[en] Anaplasmosis is a tick-borne disease (TBDs) caused by Anaplasma spp. In areas where TBDs are endemic, it is crucial to consider the animals' immunological status in relation to these diseases. The true prevalence of bovine anaplasmosis, the percentage of animals with protective antibodies against this TBD, and the diagnostic characteristics of three tests (multiplex polymerase chain reaction (mPCR), competitive-inhibition enzyme-linked immunosorbent assay (cELISA), and blood smear (BS)) were estimated using a Bayesian approach. A total of 620 samples were collected in two subtropical areas of Ecuador. A significant finding of this study is that approximately 70% of cattle in those endemic areas harbored protective antibodies against Anaplasma marginale. This elevated percentage may stem from persistent exposure with a high pathogen prevalence in ticks. The decline in cELISA specificity must be attributed to cross-reactivity with protective antibodies against Anaplasma spp. It is crucial to interpret this test outcome alongside exposure history and clinical manifestations. The elevated apparent prevalence detected by cELISA and BS should be contextualized with mPCR results. The high seroprevalence and infrequent clinical outbreaks suggest that the pathogen has achieved endemic stability. This study provides valuable insights into the dynamics of anaplasmosis in endemic areas and may serve as a foundation for devising TBDs control strategies in these areas.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Paucar-Quishpe, Valeria; Research Unit of Epidemiology and Risk Analysis applied to Veterinary Science (UREAR-ULiège), Fundamental and Applied Research for Animals & Health (FARAH) Center/Faculty of Veterinary Medicine, University of Liege, Liège, Belgium ; Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
Berkvens, Dirk; Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
Pérez-Otáñez, Ximena; Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador ; Georges Lemaitre Centre for Earth and Climate Research, Earth & Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
Rodríguez-Hidalgo, Richar; Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador ; Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
Cepeda-Bastidas, Darío ; Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito, Ecuador
Perez, Cecilia ; Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
Guasumba, Yadira; Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
Balseca, Daniela; Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador ; Centro de Biología, Universidad Central del Ecuador. Quito, Ecuador
Villareal, Kamilo; Facultad de Ciencias Químicas, Universidad Central del Ecuador. Quito, Ecuador
Chavez Larrea, María Augusta ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) ; Departamento de Ciencias de la Vida y la Agricultura, Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
Enríquez, Sandra; Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
Grijalva, Jorge; Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
Vanwambeke, Sophie O; Georges Lemaitre Centre for Earth and Climate Research, Earth & Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
Saegerman, Claude ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Epidémiologie et analyse des risques appliqués aux sciences vétérinaires
Ron-Garrido, Lenin; Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador ; Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
Academy of Research and Higher Education (ARES) The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Our thanks to the Instituto de Investigaci\u00F3n en Zoonosis (CIZ), Universidad Central del Ecuador (UCE), UCLouvain and the University of Li\u00E8ge for their collaboration in this project, as well as to the students and professionals who assisted with the fieldwork, and to all the farmers who participated.
Ogata S, Pereira JAC, Jhonny LVA, Carolina HPG, Matsuno K, Orba Y, et al. Molecular survey of Babesia and Anaplasma infection in cattle in Bolivia. Vet Sci. 2021;8(9):188. https://doi.org/10.3390/ vetsci8090188 PMID: 34564582
Aubry P, Geale DW. A review of bovine anaplasmosis. Transbound Emerg Dis. 2011;58(1):1–30. https://doi.org/10.1111/j.1865-1682.2010.01173.x PMID: 21040509
Orenge CO. Combating and controlling nagana and tick-borne diseases in livestock [Internet]. Orenge CO, editor. IGI Global; 2021. p. 440 (Advances in Environmental Engineering and Green Technologies). Available from: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-6433-2
Kocan KM, de la Fuente J, Guglielmone AA, Meléndez RD. Antigens and alternatives for control of Anaplasma marginale infection in cattle. Clin Microbiol Rev. 2003;16(4):698–712. https://doi.org/10.1128/CMR.16.4.698-712.2003 PMID: 14557295
Kocan KM, de la Fuente J, Blouin EF, Coetzee JF, Ewing SA. The natural history of Anaplasma marginale. Vet Parasitol [Internet]. 2010;167(2–4):95–107. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S0304401709005457
Rodrigues GD, Lucas M, Ortiz HG, Dos Santos Gonçalves L, Blodorn E, Domingues WB, et al. Molecular of Anaplasma marginale Theiler (Rickettsiales: Anaplasmataceae) in horseflies (Diptera: Tabanidae) in Uruguay. Sci Rep. 2022;12(1):22460. https://doi.org/10.1038/s41598-022-27067-0 PMID: 36577829
Hornok S, Földvári G, Elek V, Naranjo V, Farkas R, de la Fuente J. Molecular identification of Anaplasma marginale and rickettsial endosymbionts in blood-sucking flies (Diptera: Tabanidae, Muscidae) and hard ticks (Acari: Ixodidae). Vet Parasitol. 2008;154(3–4):354–9. https://doi.org/10.1016/j.vetpar.2008.03.019 PMID: 18495345
Gonzalez Grau HE, Da Cunha Filho NA, Pappen FG, Da Rosa Farias NA. Transplacental transmission of Anaplasma marginale in beef cattle chronically infected in southern Brazil. Rev Bras Parasitol Veterinária [Internet]. 2013;22(2):189–93. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-29612013000200189&lng=en&tlng=en
Potgieter FT, van Rensburg L. The persistence of colostral Anaplasma antibodies and incidence of in utero transmission of Anaplasma infections in calves under laboratory conditions. Onderstepoort J Vet Res. 1987;54(4):557–60. PMID: 3444609
Kessler R, Madruga C, Schenk M, Ribeiro O. Babesiose cerebral por Babesia bovis (Babés 1888 Starcovici 1893) em Bezerros, no estado de Mato Grosso do Sul. Pesquisa Agropecuária Brasileira. n.d.;18(8):931–5.
Maya-Delgado A, Madder M, Benítez-Ortíz W, Saegerman C, Berkvens D, Ron-Garrido L. Molecular screening of cattle ticks, tick-borne pathogens and amitraz resistance in ticks of Santo Domingo de los Tsáchilas province in Ecuador. Ticks Tick Borne Dis. 2020;11(5):101492. https://doi.org/10.1016/j.ttbdis.2020.101492 PMID: 32723649
Amorim LS, Wenceslau AA, Carvalho FS, Carneiro PLS, Albuquerque GR. Bovine babesiosis and anaplasmosis complex: diagnosis and evaluation of the risk factors from Bahia, Brazil. Rev Bras Parasitol Vet. 2014;23(3):328–36. https://doi.org/10.1590/s1984-29612014064 PMID: 25271452
Madruga C, Aycardi E, Kessler R, Aparecida M, Schenk M, De Figueredo G, et al. Níveis de anticorpos anti-Babesia bigemina e Babesia bovis, em bezerros da raça Nelore, Ibage e cruzamentos de Nelore. Pesqui Agropecu Bras. n.d.;19(9):1163–8.
Jonsson NN, Bock RE, Jorgensen WK, Morton JM, Stear MJ. Is endemic stability of tick-borne disease in cattle a useful concept?. Trends Parasitol. 2012;28(3):85–9. https://doi.org/10.1016/j. pt.2011.12.002 PMID: 22277132
Tabor AE. Anaplasmosis in Ruminants [Internet]. MSD Manual Veterinary Manual. 2022 [cited 2024 Feb 15]. p. 1–5. Available from: https://www.msdvetmanual.com/circulatory-system/blood-parasites/anaplasmosis-in-ruminants
Parodi P, Corbellini LG, Leotti VB, Rivero R, Miraballes C, Riet-Correa F, et al. Validation of a multiplex PCR assay to detect Babesia spp. and Anaplasma marginale in cattle in Uruguay in the absence of a gold standard test. J Vet Diagnostic Investig [Internet]. 2021;33(1):73–9. Available from: http://journals. sagepub.com/doi/10.1177/1040638720975742
Sisson D, Beechler B, Jabbar A, Jolles A, Hufschmid J. Epidemiology of Anaplasma marginale and Anaplasma centrale infections in African buffalo (Syncerus caffer) from Kruger National Park, South Africa. Int J Parasitol Parasites Wildl. 2023;2147–54. https://doi.org/10.1016/j.ijppaw.2023.04.005 PMID: 37124669
Atif FA. Anaplasma marginale and Anaplasma phagocytophilum: Rickettsiales pathogens of veterinary and public health significance. Parasitol Res. 2015;114(11):3941–57. https://doi.org/10.1007/s00436-015-4698-2 PMID: 26346451
Young A. Bovine erythrocytic anaplasmosis [Internet]. UCDAVIS. 2020 [cited 2024 Jan 19]. Available from: https://healthtopics.vetmed.ucdavis.edu/health-topics/bovine-erythrocytic-anaplasmosis#:~:text=Themainsignsofanaplasmosis,brownurine%2Candsuddendeath.
Ristic M. Bovine Anaplasmosis. In: Kreier J, editor. Parasitic Protozoa. IV. Academic Press; 2012. p. 402.
Rar V, Tkachev S, Tikunova N. Genetic diversity of Anaplasma bacteria: Twenty years later. Infect Genet Evol [Internet]. 2021;91(March):104833. Available from: https://doi.org/10.1016/j. meegid.2021.104833
Kohn B, Silaghi C, Galke D, Arndt G, Pfister K. Infections with Anaplasma phagocytophilum in dogs in Germany. Res Vet Sci [Internet]. 2011;91(1):71–6. Available from: http://dx.doi.org/10.1016/j.rvsc.2010.08.008
OIE. Chapter 2.4.1. Bovine anaplasmosis. Man Diagnostic Tests Vaccines Terr Anim [Internet]. 2024;1–15. Available from: http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.04.01_BOVINE_ANAPLASMOSIS.pdf
Corona G, Obregón D, Alemán Y, Alfonso P, Vega E, Díaz A. Tendencias en el diagnóstico de la anaplasmosis bovina. Rev Salud Anim. 2014;36(2):73–9.
Eshetu E. A review on the diagnostic and control challenges of major tick-borne haemoparasite diseases of cattle. J Biol. 2015;5(11):160–73.
Dorfman R. The detection of defective members of large populations. Ann Math Stat. 1943;14(4):436.
Christensen J, Gardner IA. Herd-level interpretation of test results for epidemiologic studies of animal diseases. Prev Vet Med. 2000;45(1–2):83–106. https://doi.org/10.1016/s0167-5877(00)00118-5 PMID: 10802335
Cowling DW, Gardner IA, Johnson WO. Comparison of methods for estimation of individual-level prevalence based on pooled samples. Prev Vet Med. 1999;39(3):211–25. https://doi.org/10.1016/ s0167-5877(98)00131-7 PMID: 10327439
Speybroeck N, Williams CJ, Lafia KB, Devleesschauwer B, Berkvens D. Estimating the prevalence of infections in vector populations using pools of samples. Med Vet Entomol. 2012;26(4):361–71. https://doi.org/10.1111/j.1365-2915.2012.01015.x PMID: 22486773
Zhang J, Ma H, Ai J, Qi T, Kang M, Li J, et al. Serological Analysis of IgG and IgM Antibodies against Anaplasma spp. in Various Animal Species of the Qinghai-Tibetan Plateau. Animals (Basel). 2022;12(19):2723. https://doi.org/10.3390/ani12192723 PMID: 36230463
Rahman AKMA, Saegerman C, Berkvens D, Fretin D, Gani MO, Ershaduzzaman M, et al. Bayesian estimation of true prevalence, sensitivity and specificity of indirect ELISA, Rose Bengal Test and Slow Agglutination Test for the diagnosis of brucellosis in sheep and goats in Bangladesh. Prev Vet Med. 2013;110(2):242–52. https://doi.org/10.1016/j.prevetmed.2012.11.029 PMID: 23276401
Ekong PS, Sanderson MW, Bello NM, Noll LW, Cernicchiaro N, Renter DG, et al. Bayesian estimation of true prevalence, sensitivity and specificity of three diagnostic tests for detection of Escherichia coli O157 in cattle feces. Prev Vet Med. 2017;14821–7. https://doi.org/10.1016/j.prevetmed.2017.10.002 PMID: 29157370
Lesaffre E, Speybroeck N, Berkvens D. Bayes and diagnostic testing. Vet Parasitol. 2007;148(1):58–61. https://doi.org/10.1016/j.vetpar.2007.05.010 PMID: 17566663
van de Schoot R, Depaoli S, King R, Kramer B, Märtens K, Tadesse M. Bayesian statistics and modelling. Nature Reviews Methods Primers. n.d.;1(1):.
Berkvens D, Speybroeck N, Praet N, Adel A, Lesaffre E. Estimating disease prevalence in a Bayesian framework using probabilistic constraints. Epidemiology. 2006;17(2):145–53. https://doi. org/10.1097/01.ede.0000198422.64801.8d PMID: 16477254
Walker D. Tick-transmitted infectious diseases in the United States. Annu Rev Public Health [Internet]. 1998;19(1):237–69. Available from: https://www.annualreviews.org/doi/10.1146/annurev. publhealth.19.1.237
Springer A, Glass A, Probst J, Strube C. Tick-borne zoonoses and commonly used diagnostic methods in human and veterinary medicine. Parasitol Res [Internet]. 2021;120(12):4075–90. Available from: https://doi.org/10.1007/s00436-020-07033-3
HCPP. Proyecto de Desarrollo Rural Integral del Occidente de Pichincha [Internet]. Unidad De Desarrollo Integral. 2000. Available from: https://www.oas.org/DSD/publications/Unit/oea06s/begin.htm
Echeverría J. Conociendo Quito: El noroccidente del DMQ, un territorio de alta biodiversidad, cultura y empredimientos sostenibles [Internet]. Vol. 1, Instituto de la Ciudad. 2017. p. 1–8. Available from: https://www.institutodelaciudad.com.ec/documentos/folletos/n7/N7.pdf
RBCAP. Reserva de Biósfera Chocó Andino de Pichincha. Consorc para el Desarro Sosten la Ecorregión Andin CONDESAN [Internet]. 2019; Available from: https://de.chocoandinopichincha.com/ReservadeBiósferaChocóAndinodePichincha. 2019.
PDOT El Chaco. Plan de Desarrollo y Ordenamiento Territorial Cantón el Chaco [Internet]. Gobierno Autónomo Desentralizado Municipal del Cantón El Chaco. Napo; 2019. p. 320. Available from: https://info.napo.gob.ec/
PDOT Quijos. Plan de Desarrollo y Ordenamiento Territorial del Cantón Quijos [Internet]. Dirección de Planificación y Ordenamiento Territorial, GAD Municipal Quijos. Napo; 2015. Available from: https:// info.napo.gob.ec/
Grijalva J, Arévalo V, Wood C. Expansión y Trayectorias de la Ganadería en la Amazonía: Estudio en el Valle de los Quijos y Piedemonte, en la Selva Alta del Ecuador. Publicación miscelánea N° 125. INIAP. Quito; 2004. p. 202.
Cárdenas J. Informe de Educación Ambiental EcoFondo-Napo [Internet]. Vol. 7, EcoFondo. 2010. p. 1–7. Available from: http://www.ecofondoecuador.com
Porto Tapiquén CE. “Sudamérica.” Orogénesis Soluciones Geográficas-Basado en capas Enviromental Syst Res Inst (ESRI) [Internet]. 2015; Available from: http://tapiquen-sig.jimdo.com
SINAVE. Manual para la Vigilancia Epidemiológica de la Brucelosis [Internet]. Secretaria de Salud, Dirección General de Epidemiología. Ciudad de Mexico; 2013. Available from: http://187.191.75.115/gobmx/salud/documentos/manuales/03_Manual_Brucelosis.pdf
Aktas M, Altay K, Dumanli N. A molecular survey of bovine Theileria parasites among apparently healthy cattle and with a note on the distribution of ticks in eastern Turkey. Vet Parasitol. 2006;138(3–4):179–85. https://doi.org/10.1016/j.vetpar.2006.01.052 PMID: 16510248
Nasehi P. Research Article Research Article. Arch Anesthesiol Crit Care [Internet]. 2018;4(4):527–34. Available from: http://www.globalbuddhism.org/jgb/index.php/jgb/article/view/88/100
Shabana II, Alhadlag NM, Zaraket H. Diagnostic tools of caprine and ovine anaplasmosis: a direct comparative study. BMC Vet Res. 2018;14(1):165. https://doi.org/10.1186/s12917-018-1489-x PMID: 29788965
Chauhan HC, Patel BK, Bhagat AG, Patel MV, Patel SI, Raval SH, et al. Comparison of molecular and microscopic technique for detection of Theileria annulata from the field cases of cattle. Vet World. 2015;8(11):1370–4. https://doi.org/10.14202/vetworld.2015.1370-1374 PMID: 27047045
R Core Team. R: A language and environment for statistical computing. 2021.
Thiele C, Hirschfeld G. Cutpointr: Improved estimation and validation of optimal cutpoints in r. J Stat Softw. 2021;98(11).
Reyna-Bello A, Cloeckaert A, Vizcaíno N, Gonzatti MI, Aso PM, Dubray G, et al. Evaluation of an enzyme-linked immunosorbent assay using recombinant major surface protein 5 for serological diagnosis of bovine anaplasmosis in Venezuela. Clin Diagn Lab Immunol. 1998;5(2):259–62. https://doi.org/10.1128/CDLI.5.2.259-262.1998 PMID: 9521155
Shkap V, Leibovitz B, Krigel Y, Molad T, Fish L, Mazuz M, et al. Concomitant infection of cattle with the vaccine strain Anaplasma marginale ss centrale and field strains of A. marginale. Vet Microbiol. 2008;130(3–4):277–84. https://doi.org/10.1016/j.vetmic.2008.02.013 PMID: 18387757
Guasumba Y. Optimización de una PCR multiplex para la detección de Anaplasma marginale, Anaplasma centrale, Babesia bovis y Babesia bigemina en sangre de bovinos. 2022.
Branscum AJ, Gardner IA, Johnson WO. Estimation of diagnostic-test sensitivity and specificity through Bayesian modeling. Prev Vet Med. 2005;68(2–4):145–63. https://doi.org/10.1016/j.prevetmed.2004.12.005 PMID: 15820113
Spiegelhalter D, Thomas A, Best N, Gilks W. Bayesian inference using Gibbs sampling, version ii. 1996.
Ntzoufras I. Bayesian Modeling Using WinBUGS [Internet]. Bayesian Modeling Using WinBUGS. Wiley; 2009. p. 1–492. Available from: https://onlinelibrary.wiley.com/doi/ book/10.1002/9780470434567
Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci [Internet]. 1992;7(4):457–72. Available from: https://projecteuclid.org/journals/statistical-science/volume-7/issue-4/Inference-from-Iterative-Simulation-Using-Multiple-Sequences/10.1214/ss/1177011136.full
Revelle W. psych: Procedures for Personality and Psychological Research [Internet]. Illinois, USA; 2020. Available from: https://cran.r-project.org/package=psyc
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics [Internet]. 1977;33(1):159. Available from: https://www.jstor.org/stable/2529310?origin=crossref
Cicchetti DV, Feinstein AR. High agreement but low kappa: II. Resolving the paradoxes. J Clin Epidemiol [Internet]. 1990;43(6):551–8. Available from: https://linkinghub.elsevier.com/retrieve/ pii/089543569090159M
Sanogo M, Thys E, Achi YL, Fretin D, Michel P, Abatih E, et al. Bayesian estimation of the true prevalence, sensitivity and specificity of the Rose Bengal and indirect ELISA tests in the diagnosis of bovine brucellosis. Vet J [Internet]. 2013;195(1):114–20. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S1090023312002390
Uebersax J. Raw Agreement Indices [Internet]. 2018. [cited 2018 Sep 19]. Available from: https://www. john-uebersax.com/stat/raw.htm#binerr
Gioia GV, Vinueza RL, Marsot M, Devillers E, Cruz M, Petit E, et al. Bovine anaplasmosis and tick-borne pathogens in cattle of the Galapagos Islands. Transbound Emerg Dis [Internet]. 2018;65(5):1262–71. Available from: https://onlinelibrary.wiley.com/doi/10.1111/tbed.12866
Kocan KM, Coetzee JF, Step DL, de la Fuente J, Blouin EF, Reppert E, et al. Current challenges in the diagnosis and control of bovine anaplasmosis. Bov Pract [Internet]. 2012;42(2):67–77. Available from: https://journals.lww.com/00008480-201206000-00019
Sanchez-Vicente S, Tokarz R. Tick-borne co-infections: challenges in molecular and serologic diagnoses. Pathogens. 2023;12(11):1–19.
Sharma A, Singla LD, Kaur P, Bal MS. PCR and ELISA vis-à-vis microscopy for detection of bovine anaplasmosis: a study on associated risk of an upcoming problem in north india. Sci World J [Internet]. 2015;2015:1–8. Available from: http://www.hindawi.com/journals/tswj/2015/352519/
Noaman V, Shayan P. Comparison of Microscopy and PCR-RFLP for detection of Anaplasma marginale in carrier cattle. Iran J Microbiol. 2010;2(2):89–94. PMID: 22347555
M’ghirbi Y, Bèji M, Oporto B, Khrouf F, Hurtado A, Bouattour A. Anaplasma marginale and A. phagocytophilum in cattle in Tunisia. Parasit Vectors. 2016;9(1):556. https://doi.org/10.1186/s13071-016-1840-7 PMID: 27765073
Aquino A, Divina B, Bombio A, Pilapil F. Detection of Anaplasma marginale infection in a dairy cattle farm by stained blood smear examination and nested polymerase chain reaction. Philipp J Vet Anim Sci. 2018;44(1):68–75.
Gardner IA. The utility of Bayes’ theorem and Bayesian inference in veterinary clinical practice and research. Aust Vet J. 2002;80(12):758–61. https://doi.org/10.1111/j.1751-0813.2002.tb11347.x PMID: 12537141
Ganguly A, Maharana B, Ganguly I, Kumar A, Potliya S, Arora D, et al. Molecular diagnosis and haemato-biochemical changes in Anaplasma marginale. Ind J Anim Sci. 2018;9(September):989–93.
de Echaide ST, Bono MF, Lugaresi C, Aguirre N, Mangold A, Moretta R, et al. Detection of antibodies against Anaplasma marginale in milk using a recombinant MSP5 indirect ELISA. Vet Microbiol. 2005;106(3–4):287–92. https://doi.org/10.1016/j.vetmic.2004.12.026 PMID: 15778035
Knowles D, Torioni de Echaide S, Palmer G, McGuire T, Stiller D, McElwain T. Antibody against an Anaplasma marginale MSP5 epitope common to tick and erythrocyte stages identifies persistently infected cattle. J Clin Microbiol. 1996;34(9):2225–30. https://doi.org/10.1128/jcm.34.9.2225-2230.1996 PMID: 8862589
Tana-Hernández L, Navarrete-Arroyo K, Ron-Román J, Reyna-Bello A, Chávez-Larrea MA. PCRdiagnosis of Anaplasma marginale in cattle populations of Ecuador and its molecular identification through sequencing of ribosomal 16S fragments. BMC Vet Res. 2017;13(1):392. https://doi.org/10.1186/s12917-017-1311-1 PMID: 29246225
Molloy JB, Bowles PM, Knowles DP, McElwain TF, Bock RE, Kingston TG, et al. Comparison of a competitive inhibition ELISA and the card agglutination test for detection of antibodies to Anaplasma marginale and Anaplasma centrale in cattle. Aust Vet J. 1999;77(4):245–9. https://doi. org/10.1111/j.1751-0813.1999.tb11712.x PMID: 10330556
Coetzee J. Anaplasmosis: Practical principles for the diagnosis, treatment and control of field cases and outbreaks. Am Assoc Bov Pract Conf Proc. 2022;55(1):50–5.
Kocan KM, Blouin EF, Barbet AF. Anaplasmosis control. Past, present, and future. Ann N Y Acad Sci. 2000;916:501–9. https://doi.org/10.1111/j.1749-6632.2000.tb05329.x PMID: 11193665
Garry F. Miscellaneous infectious diseases. In: Rebhun’s Diseases of Dairy Cattle [Internet]. 2nd ed. Elsevier; 2008. p. 606–39. Available from: http://dx.doi.org/10.1016/B978-1-4160-3137-6.50018-1
Medley GF, Perry BD, Young AS. Preliminary analysis of the transmission dynamics of Theileria parva in eastern Africa. Parasitology. 1993;106 (Pt 3):251–64. https://doi.org/10.1017/s0031182000075077 PMID: 8488062
Torioni de Echaide S, Knowles DP, McGuire TC, Palmer GH, Suarez CE, McElwain TF. Detection of cattle naturally infected with Anaplasma marginale in a region of endemicity by nested PCR and a competitive enzyme-linked immunosorbent assay using recombinant major surface protein 5. J Clin Microbiol. 1998;36(3):777–82. https://doi.org/10.1128/JCM.36.3.777-782.1998 PMID: 9508311
Saegerman C, Vo TK, De Waele L, Gilson D, Bastin A, Dubray G, et al. Diagnosis of bovine brucellosis by skin test: conditions for the test and evaluation of its performance. Vet Rec. 1999;145(8):214–8. https://doi.org/10.1136/vr.145.8.214 PMID: 10499853
French DM, McElwain TF, McGuire TC, Palmer GH. Expression of Anaplasma marginale major surface protein 2 variants during persistent cyclic rickettsemia. Infect Immun. 1998;66(3):1200–7. https:// doi.org/10.1128/IAI.66.3.1200-1207.1998 PMID: 9488414
Figueroa JV, Chieves LP, Johnson GS, Buening GM. Multiplex polymerase chain reaction based assay for the detection of Babesia bigemina, Babesia bovis and Anaplasma marginale DNA in bovine blood. Vet Parasitol. 1993;50(1–2):69–81. https://doi.org/10.1016/0304-4017(93)90008-b PMID: 8291198
Hairgrove T, Schroeder ME, Budke CM, Rodgers S, Chung C, Ueti MW, et al. Molecular and serological in-herd prevalence of Anaplasma marginale infection in Texas cattle. Prev Vet Med. 2015;119(1–2):1–9. https://doi.org/10.1016/j.prevetmed.2015.02.006 PMID: 25732914
Kivaria FM, Kapaga AM, Mbassa GK, Mtui PF, Wani RJ. Epidemiological perspectives of ticks and tick-borne diseases in South Sudan: cross-sectional survey results. Onderstepoort J Vet Res. 2012;79(1):E1–10. https://doi.org/10.4102/ojvr.v79i1.400 PMID: 23327317
De Vos A. Distribution, economic importance and control measures for Babesia and Anaplasma. Recent Dev Control anaplasmosis, babesiosis cowdriosis Proc a Work Held as ILRAD. 1991:3–12.
Parvizi O, El-Adawy H, Melzer F, Roesler U, Neubauer H, Mertens-Scholz K. Seroprevalence and molecular detection of bovine anaplasmosis in Egypt. Pathogens. 2020;9(1):1–10.
Fernandez D. Prevalencia de anaplasmosis bovina en los cantones Río Verde, Eloy Alfaro y Quinindé de la provincia de Esmeraldas. 2019.
Medina V, Reyna Bello A, Tavares-Marques L, Campos A, Ron Román J, Moyano J. Diagnosis of hemotropics Anaplasma marginale, Trypanosoma spp. and Babesia spp. by ELISi and PCR techniques in three livestock farms of Pastaza Province, Ecuador. Rev Científica. 2017;XXVII(3):162–71.
Caroa D. Identificación de hemoparásitos en sangre de bovinos y humanos, en dos áreas ganaderas de la provincia de Morona Santiago a través de microscopía y Npcr. [Internet]. Universidad Central del Ecuador. Undergraduate thesis; 2020. Available from: http://www.dspace.uce.edu.ec/bitstream/25000/22424/1/T-UCE-0014-MVE-113.pdf
Guarnizo TRM, Alvarez DO, Díaz-Sánchez AA, Cabezas-Cruz A, Gutiérrez LZ, Marrero SM, et al. Epidemiology and genetic diversity of Anaplasma marginale in Zamora-Chinchipe, Ecuador. Ticks Tick Borne Dis. 2020;11(3):101380. https://doi.org/10.1016/j.ttbdis.2020.101380 PMID: 32001158
Escobar A, Cevallos O, Villarreal P, Carranza M, Carranza H, Pinargote E. Prevalencia y detección por PCR anidada de Anaplasma marginale en bovinos y garrapatas en la zona central del Litoral ecuatoriano. Cienc y Tecnol. 2015;8(1):11–7.
Chávez-Larrea M, Cholota-Iza C, Cueva-Villavicencio J, Yugcha-Díaz M, Ron-Román J, Rodríguez-Cabezas A. Molecular identification of Trypanosoma theileri (Laveran, 1902) in cattle from two slaughterhouses in Ecuador and its relation with other haemotropic agents. Fron Vet Sci. 2023;10(4):2422–8.
Luzurraga AM. Incidencia de Anaplasma Bovis (Anaplasma marginale) en hatos bovinos de las asociaciones ganaderas del cantón Vinces provincia de Los Ríos. [Internet]. Universidad de Guayaquil. Undergraduate thesis; 2015. Available from: http://repositorio.ug.edu.ec/handle/redug/12254
Macías E, Villavicencio S. Diagnóstico Directo De Hemotrópicos En El Ganado Bovino De La Parroquia Alfaro Del Cantón Chone. Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López. Undergraduate thesis; 2022.
Minga G. Determinación de la incidencia de hemoparásitos mediante frotis sanguíneos en fincas con ganado bovino del cantón Babahoyo. Universidad Técnica de Babahoyo. Undergraduate thesis; 2019.
Oñate Y. Determinación de la prevalencia de Anaplasmosis, Babesiosis y Tripanosomiasis en el hata lechero de la Hacienda Jhomar [Internet]. Vol. 53, Universidad de las Américas. Undergraduate thesis; 2015. Available from: http://publications.lib.chalmers.se/records/fulltext/245180/245180.pdf%0Ahttps://hdl.handle.net/20.500.12380/245180%0Ahttp://dx.doi.org/10.1016/j. jsames.2011.03.003%0Ahttps://doi.org/10.1016/j.gr.2017.08.001%0Ahttp://dx.doi.org/10.1016/j. precamres.2014.12
Celi MA. Diagnóstico de Anaplasma spp. y Babesia spp. en el ganado bovino que se faena en el camal frigorífico “Cafrilosa” de Loja mediante la técnica de Giemsa. Universidad Nacional de Loja. Undergraduate thesis; 2010.
Vargas O, De la Cueva F. Prevalencia de hemoparásitos (Trypanosoma spp., Anaplasma spp., Babesia spp.) en tres núcleos productores bovinos, de la parroquia de Santa Rosa, cantón el Chaco, provincia del Napo. 2014.
Guamán-Quinche F, Sarango-Guamán D, Guerrero-Pincay Á. Prevalencia de hemoparásitos en bovino de carne en la Comunidad Cocha del Betano, Ecuador. Revista Arbitr Interdisciplinaria Koinonía. 2020;5(2):131–43.
Muñoz T, Ayora P, Luzuriaga A, Corona B, Martínez S. Prevalencia de Anaplasma marginale en bovinos de la provincia Zamora Chinchipe, Ecuador. Revista de Salud Animal. 2017;39(1):2224–4697.
Mota-Rojas D, Wang D, Titto CG, Gómez-Prado J, Carvajal-de la Fuente V, Ghezzi M, et al. Pathophysiology of Fever and Application of Infrared Thermography (IRT) in the Detection of Sick Domestic Animals: Recent Advances. Animals (Basel). 2021;11(8):2316. https://doi.org/10.3390/ ani11082316 PMID: 34438772
Raboloko O, Ramabu S, Guerrini L, Jori F. Seroprevalence of selected tick borne pathogens and diversity and abundance of ixodid ticks (Acari: Ixodidae) at the wildlife-livestock interface in northern Botswana. Front Vet Sci. 2020;7(5):1–10.
Curtis AK, Kleinhenz MD, Anantatat T, Martin MS, Magnin GC, Coetzee JF, et al. Failure to Eliminate Persistent Anaplasma marginale Infection from Cattle Using Labeled Doses of Chlortetracycline and Oxytetracycline Antimicrobials. Vet Sci. 2021;8(11):283. https://doi.org/10.3390/vetsci8110283 PMID: 34822656
Coetzee JF, Apley MD, Kocan KM, Rurangirwa FR, Van Donkersgoed J. Comparison of three oxytetracycline regimes for the treatment of persistent Anaplasma marginale infections in beef cattle. Vet Parasitol. 2005;127(1):61–73. https://doi.org/10.1016/j.vetpar.2004.08.017 PMID: 15675047
Jonsson NN, Bock RE, Jorgensen WK. Productivity and health effects of anaplasmosis and babesiosis on Bos indicus cattle and their crosses, and the effects of differing intensity of tick control in Australia. Vet Parasitol. 2008;155(1–2):1–9. https://doi.org/10.1016/j.vetpar.2008.03.022 PMID: 18472219
Lagranha C, Pellegrini DCP, Pradella GD, Nava S, Morel N, Doyle R, et al. Can herd seroprevalence be used as an indicator of enzootic stability for bovine anaplasmosis? Insights from a case-control field study in Brazil. Res Vet Sci. 2024;171105232. https://doi.org/10.1016/j.rvsc.2024.105232 PMID: 38513459
Mahoney DF, Wright IG, Goodger BV, Mirre GB, Sutherst RW, Utech KB. The transmission of Babesia bovis in herds of European and Zebu x European cattle infested with the tick, Boophilus microplus. Aust Vet J. 1981;57(10):461–9. https://doi.org/10.1111/j.1751-0813.1981.tb05767.x PMID: 7337597
Mahoney DF, Ross DR. Epizootiological factors in the control of bovine babesiosis. Aust Vet J. 1972;48(5):292–8. https://doi.org/10.1111/j.1751-0813.1972.tb05160.x PMID: 4672119
Rubaire-Akiiki CM, Okello-Onen J, Musunga D, Kabagambe EK, Vaarst M, Okello D, et al. Effect of agro-ecological zone and grazing system on incidence of East Coast Fever in calves in Mbale and Sironko Districts of Eastern Uganda. Prev Vet Med. 2006;75(3–4):251–66. https://doi.org/10.1016/j. prevetmed.2006.04.015 PMID: 16797092
Peter RJ, Van Den Bossche P, Penzhorn BL, Sharp B. Tick, fly, and mosquito control - lessons from the past, solutions for the future. Veterinary Parasitology. 2005;132(3-4 SPEC. ISS.):205–15.
Marques R, Krüger RF, Peterson AT, de Melo LF, Vicenzi N, Jiménez-García D. Climate change implications for the distribution of the babesiosis and anaplasmosis tick vector, Rhipicephalus (Boophilus) microplus. Vet Res. 2020;51(1):81. https://doi.org/10.1186/s13567-020-00802-z PMID: 32546223