Methods Ecol Evol. 2019;10(10):1690–701. https://doi.org/10.1111/2041-210x.13265
Parducci L, Alsos IG, Unneberg P, Pedersen MW, Han L, Lammers Y, et al. Shotgun environmental DNA, Pollen, and Macrofossil analysis of late-glacial lake sediments from southern Sweden. Front Ecol Evol. 2019;7. https://doi.org/10.3389/fevo.2019.00189
Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc Biol Sci. 2003;270(1512):313–21.
Ford C, Ayres K, Toomey N, Hider N, Van Alphen Stahl J, Kelly LJ, et al. Selection of candidate coding DNA barcoding regions for use on land plants. Bot J Linn. 2009;159(1):1–11.
Yao H, Song J, Liu C, Luo K, Han J, Li Y, et al. Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS One. 2010;5(10):e13102. https://doi.org/10.1371/journal.pone.0013102 PMID: 20957043
Zhao L, Feng S, Tian J, Wei A, Yang T. Internal transcribed spacer 2 (ITS2) barcodes: a useful tool for identifying Chinese Zanthoxylum. Appl Plant Sci. 2018;6(6):e01157.
Zhang N, Zeng L, Shan H, Ma H. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. New Phytol. 2012;195(4):923–37. https://doi.org/10.1111/j.1469-8137.2012.04212.x PMID: 22783877
Zhang G-J, Dong R, Lan L-N, Li S-F, Gao W-J, Niu H-X. nuclear integrants of organellar DNA contribute to genome structure and evolution in plants. Int J Mol Sci. 2020;21(3):707. https://doi.org/10.3390/ijms21030707 PMID: 31973163
Kuzmin E, Taylor JS, Boone C. Retention of duplicated genes in evolution. Trends Genet. 2022;38(1):59–72. https://doi.org/10.1016/j.tig.2021.06.016 PMID: 34294428
Sullivan AR, Schiffthaler B, Thompson SL, Street NR, Wang XR. Interspecific plastome recombination reflects ancient reticulate evolution in Picea (Pinaceae). MBE. 2017;34(7):1689–701.
Loiseau O, Mota Machado T, Paris M, Koubínová D, Dexter KG, Versieux LM, et al. Genome skimming reveals widespread hybridization in a neotropical flowering plant radiation. Front Ecol Evol. 2021;9.
Newmaster SG, Fazekas AJ, Ragupathy S. DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach. Can J Bot. 2006;84(3):335–41.
Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One. 2007;2(6):e508. https://doi.org/10.1371/journal.pone.0000508 PMID: 17551588
Nurhasanah S, Sundari, Papuangan N. Amplification and analysis of rbcL gene (Ribulose-1,5-Bisphosphate Carboxylase) of clove in Ternate Island. IOP Conf Ser: Earth Environ Sci. 2019;276(1):012061.
Wattoo JI, Saleem MZ, Shahzad MS, Arif A, Hameed A, Saleem MA. DNA barcoding: amplification and sequence analysis of rbcl and matK genome regions in three divergent plant species. Adv Life Sci. 2016;4(1):03–7.
Vasconcelos S, Nunes GL, Dias MC, Lorena J, Oliveira RRM, Lima TGL, et al. Unraveling the plant diversity of the Amazonian canga through DNA barcoding. Ecol Evol. 2021;11(19):13348–62. https://doi.org/10.1002/ece3.8057 PMID: 34646474
Dong W, Cheng T, Li C, Xu C, Long P, Chen C, et al. Discriminating plants using the DNA barcode rbcLb: an appraisal based on a large data set. Mol Ecol Resour. 2014;14(2):336–43. https://doi.org/10.1111/1755-0998.12185 PMID: 24119263
Maloukh L, Kumarappan A, Jarrar M, Salehi J, El-wakil H, Rajya Lakshmi TV. Discriminatory power of rbcL barcode locus for authentication of some of United Arab Emirates (UAE) native plants. 3 Biotech. 2017;7(2):144.
Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One. 2010;5(1):e8613. https://doi.org/10.1371/journal.pone.0008613 PMID: 20062805
Timpano EK, Scheible MKR, Meiklejohn KA. Optimization of the second internal transcribed spacer (ITS2) for characterizing land plants from soil. PLoS One. 2020;15(4):e0231436. https://doi.org/10.1371/journal.pone.0231436 PMID: 32298321
Claire-Iphanise M, Meyer RS, Taveras Y, Molina J. The nuclear internal transcribed spacer (ITS2) as a practical plant DNA barcode for herbal medicines. J Appl Res Med Aromat Plants. 2016;3(3):94–100.
Díaz M, Jarrín-V P, Simarro R, Castillejo P, Tenea GN, Molina CA. The Ecuadorian Microbiome Project: a plea to strengthen microbial genomic research. Neotrop Biodivers. 2021;7(1):223–37.
Mittermeier RA, Myers N, Hoffman M, Mittermeier C, Robles Gil P. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions. Mexico: CEMEX, S.A., Agrupación Sierra Madre, S.C.; 1999. p. 431.
Levin RA, Wagner WL, Hoch PC, Nepokroeff M, Pires JC, Zimmer EA, et al. Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data. Am J Bot. 2003;90(1):107–15. https://doi.org/10.3732/ajb.90.1.107 PMID: 21659085
Vere N de, Rich TCG, Ford CR, Trinder SA, Long C, Moore CW, et al. DNA barcoding the native flowering plants and conifers of wales. PLOS ONE. 2012;7(6):e37945.
Kolter A, Gemeinholzer B. Plant DNA barcoding necessitates marker-specific efforts to establish more comprehensive reference databases. Genome. 2021;64(3):265–98. https://doi.org/10.1139/gen-2019-0198 PMID: 32649839
Dubois B, Debode F, Hautier L, Hulin J, Martin GS, Delvaux A, et al. A detailed workflow to develop QIIME2-formatted reference databases for taxonomic analysis of DNA metabarcoding data. BMC Genom Data. 2022;23(1):53. https://doi.org/10.1186/s12863-022-01067-5 PMID: 35804326
Moorhouse-Gann RJ, Dunn JC, de Vere N, Goder M, Cole N, Hipperson H, et al. New universal ITS2 primers for high-resolution herbivory analyses using DNA metabarcoding in both tropical and temperate zones. Sci Rep. 2018;8:8542.
CBOL Plant Working Group. A DNA barcode for land plants. Proc Natl Acad Sci U S A. 2009;106(31):12794–7.
Galimberti A, De Mattia F, Bruni I, Scaccabarozzi D, Sandionigi A, Barbuto M, et al. A DNA barcoding approach to characterize pollen collected by honeybees. PLoS One. 2014;9(10):e109363. https://doi.org/10.1371/journal.pone.0109363 PMID: 25296114
Richardson RT, Curtis HR, Matcham EG, Lin C-H, Suresh S, Sponsler DB, et al. Quantitative multi-locus metabarcoding and waggle dance interpretation reveal honey bee spring foraging patterns in Midwest agroecosystems. Mol Ecol. 2019;28(3):686–97. https://doi.org/10.1111/mec.14975 PMID: 30549365
Li H, Xiao W, Tong T, Li Y, Zhang M, Lin X, et al. The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants. Sci Rep. 2021;11(1):1424. https://doi.org/10.1038/s41598-021-81087-w PMID: 33446865
Gao T, Yao H, Song J, Zhu Y, Liu C, Chen S. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family. BMC Evol Biol. 2010;10:324. https://doi.org/10.1186/1471-2148-10-324 PMID: 20977734
Tahir A, Hussain F, Ahmed N, Ghorbani A, Jamil A. Assessing universality of DNA barcoding in geographically isolated selected desert medicinal species of Fabaceae and Poaceae. PeerJ. 2018;6:e4499.
Igbari A, Ogundipe O. Phylogenetic patterns in the tribe Acacieae (Caesalpinioideae: Fabaceae) based on rbcL, matK, trnL-F and ITS sequence data. Asia Pacific J Mol Biol Biotechnol. 2019;27(2):103–15.
Bell KL, Loeffler VM, Brosi BJ. An rbcL reference library to aid in the identification of plant species mixtures by DNA metabarcoding. Appl Plant Sci. 2017;5(3):apps.1600110. https://doi.org/10.3732/apps.1600110 PMID: 28337390
Xu S-Z, Li Z-Y, Jin X-H. DNA barcoding of invasive plants in China: a resource for identifying invasive plants. Mol Ecol Resour. 2018;18(1):128–36. https://doi.org/10.1111/1755-0998.12715 PMID: 28865184
Pang X, Song J, Zhu Y, Xu H, Huang L, Chen S. Applying plant DNA barcodes for Rosaceae species identification. Cladistics. 2011;27(2):165–70. https://doi.org/10.1111/j.1096-0031.2010.00328.x PMID: 34875771
Pere K, Mburu K, Muge EK, Wagacha JM, Nyaboga EN. Molecular discrimination and phylogenetic relationships of Physalis Species based on ITS2 and rbcL DNA barcode sequence. Crops. 2023;3(4):302–19. https://doi.org/10.3390/crops3040027
Nderitu KW, Ager E, Mecha E, Nyachieo A. DNA barcoding using its2 and RBCL markers for Solanaceae species identification. East Afr Med J. 2023;100(1):5567–74.
Ralte L, Singh YT. Use of rbcL and ITS2 for DNA barcoding and identification of Solanaceae plants in hilly state of Mizoram, India. Res Crops. 2021;22(3):616–23.
Wei L, Pacheco-Reyes FC, Villarreal-Quintanilla JÁ, Robledo-Torres V, Encina-Domínguez JA, Lara-Ramírez EE, et al. Effectiveness of DNA barcodes (rbcL, matK, ITS2) in identifying genera and species in Cactaceae. Pak J Bot [Internet]. 2024;56(5). [cited 2025 Mar 27]. Available from: https://www.pakbs.org/pjbot/paper_details.php?id=12089
Bell KL, Fowler J, Burgess KS, Dobbs EK, Gruenewald D, Lawley B, et al. Applying pollen DNA metabarcoding to the study of plant-pollinator interactions. Appl Plant Sci. 2017;5(6):apps.1600124. https://doi.org/10.3732/apps.1600124 PMID: 28690929
Prudnikow L, Pannicke B, Wünschiers R. A primer on pollen assignment by nanopore-based DNA sequencing. Front Ecol Evol. 2023; 11.
Cornman RS, Otto CRV, Iwanowicz D, Pettis JS. Taxonomic characterization of honey Bee (Apis mellifera) pollen foraging based on non-overlapping paired-end sequencing of nuclear ribosomal loci. PLoS One. 2015;10(12):e0145365. https://doi.org/10.1371/journal.pone.0145365 PMID: 26700168
Pullaiah T. Plant Biodiversity of Ecuador: A Neotropical Megadiverse country. In: Global Biodiversity: Vol 4. Selected Countries in the Americas and Australia: CRC Press; 2018. p. 590.
Al-Asif A, Nerurkar S. Taxonomy in crisis: addressing the shortage of taxonomists in a biodiversity hotspot era. JARS. 2024;1(2):1–4.
Sandall EL, Maureaud AA, Guralnick R, McGeoch MA, Sica YV, Rogan MS, et al. A globally integrated structure of taxonomy to support biodiversity science and conservation. TREE. 2023;38(12):1143–53.
Bevilacqua S, Anderson MJ, Ugland KI, Somerfield PJ, Terlizzi A. The use of taxonomic relationships among species in applied ecological research: baseline, steps forward and future challenges. Austral Ecol. 2021;46(6):950–64. https://doi.org/10.1111/aec.13061
Schouten MA, Barendregt A, Verweij PA, Kalkman VJ, Kleukers RMJC, Lenders HJR, et al. Defining hotspots of characteristic species for multiple taxonomic groups in the Netherlands. Biodivers Conserv. 2010;19(9):2517–36.
Marchese C. Biodiversity hotspots: a shortcut for a more complicated concept. Glob Ecol Conserv. 2015;3:297–309.
Raczkowski JM, Wenzel JW. Biodiversity studies and their foundation in taxonomic scholarship. BioScience. 2007;57(11):974–9.
Pornon A, Escaravage N, Burrus M, Holota H, Khimoun A, Mariette J, et al. Using metabarcoding to reveal and quantify plant-pollinator interactions. Sci Rep. 2016;6(1):27282.
Bell KL, de Vere N, Keller A, Richardson RT, Gous A, Burgess KS, et al. Pollen DNA barcoding: current applications and future prospects. Genome. 2016;59(9):629–40. https://doi.org/10.1139/gen-2015-0200 PMID: 27322652
Lucena-Aguilar G, Sánchez-López AM, Barberán-Aceituno C, Carrillo-Ávila JA, López-Guerrero JA, Aguilar-Quesada R. DNA Source selection for downstream applications based on DNA quality indicators analysis. Biopreserv Biobank. 2016;14(4):264–70. https://doi.org/10.1089/bio.2015.0064 PMID: 27158753
POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew [Internet]. 2023 [cited 2023 Nov 7]. Available from: http://www.plantsoftheworldonline.org/
Ramalho M. Stingless bees and mass flowering trees in the canopy of Atlantic Forest: a tight relationship. Acta Bot Bras. 2004;18(1):37–47. https://doi.org/10.1590/s0102-33062004000100005
Engel MS, Dingemans-Bakels F. Nectar and Pollen resources for stingless bees (Meliponinae, Hymenoptera) in Surinam (South America). Apidologie. 1980;11(4):341–50. https://doi.org/10.1051/apido:19800402
Saravia-Nava A, Niemeyer HM, Pinto CF. Pollen types used by the native stingless bee, Tetragonisca angustula (Latreille), in an Amazon-Chiquitano Transitional Forest of Bolivia. Neotrop Entomol. 2018;47(6):798–807. https://doi.org/10.1007/s13744-018-0612-9 PMID: 29949124
Absy ML, Rech AR, Ferreira MG. Pollen collected by stingless bees: a contribution to understanding Amazonian biodiversity. In: Vit P, Pedro SRM, Roubik DW, editors. Pot-Pollen in Stingless Bee Melittology. Cham: Springer International Publishing; 2018. p. 29–46.
Ghazi R, Zulqurnain NS, Azmi WA. Melittopalynological Studies of Stingless Bees from the East Coast of Peninsular Malaysia. In: Vit P, Pedro SRM, Roubik DW, editors. Pot-Pollen in Stingless Bee Melittology [Internet]. Cham: Springer International Publishing; 2018. p. 77–88. [cited 2021 Jul 26]. Available from: http://link.springer.com/10.1007/978-3-319-61839-5_6
Winiarczyk K, Tchórzewska D. Pollen grain on the compatible and incompatible stigma of Secale cereale L. Pobrane z czasopisma Annales C - Biología. 2013;68(2):45–55.
Aguidelo Henao CA. Fenología de Especies Forestales de la Montaña del Ocaso, Quimbaya, Q. [Internet] [Undergraduated thesis]. [Colombia]: Universidad del Quindio; 2001 [cited 2025 Jan 13]. Available from: https://bdigital.uniquindio.edu.co/server/api/core/bitstreams/02db07d2-2e41-4b83-b5b1-ca9ca2dbe52b/content
Vaidya C, Fitch G, Martinez GHD, Oana AM, Vandermeer J. Management practices and seasonality affect stingless bee colony growth, foraging activity, and pollen diet in coffee agroecosystems. Agric Ecosyst Environ. 2023;353:108552.
Aleixo KP, Menezes C, Imperatriz Fonseca VL, da Silva CI. Seasonal availability of floral resources and ambient temperature shape stingless bee foraging behavior (Scaptotrigona aff., depilis). Apidologie. 2017;48(1):117–27.
Machado T, Viana BF, da Silva CI, Boscolo D. How landscape composition affects pollen collection by stingless bees? Landscape Ecol. 2020 Mar 1;35(3):747–59.