Copper belt region; Lubumbashi; metal analysis; microbial abundance and diversity; phytoremediation; illumina sequencing
Abstract :
[en] The main objectives of the present study are (1) To determine the dynamics of metal distribution around the main mining site in the Copper Belt City of Lubumbashi, and (2) to establish the soil eukaryotic profile in ecologically different sites. The highest levels of copper and cobalt were found at the remediated tailing and the mining sites with 9447 mg/kg and 1387 mg/kg for copper, and 2228 mg/kg and 817 mg/kg for cobalt, respectively. The total levels of these elements in urban areas located beyond 2 km from the mining site were, in most cases, low and below the levels expected to cause harm to the environment and humans. A close examination of the amplicon sequences revealed that Bigelwiella and Gymnochlora were among the top two most prevalent algae genera at each site. For metazoan populations, Mnemiopsis (48%) was the most dominant genus in the residential site, while Diadegma (41%) was the dominant genus in the agricultural dry land. Pseudosuccinea (23%) was predominant in agricultural wetland and Skrjabinema with 26% was the prevalent genus in the tailing. Soil metal content, pH and organic matter levels were not the driving factors of the variations in eukaryotic compositions and abundance.
Disciplines :
Microbiology
Author, co-author :
Nkongolo, Kabwe; Laurentian University
Banza Mukalay, John ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Gembloux Agro-Bio Tech
Lubobo, Antoine K.; University of Lubumbashi
Michael, Paul; Laurentian University
Language :
English
Title :
Critical examination of soil metals distribution in the Copper Belt City of Lubumbashi (D.R. Congo): analysis of soil eukaryotic communities
U S geological survey mineral commodity summaries 2022; Reston, VA, 2022. National Minerals Information Center. https://www.usgs.gov/publications/mineral-commodity-summaries-2022
USDOI Bureau of Mines Minerals Yearbook 1992; 1992; Vol. 1; ISBN 0160431549.
Prasad MS., Production of copper and cobalt at Gecamines, Zaire. Miner Eng. 1989;2:521–541. doi:10.1016/0892-6875(89)90087-3
Banza CLN, Nawrot TS, Haufroid V, et al.High human exposure to cobalt and other metals in katanga, a mining area of the Democratic Republic of Congo. Environ Res. 2009;109:745–752. doi:10.1016/J.ENVRES.2009.04.012
Martínez-Alonso S, Veefkind JP, Dix B, et al.S-5P/TROPOMI-Derived NOx emissions from copper/cobalt mining and other industrial activities in the copperbelt (Democratic Republic of Congo and Zambia). Geophys Res Lett. 2023;50:e2023GL104109. doi:10.1029/2023GL104109
Petänen T, Romantschuk M., Toxicity and bioavailability to bacteria of particle-associated arsenite and mercury. Chemosphere. 2003;50:409–413. doi:10.1016/S0045-6535(02)00505-2
Dusengemungu L, Mubemba B, Gwanama C., Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects. Sci Rep. 2022;12:11283. doi:10.1038/s41598-022-15458-2
Narendrula R, Nkongolo KK, Beckett P, et al.Total and bioavailable metals in two contrasting mining regions (Sudbury in Canada and Lubumbashi in DR-Congo): relation to genetic variation in plant populations. Chem Ecol. 2013;29:111–127. doi:10.1080/02757540.2012.696617
Atibu EK, Devarajan N, Laffite A, et al.Assessment of trace metal and rare earth elements contamination in rivers around abandoned and active mine areas. The case of Lubumbashi River and Tshamilemba Canal, Katanga, Democratic Republic of the Congo. Geochemistry. 2016;76:353–362. doi:10.1016/J.CHEMER.2016.08.004
Mwitwa J, German L, Muimba-Kankolongo A, et al.Governance and sustainability challenges in landscapes shaped by mining: mining-forestry linkages and impacts in the Copper Belt of Zambia and the DR Congo. For Policy Econ. 2012;25:19–30. doi:10.1016/J.FORPOL.2012.08.001
Van Brusselen D, Kayembe-Kitenge T, Mbuyi-Musanzayi S, et al.Metal mining and birth defects: a case-control study in Lubumbashi, Democratic Republic of the Congo. Lancet Planet Heal. 2020;4:e158–e167. doi:10.1016/S2542-5196(20)30059-0
Kayembe-Kitenge T, Kasole Lubala T, Musa Obadia P, et al.Holoprosencephaly: a case series from an area with high mining-related pollution. Birth Defects Res. 2019;111:1561–1563. doi:10.1002/BDR2.1583
Nkongolo K, Mukalay JB, Lubobo AK, et al.Soil microbial responses to varying environmental conditions in a copper belt region of Africa: phytoremediation perspectives. Microorganisms. 2025;13:31. doi:10.3390/microorganisms13010031
Lara E, Singer D., Geisen S., Discrepancies between prokaryotes and eukaryotes need to be considered in soil DNA-based studies. Environ Microbiol. 2024 Sep;24(9):3829–3839. doi:10.1111/1462-2920.16019
Nkongolo KK, Spiers G, Beckett P, et al.Long-term effects of liming on soil chemistry in stable and eroded upland areas in a mining region. Water Air Soil Pollut. 2013;224:1618. doi:10.1007/s11270-013-1618-x
Nkongolo KK, Michael P, Theriault G, et al.Assessing biological impacts of land reclamation in a mining region in Canada: effects of dolomitic lime applications on forest ecosystems and microbial phospholipid fatty acid signatures. Water Air Soil Pollut. 2016;104:227. doi:10.1007/s11270-016-2803-5
Abedin J, Beckett P, Spiers G., An evaluation of extractants for assessment of metal phytoavailability to guide reclamation practices in acidic soilscapes in Northern Regions. Can J Soil Sci. 2012;92:253–268. doi:10.4141/cjss2010-061
Mehes-Smith M, Nkongolo KK, Narendrula R, et al.Mobility of heavy metals in plants and soil: a case study from a mining region in Canada. Am J Environ Sci. 2014;9:483–493. doi:10.3844/ajessp.2013.483.493
Nkongolo KK, Spiers G, Beckett P, et al.Inside old reclaimed mine tailings in Northern Ontario, Canada: a microbial perspective. Ecol Genet Genomics. 2022;23:100118. doi:10.1016/J.EGG.2022.100118
Schoch CL, Seifert Ka, Huhndorf S, et al.Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA. 2012;109:6241–6246. doi:10.1073/pnas.1117018109
Narendrula R, Nkongolo KK, Beckett P., Comparative soil metal analyses in Sudbury (Ontario, Canada) and Lubumbashi (Katanga, DR-Congo). Bull Environ Contam Toxicol. 2012;88:187–192. doi:10.1007/s00128-011-0485-7
Blackwell institute the world’s worst polluted places the top ten 2007, Blacksmith Institude.
Hund K, LaPorta D, Fabregas T, et al.Minerals for climate action: the mineral intensity of the clean energy transition. 2020.
Painter S, Cameron EM, Allan R, et al.Reconnaissance geochemistry and its environmental relevance. J Geochemical Explor. 1994;51:213–246. doi:10.1016/0375-6742(94)90008-6
Nkongolo K, Spiers G, Beckett P, et al.Levels of metals and microbial biomass in cobalt coleman mine tailings (Canada) three decades after land reclamation. Am J Environ Sci. 2023;19:1–7. doi:10.3844/ajessp.2023.1.7
Bradl HB., Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci. 2004;277:1–18. doi:10.1016/J.JCIS.2004.04.005
Tembo BD, Sichilongo K, Cernak J., Distribution of copper. lead, cadmium and zinc concentrations in soils around Kabwe Town in Zambia. Chemosphere. 2006;63:497–501. doi:10.1016/J.CHEMOSPHERE.2005.08.002
Ettler V, Mihaljevič M, Kříbek B, et al.Tracing the spatial distribution and mobility of metal/metalloid contaminants in oxisols in the vicinity of the nkana copper smelter, Copperbelt Province, Zambia. Geoderma. 2011;164:73–84. doi:10.1016/J.GEODERMA.2011.05.014
Ettler V, Cihlová M, Jarošíková A, et al.Oral bioaccessibility of metal(loid)s in dust materials from mining areas of northern Namibia. Environ Int. 2019;124:205–215. doi:10.1016/J.ENVINT.2018.12.027
Ettler V, Kříbek B, Majer V, et al.Differences in the bioaccessibility of metals/metalloids in soils from mining and smelting areas (Copperbelt, Zambia). J Geochemical Explor. 2012;113:68–75. doi:10.1016/J.GEXPLO.2011.08.001
Royer A, Sharman T., Copper toxicity. In: Statpearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023, Mar 27. Accessed 2025 January 23. https://pubmed.ncbi.nlm.nih.gov/32491388/
Leyssens L, Vinck B, Van Der Straeten C, et al.Cobalt toxicity in humans—a review of the potential sources and systemic health effects. Toxicology. 2017;387:43–56. doi:10.1016/J.TOX.2017.05.015
Muhaya BB, Badarhi BB., Trace metal contamination of groundwater and human health risk in Katuba and Kenya municipalities of Lubumbashi City, Southeastern Democratic Republic of Congo. African J Environ Sci Technol. 2022;16:91–110. doi:10.5897/AJEST2021.3087
Mununga Katebe F, Raulier P, Colinet G, et al.Assessment of heavy metal pollution of agricultural soil, irrigation water, and vegetables in and nearby the Cupriferous City of Lubumbashi, (Democratic Republic of the Congo). Agronomy. 2023;13:357. doi:10.3390/agronomy13020357
Köninger J, Ballabio C, Panagos P, et al.Ecosystem type drives soil eukaryotic diversity and composition in Europe. Glob Chang Biol. 2023;29:5706–5719. doi:10.1111/GCB.16871
Nkongolo K, Narendrula-Kotha R., Dynamic changes of microbial community composition and diversity in metal contaminated and reclaimed lands assessed by illumina MiSeq sequencing. Ecol Genet Genomics. 2023;26:100163. doi:10.1016/J.EGG.2023.100163
Nkongolo KK, Narendrula-Kotha R., Advances in monitoring soil microbial community dynamic and function. J Appl Genet. 2020;61:249–263. doi:10.1007/s13353-020-00549-5
Brandt KK, Frandsen RJN, Holm PE, et al.Development of pollution-induced community tolerance is linked to structural and functional resilience of a soil bacterial community following a five-year field exposure to copper. Soil Biol Biochem. 2010;42:748–757. doi:10.1016/J.SOILBIO.2010.01.008
Pawlowski J, Audic S, Adl S, et al.CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 2012;10:e1001419. doi:10.1371/JOURNAL.PBIO.1001419
Curtis BA, Tanifuji G, Maruyama S, et al.Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature. 2012;492:59–65. doi:10.1038/nature11681
Brodie J, Lewis J., Unravelling the algae : The past, present, and future of algal systematics. Boca Raton: CRC; Taylor & Francis [distributor]; 2019.
Keeling PJ., Chlorarachniophytes. In: Archibald J, et al., editors. Handbook of the protists. Cham: Springer; 2016. p. 1–17. doi:10.1007/978-3-319-32669-6_34-1
Ota S, Ueda K, Ishida KI., Norrisiella Sphaerica Gen. et Sp. Nov., a New Coccoid Chlorarachniophyte from Baja California, Mexico. J Plant Res. 2007;120:661–670. doi:10.1007/s10265-007-0115-y
Steidinger KA., Some taxonomic and biologic aspects of toxic dinoflagellates. In: Falconer IR, editor. Algal toxins in seafood and drinking water. Londres: Academic Press; 1993. p. 1–28. doi:10.1016/B978-0-08-091811-2.50006-X
Wang DZ, Xin YH, Wang MH., Gambierdiscus and its associated toxins: a minireview. Toxins (Basel). 2022;14:485. doi:10.3390/TOXINS14070485
Lucio-Forster A, Lejeune M., Diagnostic parasitology. In: Bowman DD, editor. Georgis' parasitology for veterinarians. 11th ed. St. Louis (MO): Elsevier; 2021. p. 349–454. doi:10.1016/B978-0-323-54396-5.00016-7
Sebé-Pedrós A, Degnan BM, Ruiz-Trillo I., The origin of metazoa: a unicellular perspective. Nat Rev Genet. 2017;18:498–512. doi:10.1038/nrg.2017.21
Collins G, Schneider C, Boštjančić LL, et al.The MetaInvert soil invertebrate genome resource provides insights into below-ground biodiversity and evolution. Commun Biol. 2023;6:1–12. doi:10.1038/s42003-023-05621-4
Costello JH, Mianzan HW., Sampling field distributions of Mnemiopsis Leidyi (Ctenophora, Lobata): planktonic or benthic methods?J Plankton Res. 2003;25:455–459. doi:10.1093/PLANKT/25.4.455
Azidah AA, Fitton MG, Quicke DLJ., Identification of the Diadegma Species (Hymenoptera: Ichneumonidae, Campopleginae) Attacking the Diamondback Moth, Plutella Xylostella (Lepidoptera: Plutellidae). Bull Entomol Res. 2000;90:375–389. doi:10.1017/S0007485300000511
Gichini G, Löhr B, Rossbach A, et al.Can low release numbers lead to establishment and spread of an exotic parasitoid: the case of the diamondback moth parasitoid, diadegma semiclausum (Hellén), in East Africa. Crop Prot. 2008;27:906–914. doi:10.1016/J.CROPRO.2007.11.001
Malatji MP, Mukaratirwa S., Molecular detection of natural infection of Lymnaea (Pseudosuccinea) Columella (Gastropoda: Lymnaeidae) with Fasciola Gigantica (Digenea: Fasciolidae) from two provinces of South Africa. J Helminthol. 2019;94:1–6. doi:10.1017/S0022149X19000129
Jones S, Juhász A, Makaula P, et al.A first report of Pseudosuccinea Columella (Say, 1817), an alien intermediate host for liver fluke, in Malawi. Parasites Vectors. 2024;17:1–5. doi:10.1186/S13071-024-06241-5
Cao YF, Chen HX, Li Y, et al.Morphology, Genetic Characterization and Molecular Phylogeny of Pinworm Skrjabinema Longicaudatum n. Sp. (Oxyurida: Oxyuridae) from the Endangered Tibetan Antelope Pantholops Hodgsonii (Abel) (Artiodactyla: Bovidae). Parasites Vectors. 2020;13:1–11. doi:10.1186/S13071-020-04430-6
Allison SD, Martiny JBH., Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008;105:11512–11519. doi:10.1073/pnas.0801925105
Liu YR, Delgado-Baquerizo M, Bi L, et al.Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China. Microbiome. 2018;6:1–12. doi:10.1186/S40168-018-0572-7
Nkongolo KK, Spiers G, Beckett P, et al.Effects of phytoremediation on microbial biomass, composition, and function in a sulphide-rich tailing from a metal-contaminated region. Front Environ Sci. 2022;10. doi:10.3389/fenvs.2022.908633
Chen J, He F, Zhang X, et al.Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiol Ecol. 2014;87:164–181. doi:10.1111/1574-6941.12212
Berg J, Brandt KK, Al-Soud WA, et al.Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure. Appl Environ Microbiol. 2012;78:7438–7446. doi:10.1128/AEM.01071-12
Suszter M., Effect of copper and nickel on soil microbial activities, abundance, and diversity using the illumina NovaSeq platform. [M.Sc. Thesis]. Laurentian University; 2024. p. 189.
Zhen Z, Wang S, Luo S, et al.Significant impacts of both total amount and availability of heavy metals on the functions and assembly of soil microbial communities in different land use patterns. Front Microbiol. 2019;10:470892. doi:10.3389/fmicb.2019.02293
Theriault G, Nkongolo KK., Evidence of prokaryote like protein associated with nickel resistance in higher plants: horizontal transfer of TonB-dependent receptor/protein in betula genus or de novo mechanisms?Heredity. 2017;118:358–365. doi:10.1038/hdy.2016.106
Griffiths BS, Philippot L., Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev. 2013;37:112–129. doi:10.1111/J.1574-6976.2012.00343.X
Klajman K, Beckett P, Spiers G, et al.Effects of aerial liming on soil chemical and biological properties in metal contaminated and inaccessible lands in Ontario (Canada). Ecotoxicology. 2024;33:1145–1160. doi:10.1007/s10646-024-02804-5