Article (Scientific journals)
Integrating high-resolution data and species-level traits for enhanced ecosystem projections using a dynamic vegetation model: Case study in Wallonia, Belgium.
Verma, Arpita; Lanssens, Benjamin; Tölle, Merja et al.
2025In Journal of Environmental Management, 375, p. 124329
Peer Reviewed verified by ORBi
 

Files


Full Text
Verma_etal_JEMA2025-1_PostprintAuteur.pdf
Author postprint (5.34 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
CARAIB dynamic vegetation model; Carbon sequestration; Climate change; Land use change; Regional scale; Satellite observation; Carbon; Soil; Belgium; Forests; Carbon Sequestration; Models, Theoretical; Soil/chemistry; Ecosystem; Biomass; Dynamic vegetation model; Gross primary production; Landuse change; Mitigation strategy; Satellite observations; Total soil carbon; Environmental Engineering; Waste Management and Disposal; Management, Monitoring, Policy and Law
Abstract :
[en] Accurate quantification of carbon dynamics is critical for developing effective climate mitigation strategies. In this study, we employed the CARAIB dynamic vegetation model (DVM) to analyze carbon fluxes and stocks (biomass and total soil carbon) in Wallonia, Belgium (1980-2070), integrating species-level traits, high-resolution land use/land cover (LULC) data, climate data, and type-1 fuzzy logic for uncertainty quantification. We provide insights into ecosystem resilience and carbon sequestration under Representative Concentration Pathways (RCPs) 2.6 and 8.5. Historical results (1980-2020) demonstrated strong model performance, with gross primary production (GPP) validation achieving R2 > 0.85 against MODIS and GOSIF datasets, and aboveground biomass correlating well with GEDI (R2 = 0.77) and ESA-CCI (R2 = 0.91) datasets. Grasslands emerged as critical carbon sinks, exhibiting the highest mean GPP (2480 g C m-2 yr-1), surpassing forests due to rapid growth and belowground carbon storage. Future projections (2021-2070) identified afforestation as a robust mitigation strategy, increasing forest GPP by 18% and total biomass by 60-110 Mt C under RCP 8.5. Under RCP 2.6, total biomass was more stable due to the milder emissions trajectory, emphasizing its potential for long-term ecosystem resilience. Interestingly, total soil carbon showed similar levels across both RCPs, indicating belowground carbon resilience despite emissions differences. Sensitivity analyses of LULC scenarios highlighted grassland resilience, with grasslands sustaining a high GPP (2604-2728 g C m-2 yr-1) and contributing significantly to soil carbon storage, while deforestation caused substantial carbon losses. These findings underscore the need for nuanced land management, integrating afforestation and grassland conservation, to enhance resilience and sustainable carbon sequestration under climate change.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Verma, Arpita  ;  Université de Liège - ULiège > Sphères
Lanssens, Benjamin  ;  Université de Liège - ULiège > Sphères
Tölle, Merja ;  Center for Environmental Systems Research, University of Kassel, Germany
Jacquemin, Ingrid  ;  Université de Liège - ULiège > Sphères
Chaudhari, Tarunsinh Jayvirsinh ;  Université de Liège - ULiège > Sphères
Hambuckers, Alain  ;  Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
François, Louis  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Language :
English
Title :
Integrating high-resolution data and species-level traits for enhanced ecosystem projections using a dynamic vegetation model: Case study in Wallonia, Belgium.
Publication date :
February 2025
Journal title :
Journal of Environmental Management
ISSN :
0301-4797
eISSN :
1095-8630
Publisher :
Academic Press, England
Volume :
375
Pages :
124329
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
MAPPY
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
DLR - Deutsches Zentrum für Luft- und Raumfahrt
BMBF - Federal Ministry of Education and Research
Available on ORBi :
since 10 June 2025

Statistics


Number of views
89 (8 by ULiège)
Number of downloads
65 (4 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi