Addy, S., Ghimire, S., Cooksley, S., 2012. Assessment of the multiple benefits of river restoration: the Logie Burn meander reconnection project. In: BHS Eleventh National Symposium, Hydrology for a changing world, Dundee 2012 01–05. doi: 10.7558/bhs.2012.ns01.
Addy, S., Wilkinson, M.E., Geomorphic and retention responses following the restoration of a sand-gravel bed stream. Ecol. Eng. 130 (2019), 131–146, 10.1016/j.ecoleng.2019.01.013.
Alewell, C., Birkholz, A., Meusburger, K., et al. Quantitative sediment source attribution with compound-specific isotope analysis in a C3 plant-dominated catchment (central Switzerland). Biogeosciences 13 (2016), 1587–1596, 10.5194/bg-13-1587-2016.
Armstrong, A., Quinton, J.N., Heng, B.C.P., Chandler, J.H., Variability of interrill erosion at low slopes. Earth Surf. Process. Landf. 36 (2011), 97–106, 10.1002/esp.2024.
Bilotta, G.S., Brazier, R.E., Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 42 (2008), 2849–2861, 10.1016/j.watres.2008.03.018.
Blake, W.H., Boeckx, P., Stock, B.C., et al. A deconvolutional bayesian mixing model approach for river basin sediment source apportionment. Sci. Rep. 8 (2018), 1–12, 10.1038/s41598-018-30905-9.
Blake, W.H., Kelly, C., Wynants, M., et al. Integrating land-water-people connectivity concepts across disciplines for co-design of soil erosion solutions. Land Degrad. Dev. 32 (2021), 3415–3430, 10.1002/ldr.3791.
Chen, F.X., Fang, N.F., Wang, Y.X., et al. Biomarkers in sedimentary sequences: indicators to track sediment sources over decadal timescales. Geomorphology 278 (2017), 1–11, 10.1016/j.geomorph.2016.10.027.
Chen, Y., Wang, Y., Yu, K., et al. Occurrence characteristics and source appointment of polycyclic aromatic hydrocarbons and n-alkanes over the past 100 years in southwest China. Sci. Total Environ., 808, 2022, 151905, 10.1016/j.scitotenv.2021.151905.
Cole, B., King, S., Ogutu, B., et al., 2015. Corine land cover 2012 for the UK, Jersey and Guernsey. In: NERC Environmental Information Data Centre. Doi: 10.5285/32533dd6-7c1b-43e1-b892-e80d61a5ea1d. Accessed 18 Jan 2021.
Collins, A.L., Blackwell, M., Boeckx, P., et al. Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes. J. Soil. Sediment., 2020.
Cox, T., Laceby, J.P., Greule, M., et al. Using stable carbon isotopes of lignin-derived methoxy to improve historical apportionments of particulate organic matter and sediment sources incorporating multiple suess corrections. J. Soils Sediments, 2024, 10.1007/s11368-024-03765-2.
Dove, H., Mayes, R.W., Protocol for the analysis of n-alkanes and other plant-wax compounds and for their use as markers for quantifying the nutrient supply of large mammalian herbivores. Nat. Protoc. 1 (2006), 1680–1697, 10.1038/nprot.2006.225.
ESRI, 2017. ArcGIS Desktop.
European Commission, 2010. The EU Water Framework Directive, 153–165.
Evans, R., Brazier, R., Evaluation of modelled spatially distributed predictions of soil erosion by water versus field-based assessments. Environ. Sci. Policy 8 (2005), 493–501, 10.1016/j.envsci.2005.04.009.
Fang, J., Wu, F., Xiong, Y., et al. Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake dianchi, China. Sci. Total Environ. 473–474 (2014), 410–421, 10.1016/j.scitotenv.2013.10.066.
Fatahi, A., Gholami, H., Esmaeilpour, Y., Fathabadi, A., Fingerprinting the spatial sources of fine-grained sediment deposited in the bed of the Mehran River, southern Iran. Sci. Rep. 12 (2022), 1–17, 10.1038/s41598-022-07882-1.
Ficken, K.J., Li, B., Swain, D.L., Eglinton, G., An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org. Geochem. 31 (2000), 745–749, 10.1016/S0146-6380(00)00081-4.
Galoski, C.E., Jiménez Martínez, A.E., Schultz, G.B., et al. Use of n-alkanes to trace erosion and main sources of sediments in a watershed in southern Brazil. Sci. Total Environ. 682 (2019), 447–456, 10.1016/j.scitotenv.2019.05.209.
García-Comendador, J., Martínez-Carreras, N., Fortesa, J., et al. Combining sediment fingerprinting and hydro-sedimentary monitoring to assess suspended sediment provenance in a mid-mountainous Mediterranean catchment. J. Environ. Manage., 299, 2021, 113593, 10.1016/j.jenvman.2021.113593.
Gibbs, M.M., Identifying source soils in contemporary estuarine sediments: a new compound-specific isotope method. Estuar. Coasts 31 (2008), 344–359, 10.1007/s12237-007-9012-9.
Glaser, B., Zech, W., Reconstruction of climate and landscape changes in a high mountain lake catchment in the Gorkha himal, Nepal during the late glacial and holocene as deduced from radiocarbon and compound-specific stable isotope analysis of terrestrial, aquatic and microbi. Org. Geochem. 36 (2005), 1086–1098, 10.1016/j.orggeochem.2005.01.015.
Glendell, M., Blackstock, K., Adams, K., et al., 2024. Future predictions of water scarcity in Scotland: impact on distilleries and agricultural abstractors CRW2023_05.
Glendell, M., Jones, R., Dungait, J.A.J., et al. Tracing of particulate organic C sources across the terrestrial-aquatic continuum, a case study at the catchment scale (Carminowe Creek, southwest England). Sci. Total Environ. 616 (2018), 1077–1088, 10.1016/j.scitotenv.2017.10.211.
Griepentrog, M., Bodé, S., Boeckx, P., Wiesenberg, G.L.B., The fate of plant wax lipids in a model forest ecosystem under elevated CO2 concentration and increased nitrogen deposition. Org. Geochem. 98 (2016), 131–140, 10.1016/j.orggeochem.2016.05.005.
Grimalt, J.O., Torras, E., Albaigés, J., Bacterial reworking of sedimentary lipids during sample storage. Org. Geochem. 13 (1988), 741–746, 10.1016/0146-6380(88)90096-4.
Guzmán, G., Quinton, J.N., Nearing, M.A., et al. Sediment tracers in water erosion studies: current approaches and challenges. J. Soils Sediments 13 (2013), 816–833, 10.1007/s11368-013-0659-5.
Haddadchi, A., Olley, J., Pietsch, T., Quantifying sources of suspended sediment in three size fractions. J. Soils Sediments 15 (2015), 2086–2100, 10.1007/s11368-015-1196-1.
Hannaford, J., Mastrantonas, N., Vesuviano, G., Turner, S., An updated national-scale assessment of trends in UK peak river flow data: how robust are observed increases in flooding?. Hydrol. Res. 52 (2021), 699–718, 10.2166/nh.2021.156.
He, D., Ladd, S.N., Saunders, C.J., et al. Distribution of n-alkanes and their δ2H and δ13C values in typical plants along a terrestrial-coastal-oceanic gradient. Geochim. Cosmochim. Acta 281 (2020), 31–52.
Hirave, P., Glendell, M., Birkholz, A., Alewell, C., Compound-specific isotope analysis with nested sampling approach detects spatial and temporal variability in the sources of suspended sediments in a scottish mesoscale catchment. Sci. Total Environ., 142916, 2020, 10.1016/j.scitotenv.2020.142916.
Hirave, P., Nelson, D.B., Glendell, M., Alewell, C., Land-use-based freshwater sediment source fingerprinting using hydrogen isotope compositions of long-chain fatty acids. Sci. Total Environ., 875, 2023, 162638, 10.1016/j.scitotenv.2023.162638.
Hirave, P., Wiesenberg, G.L.B., Birkholz, A., Alewell, C., Understanding the effects of early degradation on isotopic tracers: implications for sediment source attribution using compound-specific isotope analysis (CSIA). Biogeosci. Discuss., 1–18, 2020, 10.5194/bg-2019-205.
Hughes, A.O., Huirama, M.K., Owens, P.N., Petticrew, E.L., Stream bank erosion as a source of sediment within New Zealand catchments. N Z J. Mar. Freshwater Res., 2021, 1–24, 10.1080/00288330.2021.1929352.
Huisman, N.L.H., Karthikeyan, K.G., Lamba, J., et al. Quantification of seasonal sediment and phosphorus transport dynamics in an agricultural watershed using radiometric fingerprinting techniques. J. Soils Sediments 13 (2013), 1724–1734, 10.1007/s11368-013-0769-0.
Jeng, W.L., Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Mar. Chem. 102 (2006), 242–251, 10.1016/j.marchem.2006.05.001.
Jung, B.-J., Lee, J.-K., Park, J.-H., Storm pulses of particulate and dissolved organic carbon in a forested headwater stream and their environmental implications – importance of extreme rainfall events. Biogeosci. Discuss. 11 (2014), 6877–6908, 10.5194/bgd-11-6877-2014.
Karambiri, H., Ribolzi, O., Delhoume, J.P., et al. Importance of soil surface characteristics on water erosion in a small grazed sahelian catchment. Hydrol. Process. 17 (2003), 1495–1507, 10.1002/hyp.1195.
Klimaszyk, P., Rzymski, P., Catchment vegetation can trigger lake dystrophy through changes in runoff water quality. Ann. Limnol. 49 (2013), 191–197, 10.1051/limn/2013055.
Koiter, A.J., Owens, P.N., Petticrew, E.L., Lobb, D.A., The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins. Earth Sci. Rev. 125 (2013), 24–42, 10.1016/j.earscirev.2013.05.009.
Koiter, A.J., Owens, P.N., Petticrew, E.L., Lobb, D.A., The role of gravel channel beds on the particle size and organic matter selectivity of transported fine-grained sediment: implications for sediment fingerprinting and biogeochemical flux research. J. Soils Sediments 15 (2015), 2174–2188, 10.1007/s11368-015-1203-6.
Laceby, J.P., Evrard, O., Smith, H.G., et al. The challenges and opportunities of addressing particle size effects in sediment source fingerprinting: a review. Earth Sci. Rev. 169 (2017), 85–103, 10.1016/j.earscirev.2017.04.009.
Lachance, C., Lobb, D.A., Pelletier, G., et al., 2020. Determination of sediment sources in a mixed watershed within the Appalachian-St. Lawrence Lowland Regions of southern Quebec using sediment fingerprinting. Environ Monit Assess 192:. Doi: 10.1007/s10661-020-08568-9.
Lamba, J., Karthikeyan, K.G., Thompson, A.M., Apportionment of suspended sediment sources in an agricultural watershed using sediment fingerprinting. Geoderma 239 (2015), 25–33, 10.1016/j.geoderma.2014.09.024.
Lichtfouse, É., Chenu, C., Baudin, F., et al. A novel pathway of soil organic matter formation by selective preservation of resistant straight-chain biopolymers: chemical and isotope evidence. Org. Geochem. 28 (1998), 411–415, 10.1016/S0146-6380(98)00005-9.
Liu, C., Li, Z., Dong, Y., et al. Response of sedimentary organic matter source to rainfall events using stable carbon and nitrogen isotopes in a typical loess hilly-gully catchment of China. J. Hydrol. (amst.) 552 (2017), 376–386, 10.1016/j.jhydrol.2017.07.006.
Lizaga, I., Gaspar, L., Blake, W.H., et al. Fingerprinting changes of source apportionments from mixed land uses in stream sediments before and after an exceptional rainstorm event. Geomorphology 341 (2019), 216–229, 10.1016/j.geomorph.2019.05.015.
Met Office, 2021. UK Climate Average. https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-climate-averages/gfjuxqwcs. Accessed 18 Jan 2021.
Meyers, P.A., Application of organic geochemistry to paleolimnological reconstruction: a summary of examples from the Laurention Great Lakes. Org. Geochem. 34 (2003), 261–289, 10.1016/S0146-6380(02)00168-7.
Mills, C.F., Bathurst, J.C., Spatial variability of suspended sediment yield in a gravel-bed river across four orders of magnitude of catchment area. Catena (amst) 133 (2015), 14–24, 10.1016/j.catena.2015.04.008.
Mokwe-Ozonzeadi, N., Foster, I., Valsami-Jones, E., McEldowney, S., Trace metal distribution in the bed, bank and suspended sediment of the Ravensbourne River and its implication for sediment monitoring in an urban river. J. Soils Sediments 19 (2019), 946–963, 10.1007/s11368-018-2078-0.
Mukundan, R., Radcliffe, D.E., Ritchie, J.C., et al. Sediment fingerprinting to determine the source of Suspended sediment in a southern Piedmont stream. J. Environ. Qual. 39 (2010), 1328–1337, 10.2134/jeq2009.0405.
Mukundan, R., Walling, D.E., Gellis, A.C., et al. Sediment source fingerprinting: transforming from a research tool to a Management tool. J. Am. Water Resour. Assoc. 48 (2012), 1241–1257, 10.1111/j.1752-1688.2012.00685.x.
Necula, C., Rossing, W.A.H., Easdale, M.H., Archetypes of climate change adaptation among large-scale arable farmers in southern Romania. Agron. Sustain. Dev., 44, 2024, 10.1007/s13593-024-00970-8.
Ordnance Survey, 2021. OS Terrain 5 [ASC geospatial data], Scale 1:10000, Tiles: nj30ne,nj30nw,nj30se,nj30sw,nj31se,nj31sw,nj40ne,nj40nw,nj40se,nj40sw,nj41se,nj41sw,nj50ne,nj50nw,nj50se,nj50sw,nj51se,nj51sw,no39ne,no39nw,no49ne,no49nw,no59ne,no59nw,. In: EDINA Digimap Ordnance Survey Service. https://digimap.edina.ac.uk. Accessed 14 Dec 2018.
Palazón, L., Latorre, B., Gaspar, L., et al. Comparing catchment sediment fingerprinting procedures using an auto-evaluation approach with virtual sample mixtures. Sci. Total Environ. 532 (2015), 456–466, 10.1016/j.scitotenv.2015.05.003.
Panagos, P., Borrelli, P., Meusburger, K., et al. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 48 (2015), 38–50, 10.1016/j.landusepol.2015.05.021.
Phillips, J.M., Russell, M.A., Walling, D.E., Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments. Hydrol. Process. 14 (2000), 2589–2602.
Pulley, S., Goubet, A., Moser, I., et al. The sources and dynamics of fine-grained sediment degrading the freshwater Pearl Mussel (Margaritifera margaritifera) beds of the river torridge, Devon, UK. Sci. Total Environ. 657 (2019), 420–434, 10.1016/j.scitotenv.2018.11.401.
Puttock, A., Dungait, J.A.J., Macleod, C.J.A., et al. Organic carbon from dryland soils. J. Geophys. Res. Biogeosci. 119 (2014), 2345–2357, 10.1002/2014JG002635.
R Core Team, 2020. R: A language and environment for statistical computing.
Rickson, R.J., Can control of soil erosion mitigate water pollution by sediments?. Sci. Total Environ. 468–469 (2014), 1187–1197, 10.1016/j.scitotenv.2013.05.057.
Rickson, R.J., Baggaley, N., Deeks, L.K., et al. Developing a method to estimate the costs of soil erosion in high- risk scottish catchments. 2019, Report to the Scottish Government, Available online from https://www.gov.scot/ISBN/978-1-83960-754-7.
Rickson, R.J., Deeks, L.K., Graves, A., et al. Input constraints to food production: the impact of soil degradation. Food Secur. 7 (2015), 351–364, 10.1007/s12571-015-0437-x.
RStudio Team, 2018. RStudio: Integrated Development for R.
Scheurer, K., Alewell, C., Bänninger, D., Burkhardt-Holm, P., Climate and land-use changes affecting river sediment and brown trout in alpine countries-a review. Environ. Sci. Pollut. Res. 16 (2009), 232–242, 10.1007/s11356-008-0075-3.
Scott, A., Cassidy, R., Arnscheidt, J., et al. Quantifying nutrient and sediment erosion at riverbank cattle access points using fine-scale geo-spatial data. Ecol. Indic., 155, 2023, 10.1016/j.ecolind.2023.111067.
Sherriff, S.C., Rowan, J.S., Fenton, O., et al. Influence of land management on soil erosion, connectivity, and sediment delivery in agricultural catchments: closing the sediment budget. Land Degrad. Dev. 30 (2019), 2257–2271, 10.1002/ldr.3413.
Sherwood, S.C., Hegerl, G., Braconnot, P., et al. Uncertain pathways to a future safe climate. Earths Future, 12, 2024.
Sidle, R.C., Sharma, A., Stream channel changes associated with mining and grazing in the Great Basin. J. Environ. Qual. 25 (1996), 1111–1121.
Sidle, R.C., Ziegler, A.D., Negishi, J.N., et al. Erosion processes in steep terrain - truths, myths, and uncertainties related to forest management in Southeast Asia. For. Ecol. Manage. 224 (2006), 199–225, 10.1016/j.foreco.2005.12.019.
Sikes, E.L., Uhle, M.E., Nodder, S.D., Howard, M.E., Sources of organic matter in a coastal marine environment: evidence from n-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand. Mar. Chem. 113 (2009), 149–163.
Sirjani, E., Mahmoodabadi, M., Cerdà, A., Sediment transport mechanisms and selective removal of soil particles under unsteady-state conditions in a sheet erosion system. Int. J. Sedim. Res. 37 (2022), 151–161, 10.1016/j.ijsrc.2021.09.006.
Smith, A.A., Tetzlaff, D., Soulsby, C., On the use of storage selection functions to assess time-variant travel times in lakes. Water Resour. Res. 54 (2018), 5163–5185, 10.1029/2017WR021242.
Smith, H.G., Karam, D.S., Lennard, A.T., Evaluating tracer selection for catchment sediment fingerprinting. J. Soils Sediments 18 (2018), 3005–3019, 10.1007/s11368-018-1990-7.
Stenfert Kroese, J., Batista, P.V.G., Jacobs, S.R., et al. Agricultural land is the main source of stream sediments after conversion of an African montane forest. Sci. Rep., 10, 2020, 14827, 10.1038/s41598-020-71924-9.
Stock, B.C., Jackson, A.L., Ward, E.J., et al., 2018. MixSIAR model description. 2018.
Stock, B.C., Semmens, B.X., 2016. MixSIAR GUI User Manual. Version 3.1.
Stout, S.A., Leaf wax n-alkanes in leaves, litter, and surface soil in a low diversity, temperate deciduous angiosperm forest, Central Missouri, USA. Chem. Ecol., 810–826, 2020, 10.1080/02757540.2020.1789118.
Stutter, M.I., Langan, S.J., Demars, B.O.L., River sediments provide a link between catchment pressures and ecological status in a mixed land use Scottish River system. Water Res. 41 (2007), 2803–2815, 10.1016/j.watres.2007.03.006.
Sun, W., Shao, Q., Liu, J., Soil erosion and its response to the changes of precipitation and vegetation cover on the loess Plateau. J. Geog. Sci. 23 (2013), 1091–1106, 10.1007/s11442-013-1065-z.
Swales, A., Gibbs, M.M., Transition in the isotopic signatures of fatty-acid soil biomarkers under changing land use: insights from a multi-decadal chronosequence. Sci. Total Environ., 722, 2020, 137850, 10.1016/j.scitotenv.2020.137850.
Thornton, B., Zhang, Z., Mayes, R.W., et al. Can gas chromatography combustion isotope ratio mass spectrometry be used to quantify organic compound abundance?. Rapid Commun. Mass Spectrom. 25 (2011), 2433–2438, 10.1002/rcm.5148.
Torres, T., Ortiz, J.E., Martín-Sánchez, D., et al. The long pleistocene record from the pego-oliva marshland (Alicante-Valencia, Spain). Geol. Soc. Spec. Publ. 388 (2014), 429–452, 10.1144/SP388.2.
Uber, M., Legout, C., Nord, G., et al. Comparing alternative tracing measurements and mixing models to fingerprint suspended sediment sources in a mesoscale Mediterranean catchment. J. Soils Sediments 19 (2019), 3255–3273, 10.1007/s11368-019-02270-1.
Upadhayay, H.R., Bodé, S., Griepentrog, M., et al. Isotope mixing models require individual isotopic tracer content for correct quantification of sediment source contributions. Hydrol. Process. 32 (2018), 981–989, 10.1002/hyp.11467.
Upadhayay, H.R., Joynes, A., Collins, A.L., 13C dicarboxylic acid signatures indicate temporal shifts in catchment sediment sources in response to extreme winter rainfall. Environ. Chem. Lett., 2024, 10.1007/s10311-023-01684-1.
Vercruysse, K., Grabowski, R.C., Using source-specific models to test the impact of sediment source classification on sediment fingerprinting. Hydrol. Process. 32 (2018), 3402–3415, 10.1002/hyp.13269.
Vercruysse, K., Grabowski, R.C., Temporal variation in suspended sediment transport: linking sediment sources and hydro-meteorological drivers. Earth Surf. Process. Landf., 2019, 10.1002/esp.4682.
Verstraeten, G., Van Oost, K., Van Rompaey, A., et al. Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modelling. Soil Use Manag. 18 (2002), 386–394, 10.1079/SUM2002150.
Wang, S., Szeles, B., Krammer, C., et al. Agricultural intensification vs. climate change: what drives long-term changes in sediment load?. Hydrol. Earth Syst. Sci. 26 (2022), 3021–3036, 10.5194/hess-26-3021-2022.
Wang, X., Blake, W.H., Taylor, A., et al. Evaluating the effectiveness of soil conservation at the basin scale using floodplain sedimentary archives. Sci. Total Environ., 792, 2021, 148414, 10.1016/j.scitotenv.2021.148414.
Wang, Y., Yang, H., Zhang, J., et al. Biomarker and stable carbon isotopic signatures for 100-200year sediment record in the chaihe catchment in southwest China. Sci. Total Environ. 502 (2015), 266–275, 10.1016/j.scitotenv.2014.09.017.
Wiesmeier, M., von Lützow, M., Spörlein, P., et al. Land use effects on organic carbon storage in soils of Bavaria: the importance of soil types. Soil Till. Res. 146 (2015), 296–302, 10.1016/j.still.2014.10.003.
Wiltshire, C., Glendell, M., Waine, T.W., et al. Assessing the source and delivery processes of organic carbon within a mixed land use catchment using a combined n-alkane and carbon loss modelling approach. J. Soils Sediments, 1629–1642, 2022, 10.1007/s11368-022-03197-w.
Wiltshire, C., Meersmans, J., Waine, T.W., et al. Evaluating the performance of erosion risk models in a Scottish catchment using organic carbon fingerprinting. J. Soils Sediments, 2024, 10.1007/s11368-024-03850-6.
Wiltshire, C., Waine, T.W., Grabowski, R.C., et al. Assessing n -alkane and neutral lipid biomarkers as tracers for land-use specific sediment sources. Geoderma, 433, 2023, 10.1016/j.geoderma.2023.116445.
Wohl, E., Bledsoe, B.P., Jacobson, R.B., et al. The natural sediment regime in rivers: broadening the foundation for ecosystem management. Bioscience 65 (2015), 358–371, 10.1093/biosci/biv002.
Zech, M., Buggle, B., Leiber, K., et al. Reconstructing Quaternary vegetation history in the Carpathian Basin, SE-Europe, using n-alkane biomarkers as molecular fossils: problems and possible solutions, potential and limitations. Quat. Sci. J. 58 (2009), 148–155, 10.3285/eg.58.2.03.
Zech, M., Krause, T., Meszner, S., Faust, D., Incorrect when uncorrected: reconstructing vegetation history using n-alkane biomarkers in loess-paleosol sequences - a case study from the Saxonian loess region, Germany. Quat. Int. 296 (2013), 108–116, 10.1016/j.quaint.2012.01.023.
Zhang, S., Li, Z., Hou, X., Yi, Y., Impacts on watershed-scale runoff and sediment yield resulting from synergetic changes in climate and vegetation. Catena (amst) 179 (2019), 129–138, 10.1016/j.catena.2019.04.007.
Zhang, Y., Collins, A.L., McMillan, S., et al. Fingerprinting source contributions to bed sediment-associated organic matter in the headwater subcatchments of the river Itchen SAC, Hampshire, UK. River Res. Appl. 33 (2017), 1515–1526, 10.1002/rra.3172.