While the cohesin complex is a key player in genome architecture, how it localizes to specific chromatin sites is not understood. Recently, we and others have proposed that direct interactions with transcription factors lead to the localization of the cohesin-loader complex (NIPBL/MAU2) within enhancers. Here, we identify two clusters of LxxLL motifs within the NIPBL sequence that regulate NIPBL dynamics, interactome, and NIPBL-dependent transcriptional programs. One of these clusters interacts with MAU2 and is necessary for the maintenance of the NIPBL-MAU2 heterodimer. The second cluster binds specifically to the ligand-binding domains of steroid receptors. For the glucocorticoid receptor (GR), we examine in detail its interaction surfaces with NIPBL and MAU2. Using AlphaFold2 and molecular docking algorithms, we uncover a GR-NIPBL-MAU2 ternary complex and describe its importance in GR-dependent gene regulation. Finally, we show that multiple transcription factors interact with NIPBL-MAU2, likely using interfaces other than those characterized for GR.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Fettweis, Grégory ; Université de Liège - ULiège > Département des sciences de la vie
Wagh, Kaustubh ; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, United States
Stavreva, Diana A; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, United States
Jiménez-Panizo, Alba; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, United States ; Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, 26007 Logroño, Spain
Kim, Sohyoung; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, United States
Lion, Michelle ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et biologie moléculaires animales
Alegre-Martí, Andrea; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain ; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
Rinaldi, Lorenzo; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, United States
Johnson, Thomas A; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, United States
Gilson, Elise ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et biologie moléculaires animales
Krishnamurthy, Manan; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, United States
Wang, Li; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, United States
Ball, David A; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, United States
Karpova, Tatiana S; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, United States
Upadhyaya, Arpita; Department of Physics, University of Maryland, College Park, MD 20742, United States ; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
Vertommen, Didier ; de Duve Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
Recio, Juan Fernández; Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, 26007 Logroño, Spain
Estébanez-Perpiñá, Eva ; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain ; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
Dequiedt, Franck ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et biologie moléculaires animales
Hager, Gordon L ; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, United States
NIH - National Institutes of Health NCI - National Cancer Institute MINECO - Gobierno de Espana. Ministerio de Economia y Competitividad NIGMS - National Institute of General Medical Sciences NSF - National Science Foundation
Funding text :
We would like to thank the Viral Vector Platform of the GIGA, ULi\u00E8ge for the production of lentiviral particles used for the NIPBL-KD, the GIGA Flow Cytometry Core for cell sorting, Luke Lavis (Janelia Research Campus) for the Halo-JF dyes, Razi Raziuddin and Le Hoang (NIH) for assistance with experiments, and Supriya V. Vartak (NIH) for constructive feedback on the manuscript. This work was supported (in part) by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research. E.E.-P. thanks the G.E. Carretero Fund. The research was also supported by Spanish Ministry of Science (MINECO) [PID2022-141399-OB-100 to E.E.-P., JDC2022-048702-I to A.J.-P., and JDC2023-051138-I to A.M.-M]. A.U. acknowledges support from awards NIGMS 145313 and NSF 2132922. J.F.-R. thanks the Spanish Ministry of Science (MINECO) PID2019-110167RBI00/AEI/10.13039/501100011033. Funding to pay the Open Access publication charges for this article was provided by Intramural Research Program of the NIH.This work was supported (in part) by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research. E.E.-P. thanks the G.E. Carretero Fund. The research was also supported by Spanish Ministry of Science (MINECO) [PID2022-141399-OB-100 to E.E.-P., JDC2022-048702-I to A.J.-P., and JDC2023-051138-I to A.M.-M]. A.U. acknowledges support from awards NIGMS 145313 and NSF 2132922. J.F.-R. thanks the Spanish Ministry of Science (MINECO) PID2019-110167RB-I00/AEI/10.13039/501100011033. Funding to pay the Open Access publication charges for this article was provided by Intramural Research Program of the NIH.
Sanborn AL, Rao SS, Huang SC et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci USA 2015;112:E6456–65. https://doi.org/10.1073/pnas.1518552112
Ciosk R, Shirayama M, Shevchenko A et al. Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 2000;5:243–54. https://doi.org/10.1016/S1097-2765(00)80420-7
Alonso-Gil D, Losada A. NIPBL and cohesin: new take on a classic tale. Trends Cell Biol 2023;33:860–71. https://doi.org/10.1016/j.tcb.2023.03.006
Phillips JE, Corces VG. CTCF: master weaver of the genome. Cell 2009;137:1194–211. https://doi.org/10.1016/j.cell.2009.06.001
Murayama Y, Uhlmann F. DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism. Cell 2015;163:1628–40. https://doi.org/10.1016/j.cell.2015.11.030
Pradhan B, Barth R, Kim E et al. SMC complexes can traverse physical roadblocks bigger than their ring size. Cell Rep 2022;41:111491. https://doi.org/10.1016/j.celrep.2022.111491
Rinaldi L, Fettweis G, Kim S et al. The glucocorticoid receptor associates with the cohesin loader NIPBL to promote long-range gene regulation. Sci Adv 2022;8:eabj8360. https://doi.org/10.1126/sciadv.abj8360
Schmidt D, Schwalie PC, Ross-Innes CS et al. A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res 2010;20:578–88. https://doi.org/10.1101/gr.100479.109
Le Dily F, Vidal E, Cuartero Y et al. Hormone-control regions mediate steroid receptor-dependent genome organization. Genome Res 2019;29:29–39. https://doi.org/10.1101/gr.243824.118
Rao SSP, Huang SC, Glenn St Hilaire B et al. Cohesin loss eliminates all loop domains. Cell 2017;171:305–20. https://doi.org/10.1016/j.cell.2017.09.026
Rao SS, Huntley MH, Durand NC et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014;159:1665–80. https://doi.org/10.1016/j.cell.2014.11.021
Schwarzer W, Abdennur N, Goloborodko A et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 2017;551:51–6. https://doi.org/10.1038/nature24281
Banigan EJ, Tang W, van den Berg AA et al. Transcription shapes 3D chromatin organization by interacting with loop extrusion. Proc Natl Acad Sci USA 2023;120:e2210480120. https://doi.org/10.1073/pnas.2210480120
Vian L, Pekowska A, Rao SSP et al. The energetics and physiological impact of cohesin extrusion. Cell 2018;175:292–4. https://doi.org/10.1016/j.cell.2018.09.002
Zhu Y, Denholtz M, Lu H et al. Calcium signaling instructs NIPBL recruitment at active enhancers and promoters via distinct mechanisms to reconstruct genome compartmentalization. Genes Dev 2021;35:65–81. https://doi.org/10.1101/gad.343475.120
van den Berg DLC, Azzarelli R, Oishi K et al. Nipbl interacts with Zfp609 and the integrator complex to regulate cortical neuron migration. Neuron 2017;93:348–61. https://doi.org/10.1016/j.neuron.2016.11.047
Munoz S, Minamino M, Casas-Delucchi CS et al. A role for chromatin remodeling in cohesin loading onto chromosomes. Mol Cell 2019;74:664–73. https://doi.org/10.1016/j.molcel.2019.02.027
Velot L, Lessard F, Berube-Simard FA et al. Proximity-dependent mapping of the androgen receptor identifies Kruppel-like factor 4 as a functional partner. Mol Cell Proteomics 2021;20:100064. https://doi.org/10.1016/j.mcpro.2021.100064
Goos H, Kinnunen M, Salokas K et al. Human transcription factor protein interaction networks. Nat Commun 2022;13:766. https://doi.org/10.1038/s41467-022-28341-5
Mattingly M, Seidel C, Munoz S et al. Mediator recruits the cohesin loader Scc2 to RNA Pol II-transcribed genes and promotes sister chromatid cohesion. Curr Biol 2022;32:2884–96. https://doi.org/10.1016/j.cub.2022.05.019
Nguyen AL, Smith EM, Cheeseman IM. Co-essentiality analysis identifies PRR12 as a cohesin interacting protein and contributor to genomic integrity. Dev Cell 2025;60:1217–33. https://doi.org/10.1016/j.devcel.2024.12.015
Wang R, Xu Q, Wang C et al. Multiomic analysis of cohesin reveals that ZBTB transcription factors contribute to chromatin interactions. Nucleic Acids Res 2023;51:6784–805. https://doi.org/10.1093/nar/gkad401
Kim JS, He X, Liu J et al. Systematic proteomics of endogenous human cohesin reveals an interaction with diverse splicing factors and RNA-binding proteins required for mitotic progression. J Biol Chem 2019;294:8760–72. https://doi.org/10.1074/jbc.RA119.007832
Luna-Pelaez N, March-Diaz R, Ceballos-Chavez M et al. The Cornelia de Lange syndrome-associated factor NIPBL interacts with BRD4 ET domain for transcription control of a common set of genes. Cell Death Dis 2019;10:548. https://doi.org/10.1038/s41419-019-1792-x
Heery DM, Kalkhoven E, Hoare S et al. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997;387:733–6. https://doi.org/10.1038/42750
Plevin MJ, Mills MM, Ikura M. The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem Sci 2005;30:66–9. https://doi.org/10.1016/j.tibs.2004.12.001
Yang X, Boehm JS, Yang X et al. A public genome-scale lentiviral expression library of human ORFs. Nat Methods 2011;8:659–61. https://doi.org/10.1038/nmeth.1638
Cassonnet P, Rolloy C, Neveu G et al. Benchmarking a luciferase complementation assay for detecting protein complexes. Nat Methods 2011;8:990–2. https://doi.org/10.1038/nmeth.1773
Emi N, Friedmann T, Yee JK. Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus. J Virol 1991;65:1202–7. https://doi.org/10.1128/jvi.65.3.1202-1207.1991
Presman DM, Ball DA, Paakinaho V et al. Quantifying transcription factor dynamics at the single-molecule level in live cells. Methods 2017;123:76–88. https://doi.org/10.1016/j.ymeth.2017.03.014
Garcia DA, Fettweis G, Presman DM et al. Power-law behavior of transcription factor dynamics at the single-molecule level implies a continuum affinity model. Nucleic Acids Res 2021;49:6605–20. https://doi.org/10.1093/nar/gkab072
Wagh K, Stavreva DA, Jensen RAM et al. Dynamic switching of transcriptional regulators between two distinct low-mobility chromatin states. Sci Adv 2023;9:eade1122. https://doi.org/10.1126/sciadv.ade1122
Koo PK, Mochrie SG. Systems-level approach to uncovering diffusive states and their transitions from single-particle trajectories. Phys Rev E 2016;94:052412. https://doi.org/10.1103/PhysRevE.94.052412
Garcia DA, Johnson TA, Presman DM et al. An intrinsically disordered region-mediated confinement state contributes to the dynamics and function of transcription factors. Mol Cell 2021;81:1484–98. https://doi.org/10.1016/j.molcel.2021.01.013
Evans R, O’Neill M, Pritzel A et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv, https://doi.org/10.1101/2021.10.04.463034, 10 March 2022, preprint: not peer reviewed.
Cheng TM, Blundell TL, Fernandez-Recio J. pyDock: electrostatics and desolvation for effective scoring of rigid-body protein–protein docking. Proteins 2007;68:503–15. https://doi.org/10.1002/prot.21419
Canutescu AA, Shelenkov AA, Dunbrack RL Jr. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 2003;12:2001–14. https://doi.org/10.1110/ps.03154503
Gabb HA, Jackson RM, Sternberg MJ. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 1997;272:106–20. https://doi.org/10.1006/jmbi.1997.1203
Shi Z, Gao H, Bai XC et al. Cryo-EM structure of the human cohesin–NIPBL–DNA complex. Science 2020;368:1454–9. https://doi.org/10.1126/science.abb0981
Estebanez-Perpina E, Moore JM, Mar E et al. The molecular mechanisms of coactivator utilization in ligand-dependent transactivation by the androgen receptor. J Biol Chem 2005;280:8060–8. https://doi.org/10.1074/jbc.M407046200
Wagh K, Stavreva DA, Upadhyaya A et al. Transcription factor dynamics: one molecule at a time. Annu Rev Cell Dev Biol 2023;39:277–305. https://doi.org/10.1146/annurev-cellbio-022823-013847
Wagh K, Stavreva DA, Hager GL. Transcription dynamics and genome organization in the mammalian nucleus: recent advances. Mol Cell 2025;85:208–24.
Johnson TA, Fettweis G, Wagh K et al. The glucocorticoid receptor potentiates aldosterone-induced transcription by the mineralocorticoid receptor. Proc Natl Acad Sci USA 2024;121:e2413737121. https://doi.org/10.1073/pnas.2413737121
Li Q, Liu X, Wen J et al. Enhancer RNAs: mechanisms in transcriptional regulation and functions in diseases. Cell Commun Signal 2023;21:191. https://doi.org/10.1186/s12964-023-01206-0
Remy I, Michnick SW. A highly sensitive protein–protein interaction assay based on Gaussia luciferase. Nat Methods 2006;3:977–9. https://doi.org/10.1038/nmeth979
Alonso-Gil D, Cuadrado A, Giménez-Llorente D et al. Different NIPBL requirements of cohesin–STAG1 and cohesin–STAG2. Nat Commun 2023;14:1326. https://doi.org/10.1038/s41467-023-36900-7
Braunholz D, Hullings M, Gil-Rodriguez MC et al. Isolated NIBPL missense mutations that cause Cornelia de Lange syndrome alter MAU2 interaction. Eur J Hum Genet 2012;20:271–6. https://doi.org/10.1038/ejhg.2011.175
Bot C, Pfeiffer A, Giordano F et al. Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage. J Cell Sci 2017;130:1134–46. https://doi.org/10.1242/jcs.197236
Hinshaw SM, Makrantoni V, Kerr A et al. Structural evidence for Scc4-dependent localization of cohesin loading. eLife 2015;4:e06057. https://doi.org/10.7554/eLife.06057
Danielian PS, White R, Lees JA et al. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors [published erratum appears in EMBO J 1992 Jun;11(6):2366]. EMBO J 1992;11:1025–33. https://doi.org/10.1002/j.1460-2075.1992.tb05141.x
Darimont BD, Wagner RL, Apriletti JW et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev 1998;12:3343–56. https://doi.org/10.1101/gad.12.21.3343
Gao W, Bohl CE, Dalton JT. Chemistry and structural biology of androgen receptor. Chem Rev 2005;105:3352–70. https://doi.org/10.1021/cr020456u
Jimenez-Panizo A, Alegre-Marti A, Tettey TT et al. The multivalency of the glucocorticoid receptor ligand-binding domain explains its manifold physiological activities. Nucleic Acids Res 2022;50:13063–82. https://doi.org/10.1093/nar/gkac1119
Alegre-Martí A, Jiménez-Panizo A, Lafuente AL et al. The multimerization pathway of the glucocorticoid receptor. bioRxiv, https://doi.org/10.1101/2021.10.04.463034, 10 March 2022, preprint: not peer reviewed.
Presman DM, Ganguly S, Schiltz RL et al. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells. Proc Natl Acad Sci USA 2016;113:8236–41. https://doi.org/10.1073/pnas.1606774113
Kline AD, Moss JF, Selicorni A et al. Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement. Nat Rev Genet 2018;19:649–66. https://doi.org/10.1038/s41576-018-0031-0
Kaur M, Blair J, Devkota B et al. Genomic analyses in Cornelia de Lange syndrome and related diagnoses: novel candidate genes, genotype-phenotype correlations and common mechanisms. Am J Med Genet A 2023;191:2113–31. https://doi.org/10.1002/ajmg.a.63247
Selicorni A, Russo S, Gervasini C et al. Clinical score of 62 Italian patients with Cornelia de Lange syndrome and correlations with the presence and type of NIPBL mutation. Clin Genet 2007;72:98–108. https://doi.org/10.1111/j.1399-0004.2007.00832.x
Braunholz D, Obieglo C, Parenti I et al. Hidden mutations in Cornelia de Lange syndrome limitations of sanger sequencing in molecular diagnostics. Hum Mutat 2015;36:26–9. https://doi.org/10.1002/humu.22685
Kawauchi S, Calof AL, Santos R et al. Multiple organ system defects and transcriptional dysregulation in the Nipbl(±) mouse, a model of Cornelia de Lange syndrome. PLoS Genet 2009;5:e1000650. https://doi.org/10.1371/journal.pgen.1000650
Braun P, Tasan M, Dreze M et al. An experimentally derived confidence score for binary protein–protein interactions. Nat Methods 2009;6:91–7. https://doi.org/10.1038/nmeth.1281