[en] Milk contains microRNAs (miRNA) that are shielded by small extracellular vesicles (sEVs). Beyond variations among individuals, many factors including nutrition play a role in shaping miRNA expression profiles. This study is to explore milk-derived sEVs-miRNA variations induced by inulin supplementation in subclinical mastitis-suffering cows. Fourteen lactating cows diagnosed with subclinical mastitis were equally assigned to either an inulin or a control group. Apart from total mixed rations, cows in the inulin group were provided with 300 g/d inulin during the morning feeding, while the control group did not receive any supplement. Following 1 wk of adaptation and 5 wk of treatment, sEVs-miRNA were isolated from the milk of each cow. RNA is subjected to high-throughput sequencing and differentially expressed (DE) miRNA (P < 0.05 and ∣ log2FC∣> 1) were detected through bioinformatics analysis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to examine the target genes of DE miRNA. A sum of 350 miRNA was discovered, including 332 in the control group and 249 in the inulin group. Among these, 9 miRNA showed differential expression within the 2 groups, including 3 upregulated and 6 downregulated in the inulin group. The DE miRNA participates in regulating organismal systems, cellular processes, and signal transduction, which may affect inflammatory response and milk production. Overall, our study provides insight into the micromolecular-level mechanism of inulin in alleviating subclinical mastitis in dairy cows. [en] Subclinical mastitis is an inflammatory reaction in the mammary gland without evident signs. Inulin as a plant extract can mitigate subclinical mastitis and promote health conditions. Both health and nutritional conditions can influence microRNA profiles. Therefore, we explored milk-derived small extracellular vesicle microRNA variations induced by inulin supplementation and analyzed involved pathways in dairy cows with subclinical mastitis. Our study supplies insight into the micromolecular-level mechanism of inulin in alleviating subclinical mastitis in dairy cows.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Yu, Wanjie ; Université de Liège - ULiège > TERRA Research Centre
Nan, Xuemei; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
Schroyen, Martine ; Université de Liège - ULiège > TERRA Research Centre > Animal Sciences (AS)
Wang, Yue; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
Zhou, Mengting; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
Tang, Xiangfang; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
Xiong, Benhai; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
Language :
English
Title :
Effect of inulin on small extracellular vesicles microRNAs in milk from dairy cows with subclinical mastitis.
The study was funded by the National Key Research and Development Program of China (2022YFD1301100) and Science and Technology Innovation Project of the Institute of Animal Sciences (jc-cxgc-ias-09-1).
Blaxland, J., R. Thomas, and L. Baillie. 2022. The antibacterial effect of (Hops) against BCG: a promising alternative in the fight against bovine tuberculosis? Beverages. 8:43. doi: 10.3390/bever-ages8030043
Cai, M. C., W. Q. Fan, X. Y. Li, H. C. Sun, L. L. Dai, D. F. Lei, Y. Dai, and Y. H. Liao. 2021. The regulation of staphylococcus aureus-induced inflammatory responses in bovine mammary epithelial cells. Front. Vet. Sci. 8:683886. doi: 10.3389/fvets.2021.683886
Cao, Q., Z. D. Mao, Y. J. Shi, Y. Chen, Y. Sun, Q. Zhang, L. Song, and L. P. Peng. 2016. MicroRNA-7 inhibits cell proliferation, migration and invasion in human non-small cell lung cancer cells by targeting FAK through ERK/MAPK signaling pathway. Oncotarget. 7:77468–77481. doi: 10.18632/oncotarget.12684
Cao, G. J., J. Liu, H. Liu, X. J. Chen, N. Yu, X. B. Li, and F. Xu. 2023. Integration of network pharmacology and molecular docking to analyse the mechanism of action of oregano essential oil in the treatment of bovine mastitis. Vet. Sci. 10:350. doi: 10.3390/vet-sci10050350
Chen, X., C. Gao, H. J. Li, L. Huang, Q. Sun, Y. Y. Dong, C. L. Tian, S. P. Gao, H. L. Dong, D. P. Guan, et al. 2010. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res. 20:1128–1137. doi: 10.1038/cr.2010.80
Chen, Z., S. F. Chu, X. L. Wang, Y. J. Sun, T. L. Xu, Y. J. Mao, J. J. Loor, and Z. P. Yang. 2019. MiR-16a regulates milk fat metabolism by targeting large tumor suppressor kinase 1 (LATS1) in bovine mammary epithelial cells. J Agr. Food Chem. 67:11167–11178. doi: 10.1021/acs.jafc.9b04883
Chen, Z. J., Y. Q. Xie, J. Y. Luo, T. Chen, Q. Y. Xi, Y. L. Zhang, and J. J. Sun. 2020. Milk exosome-derived miRNAs from water buffalo are implicated in immune response and metabolism process. BMC Vet. Res. 16:123. doi: 10.1186/s12917-020-02339-x
Colitti, M., S. Sgorlon, and B. Stefanon. 2020. Exosome cargo in milk as a potential marker of cow health. J. Dairy Res. 87:79–83. doi: 10.1017/S0022029920000485
Do, D. N., R. Li, P. L. Dudemaine, and E. M. Ibeagha-Awemu. 2017. MicroRNA roles in signalling during lactation: an insight from differential expression, time course and pathway analyses of deep sequence data. Sci. Rep. 7:44605. doi: 10.1038/srep44605
Do, D. N., P. L. Dudemaine, M. Mathur, P. Suravajhala, X. Zhao, and E. M. Ibeagha-Awemu. 2021. miRNA regulatory functions in farm animal diseases, and biomarker potentials for effective therapies. Int. J. Mol. Sci. 22:3080. doi: 10.3390/ijms22063080
Egea, V., K. Kessenbrock, D. Lawson, A. Bartelt, C. Weber, and C. Ries. 2021. Let-7f miRNA regulates SDF-1α- and hypoxia-promoted migration of mesenchymal stem cells and attenuates mammary tumor growth upon exosomal release. Cell Death Dis. 12:516. doi: 10.1038/s41419-021-03789-3
El-kattawy, A. M., O. Algezawy, M. Y. Alfaifi, E. A. Noseer, Y. M. Hawsawi, O. R. Alzahrani, A. Algarni, K. A. Kahilo, and M. A. El-Magd. 2021. Therapeutic potential of camel milk exosomes against HepaRG cells with potent apoptotic, anti-inflammatory, and anti-angiogenesis effects for colostrum exosomes. Biomed. Pharmacother. 143:112220. doi: 10.1016/j.biopha.2021.112220
Fan, C. Y., R. T. Hu, H. X. Fan, Y. Yang, B. Gong, S. Z. Zhang, J. P. Ding, Y. J. Su, Z. Zhuo, and J. B. Cheng. 2021a. Effects of seasonal ambient heat stress on expression of microRNAs in the mammary gland of Holstein cows. Int. J. Biometeorol. 65:235–246. doi: 10.1007/ s00484-020-02025-5
Fan, T., C. Q. Wang, X. T. Li, H. Yang, J. Zhou, and Y. J. Song. 2021b. MiR-22-3p suppresses cell migration and invasion by targeting PLAGL2 in breast cancer. J Coll Physicians Surg Pak. 31:937–940. doi: 10.29271/jcpsp.2021.08.937
Friedländer, M. R., S. D. Mackowiak, N. Li, W. Chen, and N. Rajewsky. 2011. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40:37–52. doi: 10.1093/nar/gkr688
Gao, Y. A., Y. Qin, C. Wan, Y. J. Sun, J. S. Meng, J. Huang, Y. Hu, H. L. Jin, and K. Y. Yang. 2021. Small extracellular vesicles: a novel avenue for cancer management. Front. Oncol. 11:638357. doi: 10.3389/fonc.2021.638357
Gasparik, M., L. Stadnik, J. Duchacek, and M. Vrhel. 2022. Milkability of Holstein cows is significantly affected by the incidence of clinical mastitis for weeks after diagnosis. J. Dairy Res. 89:71–74. doi: 10.1017/s002202992200005x
Gordon, A., and G. J. Hannon. 2010. Fastx-toolkit. FASTQ/A short-reads pre-processing tools. Accessed May 8, 2024. https://hannonlab.cshl.edu/fastx_toolkit/
Griffiths-Jones, S., A. Bateman, M. Marshall, A. Khanna, and S. R. Eddy. 2003. Rfam: an RNA family database. Nucleic. Acids Res. 31:439–441. doi: 10.1093/nar/gkg006
Guo, Y. M., L. Li, S. M. Yan, and B. L. Shi. 2023. Plant extracts to alleviating heat stress in dairy cows. Animals (Basel). 13:2831. doi: 10.3390/ani13182831
Hill, D. R., and D. S. Newburg. 2015. Clinical applications of bioactive milk components. Nutr. Rev. 73:463–476. doi: 10.1093/nutrit/ nuv009
Ibrahim, N., F. Regassa, T. Yilma, and T. Tolosa. 2023. Impact of subclinical mastitis on uterine health, reproductive performances and hormonal profile of Zebu x Friesian crossbred dairy cows in and around Jimma town dairy farms, Ethiopia. Heliyon. 9:e16793. doi: 10.1016/j.heliyon.2023.e16793
Ikoma-Seki, K., K. Nakamura, S. Morishita, T. Ono, K. Sugiyama, H. Nishino, H. Hirano, and M. Murakoshi. 2015. Role of LRP1 and ERK and cAMP signaling pathways in lactoferrin-induced lipolysis in mature rat adipocytes. PLoS One 10:e0141378. doi: 10.1371/ journal.pone.0141378
Izumi, H., M. Tsuda, Y. Sato, N. Kosaka, T. Ochiya, H. Iwamoto, K. Namba, and Y. Takeda. 2015. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. J. Dairy Sci. 98:2920–2933. doi: 10.3168/jds.2014-9076
Kasimanickam, V., and J. Kastelic. 2016. Circulating cell-free mature microRNAs and their target gene prediction in bovine metritis. Sci. Rep.-Uk. 6:29509. doi: 10.1038/srep29509
Khan, W., S. A. Khan, F. A. Khan, S. Khan, I. Ullah, A. Shah, I. Uddin, H. Khan, M. N. Uddin, F. Akbar, et al. 2023. Therapeutic potential of natural products and antibiotics against bovine mastitis pathogen of cows and buffaloes. Vet. Med-Czech 68:271–280. doi: 10.17221/80/2022-Vetmed
Kok, A., G. Tsousis, G. Niozas, B. Kemp, M. Kaske, and A. T. M. van Knegsel. 2021. Short communication: variance and autocorrelation of deviations in daily milk yield are related with clinical mastitis in dairy cows. Animal 15:100363. doi: 10.1016/j.ani-mal.2021.100363
Kozomara, A., M. Birgaoanu, and S. Griffiths-Jones. 2019. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47:D155–D162. doi: 10.1093/nar/gky1141
Kreuzer-Redmer, S., J. C. Bekurtz, D. Arends, R. Bortfeldt, B. Kutz-Lohroff, S. Sharbati, R. Einspanier, and G. A. Brockmann. 2016. Feeding of NCIMB 10415 leads to intestinal miRNA-423-5pinduced regulation of immune-relevant genes. Appl. Environ. Microb. 82:2263–2269. doi: 10.1128/Aem.04044-15
Kuokkanen, S., B. Chen, L. Ojalvo, L. Benard, N. Santoro, and J. W. Pollard. 2010. Genomic profiling of MicroRNAs and messenger RNAs reveals hormonal regulation in MicroRNA expression in human endometrium. Biol. Reprod. 82:791–801. doi: 10.1095/ biolreprod.109.081059
Lai, Y. C., Y. T. Lai, M. M. Rahman, H. W. Chen, A. Husna, T. Fujikawa, T. Ando, G. Kitahara, M. Koiwa, C. Kubota, et al. 2020. Bovine milk transcriptome analysis reveals microRNAs and RNU2 involved in mastitis. FEBS J. 287:1899–1918. doi: 10.1111/febs.15114
Lasa, M., and C. Contreras-Jurado. 2022. Thyroid hormones act as modulators of inflammation through their nuclear receptors. Front. Endocrinol. (Lausanne). 13:937099. doi: 10.3389/ fendo.2022.937099
Leduc, A., S. Le Guillou, D. Laloe, L. Herve, J. Laubier, P. Poton, Y. Faulconnier, J. Pires, M. Gele, P. Martin, et al. 2023. MiRNome variations in milk fractions during feed restrictions of different intensities in dairy cows. BMC Genomics. 24:680. doi: 10.1186/ s12864-023-09769-5
Li, W. Q., W. L. Li, X. Y. Wang, H. L. Zhang, L. F. Wang, and T. Y. Gao. 2022. Comparison of miRNA profiles in milk-derived extracellular vesicles and bovine mammary glands. Int. Dairy J. 134:105444. doi: 10.1016/j.idairyj.2022.105444
Lin, H. L., T. Q. Lin, J. G. Lin, M. G. Yang, Z. X. Shen, H. J. Liu, Z. K. Zou, and Z. D. Zheng. 2019. Inhibition of miR-423-5p suppressed prostate cancer through targeting GRIM-19. Gene 688:93–97. doi: 10.1016/j.gene.2018.11.021
Liu, H. F., and B. Jiang. 2020. Let-7a-5p represses proliferation, migration, invasion and epithelial-mesenchymal transition by targeting Smad2 in TGF-β2-induced human lens epithelial cells. J. Biosci. 45:59. doi: 10.1007/s12038-020-0001-5
Liu, S., Z. Wang, R. Zhu, F. Wang, Y. Cheng, and Y. Liu. 2021. Three differential expression analysis methods for RNA sequencing: limma, EdgeR, DESeq2. JoVE 175:e62528. doi: 10.3791/62528
Minato, N., K. Kometani, and M. Hattori. 2007. Regulation of immune responses and hematopoiesis by the Rap1 signal. Adv. Immunol. 93:229–264. doi: 10.1016/S0065-2776(06)93006-5
Nobrega, D. B., S. A. Naqvi, S. Dufour, R. Deardon, J. P. Kastelic, J. De Buck, and H. W. Barkema. 2020. Critically important antimicrobials are generally not needed to treat nonsevere clinical mastitis in lactating dairy cows: results from a network meta-analysis. J. Dairy Sci. 103:10585–10603. doi: 10.3168/jds.2020-18365
Olson, M. F., and R. Marais. 2000. Ras protein signalling. Semin. Immunol. 12:63–73. doi: 10.1006/smim.2000.0208
Ong, S. L., C. Blenkiron, S. Haines, A. Acevedo-Fani, J. A. S. Leite, J. Zempleni, R. C. Anderson, and M. J. McCann. 2021. Ruminant milk-derived extracellular vesicles: a nutritional and therapeutic opportunity? Nutrients. 13:2505. doi: 10.3390/nu13082505
Patel, R. K., and M. Jain. 2012. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619. doi: 10.1371/journal.pone.0030619
Quan, S. Y., X. M. Nan, K. Wang, Y. G. Zhao, L. S. Jiang, J. H. Yao, and B. H. Xiong. 2020. Replacement of forage fiber with non-forage fiber sources in dairy cow diets changes milk extracellular vesicle-miRNA expression. Food Funct. 11:2154–2162. doi: 10.1039/ c9fo03097b
Ran, H. B., Y. Yang, M. N. Luo, X. R. Liu, B. L. Yue, Z. X. Chai, J. C. Zhong, and H. Wang. 2022. Molecular regulation of yak preadipocyte differentiation and proliferation by LncFAM200B and ceRNA regulatory network analysis. Cells (Basel) 11:2366. doi: 10.3390/ cells11152366
Ross, M., H. Atalla, N. Karrow, and B. A. Mallard. 2021. The bioactivity of colostrum and milk exosomes of high, average, and low immune responder cows on human intestinal epithelial cells. J. Dairy Sci. 104:2499–2510. doi: 10.3168/jds.2020-18405
Ruegg, P. L. 2017. A 100-year review: mastitis detection, management, and prevention. J. Dairy Sci. 100:10381–10397. doi: 10.3168/ jds.2017-13023
Sadiq, N. M., and P. Tadi. 2024. Physiology, pituitary hormones. Treasure Island, FL: StatPearls.
Saiyed, A. N., A. R. Vasavada, and S. R. K. Johar. 2022. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. Futur. J Pharm. Sci. 8:24. doi: 10.1186/s43094-022-00413-9
Samuel, M., D. Chisanga, M. Liem, S. Keerthikumar, S. Anand, C. S. Ang, C. G. Adda, E. Versteegen, M. Jois, and S. Mathivanan. 2017. Bovine milk-derived exosomes from colostrum are enriched with proteins implicated in immune response and growth. Sci. Rep-Uk. 7:5933. doi: 10.1038/s41598-017-06288-8
Samuel, M., P. Fonseka, R. Sanwlani, L. Gangoda, S. H. Chee, S. Keerthikumar, A. Spurling, S. V. Chitti, D. Zanker, C. S. Ang, et al. 2021. Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis. Nat. Commun. 12:3950. doi: 10.1038/s41467-021-24273-8
Smulski, S., M. Gehrke, K. Libera, A. Cieslak, H. Huang, A. K. Patra, and M. Szumacher-Strabel. 2020. Effects of various mastitis treatments on the reproductive performance of cows. BMC Vet. Res. 16:99. doi: 10.1186/s12917-020-02305-7
Stefanon, B., M. Cintio, S. Sgorlon, E. Scarsella, D. Licastro, A. Zecconi, and M. Colitti. 2023. Regulatory role of microRNA of milk exosomes in mastitis of dairy cows. Animals (Basel) 13:821. doi: 10.3390/ani13050821
Stoorvogel, W., M. J. Kleijmeer, H. J. Geuze, and G. Raposo. 2002. The biogenesis and functions of exosomes. Traffic. 3:321–330. doi: 10.1034/j.1600-0854.2002.30502.x
Su, M. Q., Y. H. She, M. Deng, Y. Q. Guo, Y. K. Li, G. B. Liu, B. L. Sun, and D. W. Liu. 2023. Effect of capsaicin addition on antioxidant capacity, immune performance and upper respiratory microbiota in nursing calves. Microorganisms. 11:1903. doi: 10.3390/micro-organisms11081903
Sullivan, T., A. Sharma, K. Lamers, C. White, B. A. Mallard, A. Cánovas, and N. A. Karrow. 2022. Dynamic changes in Holstein heifer circulatory stress biomarkers in response to lipopolysaccharide immune challenge. Vet. Immunol. Immunop. 248:110426. doi: 10.1016/j. vetimm.2022.110426
Sun, J. J., K. Aswath, S. G. Schroeder, J. D. Lippolis, T. A. Reinhardt, and T. S. Sonstegard. 2015. MicroRNA expression profiles of bovine milk exosomes in response to infection. BMC Genomics 16:806. doi: 10.1186/s12864-015-2044-9
Tino, P. 2009. Basic properties and information theory of audic-claverie statistic for analyzing cDNA arrays. BMC Bioinf. 10:310. doi: 10.1186/1471-2105-10-310
Tsukada, F., S. Takashima, Y. Wakihara, Y. O. Kamatari, K. Shimizu, A. Okada, and Y. Inoshima. 2022. Characterization of miRNAs in milk small extracellular vesicles from enzootic bovine leukosis cattle. Int. J. Mol. Sci. 23:10782. doi: 10.3390/ijms231810782
Usman, M., C. N. Zhang, P. J. Patil, A. Mehmood, X. T. Li, M. Bilal, J. Haider, and S. Ahmad. 2021. Potential applications of hydrophobically modified inulin as an active ingredient in functional foods and drugs - a review. Carbohyd. Polym. 252:117176. doi: 10.1016/j. carbpol.2020.117176
Wang, Y., X. M. Nan, Y. G. Zhao, H. Wang, M. L. Wang, L. S. Jiang, F. Zhang, F. G. Xue, D. K. Hua, K. M. Li, et al. 2020. Coupling 16S rDNA sequencing and untargeted mass spectrometry for milk microbial composition and metabolites from dairy cows with clinical and subclinical mastitis. J Agr. Food Chem. 68:8496–8508. doi: 10.1021/acs.jafc.0c03738
Wang, L. F., X. Y. Wang, Z. X. Shi, L. Shen, J. Zhang, and J. Zhang. 2021a. Bovine milk exosomes attenuate the alteration of purine metabolism and energy status in IEC-6 cells induced by hydrogen peroxide. Food Chem. 350:129142. doi: 10.1016/j.food-chem.2021.129142
Wang, Y., X. M. Nan, Y. G. Zhao, L. S. Jiang, H. Wang, D. K. Hua, F. Zhang, Y. P. Wang, J. Liu, J. H. Yao, et al. 2021b. Dietary supplementation with inulin improves lactation performance and serum lipids by regulating the rumen microbiome and metabolome in dairy cows. Anim. Nutr. 7:1189–1204. doi: 10.1016/j. aninu.2021.09.007
Wang, Y., X. M. Nan, Y. G. Zhao, L. S. Jiang, H. Wang, F. Zhang, D. K. Hua, J. Liu, J. H. Yao, L. Yang, et al. 2022. Consumption of supplementary inulin modulates milk microbiota and metabolites in dairy cows with subclinical mastitis. Appl. Environ. Microb. 88:e0205921. doi: 10.1128/aem.02059-21
Wu, R. Y., P. Maattanen, S. Napper, E. Scruten, B. Li, Y. Koike, K. C. Johnson-Henry, A. Pierro, L. Rossi, S. R. Botts, et al. 2017. Non-digestible oligosaccharides directly regulate host kinome to modulate host inflammatory responses without alterations in the gut microbiota. Microbiome. 5:135. doi: 10.1186/s40168-017-0357-4
Xie, M. Y., L. N. Zhang, L. Y. Li, M. H. Fan, and L. J. Hou. 2020. MiR-339 attenuates LPS-induced intestinal epithelial cells inflammatory responses and apoptosis by targeting TLR4. Genes Genom. 42:1097–1105. doi: 10.1007/s13258-020-00977-x
Yu, T., P. Wang, Y. X. Wu, J. B. Zhong, Q. S. Chen, D. M. Wang, H. Chen, S. F. Hu, and Q. S. Wu. 2022. MiR-26a reduces inflammatory responses via inhibition of pge2 production by targeting COX-2. Inflammation 45:1484–1495. doi: 10.1007/s10753-022-01631-2
Yu, S. Q., L. X. Li, H. Y. Zhao, M. Liu, L. S. Jiang, and Y. C. Zhao. 2023a. Citrus flavonoid extracts alter the profiling of rumen antibiotic resistance genes and virulence factors of dairy cows. Front. Microbiol. 14:1201262. doi: 10.3389/fmicb.2023.1201262
Yu, W., X. Nan, M. Schroyen, Y. Wang, and B. Xiong. 2023b. Inulin-induced differences on serum extracellular vesicles derived miRNAs in dairy cows suffering from subclinical mastitis. Animal. 17:100954. doi: 10.1016/j.animal.2023.100954
Yun, B., Y. Kim, D. J. Park, and S. Oh. 2021. Comparative analysis of dietary exosome-derived microRNAs from human, bovine and caprine colostrum and mature milk. J. Anim. Sci. Technol. 63:593–602. doi: 10.5187/jast.2021.e39
Zhang, J. W., L. Han, and F. Chen. 2021. Let-7a-5p regulates the inflammatory response in chronic rhinosinusitis with nasal polyps. Diagn. Pathol. 16:27. doi: 10.1186/s13000-021-01089-0
Zhang, Y., Y. Xu, B. Chen, B. Zhao, and X. J. Gao. 2022a. Selenium deficiency promotes oxidative stress-induced mastitis via activating the NF-kappaB and MAPK pathways in dairy cow. Biol. Trace Elem. Res. 200:2716–2726. doi: 10.1007/s12011-021-02882-0
Zhang, Y. D., Q. B. Xu, J. X. Hou, G. X. Huang, S. G. Zhao, N. Zheng, and J. Q. Wang. 2022b. Loss of bioactive microRNAs in cow’s milk by ultra-high-temperature treatment but not by pasteurization treatment. J Sci. Food. Agr. 102:2676–2685. doi: 10.1002/ jsfa.11607
Zhang, M., Y. Ma, X. Ye, N. Zhang, L. Pan, and B. Wang. 2023. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal. Transduct. Target Ther. 8:261. doi: 10.1038/s41392-023-01464-x
Zhao, Y. G., Y. Wang, X. M. Nan, L. S. Jiang, Y. P. Wang, J. Liu, J. H. Yao, M. T. Rahman, and B. H. Xiong. 2022. Responses of lactation, rumen fermentation and blood biochemical parameters with increasing dietary inulin supplementation in mid-lactation dairy cows. Agriculture (Basel). 12:521. doi: 10.3390/agricul-ture12040521
Zhou, F., H. A. Paz, M. Sadri, J. Cui, S. D. Kachman, S. C. Fernando, and J. Zempleni. 2019. Dietary bovine milk exosomes elicit changes in bacterial communities in C57BL/6 mice. Am. J. Physiol. Gastrointest. Liver Physiol. 317:G618–G624. doi: 10.1152/ ajpgi.00160.2019
Zhu, Y. T., J. X. Liu, J. M. Lopez, and D. A. Mills. 2020. Inulin fermentation by lactobacilli and bifidobacteria from dairy calves. Appl. Environ. Microb. 87:e01738-20. doi: 10.1128/ AEM.01738-20