[en] Species distribution models (SDMs) relate species observations to mapped environmental variables to estimate the realized niche of species and predict their distribution. SDMs are key tools for projecting the impact of climate change on species and have been used in many biodiversity assessments. However, when fitted within spatial extents that do not encompass the whole species range (i.e. subrange), the estimated realized environmental niche can be truncated, which can lead to wrong or inaccurate predictions. A simple solution to this niche truncation consists in fitting SDMs at a spatial extent that encompasses the whole species range, but this often implies using a spatial resolution too coarse for local conservation assessments. To keep a fine resolution, a solution is to fit spatially nested SDMs (N-SDMs), where a whole range, coarse-grain SDM is combined with a subrange, fine-grain SDM. N-SDMs have demonstrated superior performance to subrange (truncated) SDMs in projecting species distributions under climate change and have accordingly regained considerable interest. Here, we review developments, applications and effectiveness of N-SDMs. We present and discuss existing methods and tools to fit N-SDMs, and assess when N-SDMs are not needed. We highlight strengths and weaknesses of N-SDMs, underline their importance in reducing niche truncation, and identify remaining challenges and future perspectives. Our review highlights that subrange SDMs most often lead to niche truncation and thus to incorrect spatial projections, a problem that can be overcome by using N-SDMs. We show that the various N-SDM methods come with their strengths and weaknesses and should be selected depending on the intended goal of the study. Synthesis. N-SDMs are key tools to develop untruncated regional climate change forecasts of species distributions at fine resolution over restricted extent. While several N-SDM approaches were proposed, there is currently no universal solution suggesting that further developments and testing are crucial if we are to derive robust future projections of species distributions, at least until SDMs can be applied for most species at high resolution over large geographic extents.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Guisan, Antoine ; Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland ; Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland ; Interdisciplinary Center for Mountain Research, University of Lausanne, Lausanne, Switzerland
Chevalier, Mathieu ; IFREMER, Centre de Bretagne, DYNECO, Laboratoire d'Ecologie Benthique Côtière (LEBCO), Plouzané, France
Adde, Antoine ; Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland ; Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
Zarzo-Arias, Alejandra ; Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain ; Universidad de Oviedo, Oviedo, Spain
Goicolea, Teresa ; Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
Broennimann, Olivier; Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland ; Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
Petitpierre, Blaise; Swiss Center for Floristic Data, Info Flora, Geneva, Switzerland
Scherrer, Daniel ; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Rey, Pierre-Louis ; Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland ; Interdisciplinary Center for Mountain Research, University of Lausanne, Lausanne, Switzerland
Collart, Flavien ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS) ; Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
Riva, Federico ; Environmental Geography Department, Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
Steen, Bart ; Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland ; Sapienza University of Rome, Rome, Italy
Mateo, Rubén G. ; Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain ; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
SNF - Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung AEI - Agencia Estatal de Investigación
Funding text :
A.G. received support from the Swiss Federal Office for the Environment (Valpar.CH project) funding A.A. and from the Swiss National Science Foundation (grants 310030L_197777, GEN4MIG project) funding F.C. R.G.M. was supported by project grants Connect2restore (TED2021\u2010129589B\u2010I00, funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR), and NextDive (PID2021\u2010124187NB\u2010I00, funded by MCIN/AEI/10.13039/501100011033 and by ERDF, a way of making Europe).
Adde, A., Külling, N., Rey, P.-L., Fopp, F., Brun, P., Broennimann, O., Lehmann, A., Petitpierre, B., Zimmermann, N. E., Pellissier, L., Altermatt, F., & Guisan, A. (2024). Projecting untruncated climate change effects on species' climate suitability: Insights from an alpine country. Global Change Biology, 30, e17557.
Adde, A., Rey, P.-L., Brun, P., Külling, N., Fopp, F., Altermatt, F., Broennimann, O., Lehmann, A., Petitpierre, B., Zimmermann, N. E., Pellissier, L., & Guisan, A. (2023). N-SDM: A high-performance computing pipeline for nested species distribution modelling. Ecography, 2023, e06540.
Agudo, A. B., Pico, X., Mateo, R. G., Arnald, M., Torices, R., & Álvarez, I. (2023). Unravelling plant diversification: Intraspecific genetic differentiation in hybridizing Anacyclus species in the western Mediterranean Basin. American Journal of Botany, 110, e16121.
Amirkhiz, R. G., Dixon, M. D., Palmer, J. S., & Swanson, D. L. (2021). Investigating niches and distribution of a rare species in a hierarchical framework: Virginia's Warbler (Leiothlypis virginiae) at its northeastern range limit. Landscape Ecology, 36, 1039–1054.
Anderson, R. P. (2013). A framework for using niche models to estimate impacts of climate change on species distributions. Annals of the New York Academy of Sciences, 1297, 8–28.
Araujo, M. B., Anderson, R. P., Barbosa, A. M., Beale, C. M., Dormann, C. F., Early, R., Garcia, R. A., Guisan, A., Maiorano, L., Naimi, B., O'Hara, R. B., Zimmermann, N. E., & Rahbek, C. (2019). Standards for distribution models in biodiversity assessments. Science Advances, 5(1), eaat4858. https://doi.org/10.1126/sciadv.aat4858
Araujo, M. B., & Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33, 1677–1688.
Araujo, M. B., & Pearson, R. G. (2005). Equilibrium of species' distributions with climate. Ecography, 28, 693–695.
Araujo, M. B., Thuiller, W., Williams, P. H., & Reginster, I. (2005). Downscaling European species atlas distributions to a finer resolution: Implications for conservation planning. Global Ecology and Biogeography, 14, 17–30.
Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200, 1–19.
Austin, M. P., & Meyers, J. A. (1996). Current approaches to modelling the environmental niche of eucalypts: Implication for management of forest biodiversity. Forest Ecology and Management, 85, 95–106.
Austin, M. P., Nicholls, A. O., & Margules, C. R. (1990). Measurement of the realized qualitative niche—Environmental niches of 5 eucalyptus species. Ecological Monographs, 60, 161–177.
Austin, M. P., & Smith, T. M. (1989). A new model for the continuum concept. Vegetatio, 83, 35–47.
Austin, M. P., & Van Niel, K. P. (2011). Improving species distribution models for climate change studies: Variable selection and scale. Journal of Biogeography, 38, 1–8.
Barbet-Massin, M., Thuiller, W., & Jiguet, F. (2010). How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography, 33, 878–886.
Barbosa, A. M., Real, R., & Vargas, J. M. (2009). Transferability of environmental favourability models in geographic space: The case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain. Ecological Modelling, 220, 747–754.
Barbosa, A. M., Real, R., & Vargas, J. M. (2010). Use of coarse-resolution models of species' distributions to guide local conservation inferences. Conservation Biology, 24, 1378–1387.
Bazzichetto, M., Lenoir, J., Da Re, D., Tordoni, E., Rocchini, D., Malavasi, M., Barták, V., & Sperandii, M. G. (2023). Sampling strategy matters to accurately estimate response curves' parameters in species distribution models. Global Ecology and Biogeography, 32(10), 1717–1729. https://doi.org/10.1111/geb.13725
Bellamy, C., Boughey, K., Hawkins, C., Reveley, S., Spake, R., Williams, C., & Altringham, J. (2020). A sequential multi-level framework to improve habitat suitability modelling. Landscape Ecology, 35, 1001–1020.
Bombi, P., & D'Amen, M. (2012). Scaling down distribution maps from atlas data: A test of different approaches with virtual species. Journal of Biogeography, 39, 640–651.
Brambilla, M., Bazzi, G., & Ilahiane, L. (2024). The effectiveness of species distribution models in predicting local abundance depends on model grain size. Ecology, 105, e4224.
Breiner, F. T., Guisan, A., Bergamini, A., & Nobis, M. P. (2015). Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution, 6, 1210–1218.
Brun, P., Karger, D. N., Zurell, D., Descombes, P., de Witte, L. C., de Lutio, R., Wegner, J. D., & Zimmermann, N. E. (2024). Multispecies deep learning using citizen science data produces more informative plant community models. Nature Communications, 15, 4421.
Bruni, E. P., Rusconi, O., Broennimann, O., Adde, A., Jauslin, R., Krashevska, V., Kosakyan, A., du Châtelet, E. A., Alcino, J. P. B., Beyens, L., Blandenier, Q., Bobrov, A., Burdman, L., Duckert, C., Fernández, L. D., Souza, M. B. G. E., Heger, T. J., Koenig, I., Lahr, D. J. G., … Mitchell, E. A. D. (2024). Global distribution modelling of a conspicuous Gondwanian soil protist reveals latitudinal dispersal limitation and range contraction in response to climate warming. Diversity and Distributions, 30, e13779.
Bush, A., Catullo, R. A., Mokany, K., Thornhill, A. H., Miller, J. T., & Ferrier, S. (2018). Truncation of thermal tolerance niches among Australian plants. Global Ecology and Biogeography, 27, 22–31.
Carlson, B. Z., Randin, C. F., Boulangeat, I., Lavergne, S., Thuiller, W., & Choler, P. (2013). Working toward integrated models of alpine plant distribution. Alpine Botany, 123, 41–53.
Carrillo-García, C., Girola-Iglesias, L., Guijarro, M., Hernando, C., Madrigal, J., & Mateo, R. G. (2023). Ecological niche models applied to post-megafire vegetation restoration in the context of climate change. Science of the Total Environment, 855, 158858.
Carroll, C., Johnson, D. S., Dunk, J. R., & Zielinski, W. J. (2010). Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring. Conservation Biology, 24, 1538–1548.
Charney, N. D., Record, S., Gerstner, B. E., Merow, C., Zarnetske, P. L., & Enquist, B. (2021). A test of species distribution model transferability across environmental and geographic space for 108 Western north American tree species. Frontiers in Ecology and Evolution, 9, 689295.
Chevalier, M., Broennimann, O., Cornuault, J., & Guisan, A. (2021). Data integration methods to account for spatial niche truncation effects in regional projections of species distribution. Ecological Applications, 31, e02427.
Chevalier, M., Broennimann, O., & Guisan, A. (2024). Climate change may reveal currently unavailable parts of species' ecological niches. Nature Ecology & Evolution, 8, 1298–1310.
Chevalier, M., Zarzo-Arias, A., Guélat, J., Mateo, R. G., & Guisan, A. (2022). Accounting for niche truncation to improve spatial and temporal predictions of species distributions. Frontiers in Ecology and Evolution, 10, 944116.
Clark, J. S., & Gelfand, A. E. (2006). Hierarchical modelling for the environmental sciences: Statistical methods and applications (p. 205). Oxford University Press.
Collart, F., Hedenas, L., Broennimann, O., Guisan, A., & Vanderpoorten, A. (2021). Intraspecific differentiation: Implications for niche and distribution modelling. Journal of Biogeography, 48, 415–426.
Collart, F., Kiebacher, T., Quetsch, M., Broennimann, O., Guisan, A., & Vanderpoorten, A. (2024). To what extent can we predict variation of bryophyte and tracheophyte community composition at fine spatial scale along an elevation gradient? Science of the Total Environment, 926, 171741.
del Barrio, G., Harrison, P. A., Berry, P. M., Butt, N., Sanjuan, M. E., Pearson, R. G., & Dawson, T. (2006). Integrating multiple modelling approaches to predict the potential impacts of climate change on species' distributions in contrasting regions: Comparison and implications for policy. Environmental Science & Policy, 9, 129–147.
Diez, J. M., & Pulliam, H. R. (2007). Hierarchical analysis of species distributions and abundance across environmental gradients. Ecology, 88, 3144–3152.
Dovers, E., Popovic, G. C., & Warton, D. I. (2024). A fast method for fitting integrated species distribution models. Methods in Ecology and Evolution, 15, 191–203.
El-Gabbas, A., & Dormann, C. F. (2018). Wrong, but useful: Regional species distribution models may not be improved by range-wide data under biased sampling. Ecology and Evolution, 8, 2196–2206.
Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1, 330–342.
Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697.
Engler, R., Randin, C. F., Thuiller, W., Dullinger, S., Zimmermann, N. E., Araujo, M. B., Pearman, P. B., Le Lay, G., Piedallu, C., Albert, C. H., Choler, P., Coldea, G., De Lamo, X., Dirnbock, T., Gegout, J. C., Gomez-Garcia, D., Grytnes, J. A., Heegaard, E., Hoistad, F., … Guisan, A. (2011). 21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 17, 2330–2341.
Ferrier, S., Ninan, K. N., Leadley, P., Alkemade, R., Acosta, L. A., Akçakaya, H. R., Brotons, L., Cheung, W. W. L., Christensen, V., Harhash, K. A., Kabubo-Mariara, J., Lundquist, C., Obersteiner, M., Pereira, H. M., Peterson, G., Pichs-Madruga, R., Ravindranath, N., Rondinini, C., & Wintle, B. A. (2016). IPBES: The methodological assessment report on scenarios and models of biodiversity and ecosystem services. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES).
Fitzpatrick, M. C., & Hargrove, W. W. (2009). The projection of species distribution models and the problem of non-analog climate. Biodiversity and Conservation, 18, 2255–2261.
Fletcher, R. J., McCleery, R. A., Greene, D. U., & Tye, C. A. (2016). Integrated models that unite local and regional data reveal larger-scale environmental relationships and improve predictions of species distributions. Landscape Ecology, 31, 1369–1382.
Foster, S. D., Peel, D., Hosack, G. R., Hoskins, A., Mitchell, D. J., Proft, K., Yang, W. H., Uribe-Rivera, D. E., & Froese, J. G. (2024). ‘RISDM’: Species distribution modelling from multiple data sources in R. Ecography, 2024, e06964.
Fournier, A., Barbet-Massin, M., Rome, Q., & Courchamp, F. (2017). Predicting species distribution combining multi-scale drivers. Global Ecology and Conservation, 12, 215–226.
Franklin, J. (2010). Mapping species distributions: Spatial inference and prediction. Cambridge University Press.
Franklin, J., Davis, F. W., Ikegami, M., Syphard, A. D., Flint, L. E., Flint, A. L., & Hannah, L. (2013). Modeling plant species distributions under future climates: How fine scale do climate projections need to be? Global Change Biology, 19, 473–483.
Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E., & Thuiller, W. (2012). Invasive species distribution models - how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography, 21, 1126–1136.
Gastón, A., Ciudad, C., Mateo-Sánchez, M. C., García-Viñas, J. I., López-Leiva, C., Fernández-Landa, A., Marchamalo, M., Cuevas, J., de la Fuente, B., Fortin, M. J., & Saura, S. (2017). Species' habitat use inferred from environmental variables at multiple scales: How much we gain from high-resolution vegetation data? International Journal of Applied Earth Observation and Geoinformation, 55, 1–8.
Gastón, A., & García-Viñas, J. I. (2010). Updating coarse-scale species distribution models using small fine-scale samples. Ecological Modelling, 221, 2576–2581.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. Chapman and Hall/CRC Press.
Girvetz, E. H., & Greco, S. E. (2009). Multi-scale predictive habitat suitability modeling based on hierarchically delineated patches: An example for yellow-billed cuckoos nesting in riparian forests, California, USA. Landscape Ecology, 24, 1315–1329.
Goicolea, T., Adde, A., Broennimann, O., García-Viñas, J., Gaston, A., Aroca-Fernández, M. J., Guisan, A., & Mateo, R. G. (2024). Spatially-nested hierarchical species distribution models to overcome niche truncation in national-scale studies. Ecography, 2025, e07328.
Guisan, A., & Rahbek, C. (2011). SESAM—A new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38, 1433–1444.
Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8, 993–1009.
Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability and distribution models, with applications in R. Cambridge University Press.
Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I. T., Regan, T. J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., Martin, T. G., Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith, J., Schwartz, M. W., Wintle, B. A., Broennimann, O., Austin, M., … Buckley, Y. M. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16, 1424–1435.
Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.
Haesen, S., Lenoir, J., Gril, E., De Frenne, P., Lembrechts, J. J., Kopecky, M., Macek, M., Man, M., Wild, J., & Van Meerbeek, K. (2023). Microclimate reveals the true thermal niche of forest plant species. Ecology Letters, 26, 2043–2055.
Hannemann, H., Willis, K. J., & Macias-Fauria, M. (2016). The devil is in the detail: Unstable response functions in species distribution models challenge bulk ensemble modelling. Global Ecology and Biogeography, 25, 26–35.
Hefley, T. J., & Hooten, M. B. (2016). Hierarchical species distribution models. Current Landscape Ecology Reports, 1, 87–97.
Honeck, E. C., Moilanen, A., Guinaudeau, B., Wyler, N., Schlaepfer, M., Martin, P., Sanguet, A., Urbina, L., von Arx, B., Massy, J., Fischer, C., & Lehmann, A. (2020). Implementing green infrastructure for the spatial planning of peri-urban areas in Geneva, Switzerland. Sustainability, 12, 1387.
Hopkins, R. L., & Burr, B. M. (2009). Modeling freshwater fish distributions using multiscale landscape data: A case study of six narrow range endemics. Ecological Modelling, 220, 2024–2034.
Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J. (2015). Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46, 523–549.
Hortal, J., de Marco, P., Santos, A. M. C., & Diniz, J. A. F. (2012). Integrating biogeographical processes and local community assembly. Journal of Biogeography, 39, 627–628.
Hurlbert, A. H., & Jetz, W. (2007). Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proceedings of the National Academy of Sciences of the United States of America, 104, 13384–13389.
Hutchinson, G. E. (1957). Population studies—Animal ecology and demography—Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427.
Illán, J. G., Gutiérrez, D., & Wilson, R. J. (2010). The contributions of topoclimate and land cover to species distributions and abundance: Fine-resolution tests for a mountain butterfly fauna. Global Ecology and Biogeography, 19, 159–173.
Isaac, N. J. B., Jarzyna, M. A., Keil, P., Dambly, L. I., Boersch-Supan, P. H., Browning, E., Freeman, S. N., Golding, N., Guillera-Arroita, G., Henrys, P. A., Jarvis, S., Lahoz-Monfort, J. J., Pagel, J., Pescott, O. L., Schmucki, R., Simmonds, E. G., & O'Hara, R. B. (2020). Data integration for large-scale models of species distributions. Trends in Ecology & Evolution, 35, 56–67.
Jones, C. C., Acker, S. A., & Halpern, C. B. (2010). Combining local- and large-scale models to predict the distributions of invasive plant species. Ecological Applications, 20, 311–326.
Karger, D. N., Chauvier, Y., & Zimmermann, N. E. (2023). chelsa-cmip6 1.0: A python package to create high resolution bioclimatic variables based on CHELSA ver. 2.1 and CMIP6 data. Ecography, 2023, e06535.
Keil, P., Belmaker, J., Wilson, A. M., Unitt, P., & Jetz, W. (2013). Downscaling of species distribution models: A hierarchical approach. Methods in Ecology and Evolution, 4, 82–94.
Kery, M., & Royle, J. A. (2015). Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS.
Koshkina, V., Wang, Y., Gordon, A., Dorazio, R. M., White, M., & Stone, L. (2017). Integrated species distribution models: Combining presence-background data and site-occupany data with imperfect detection. Methods in Ecology and Evolution, 8, 420–430.
Lembrechts, J. J. (2023). Microclimate alters the picture. Nature Climate Change, 13, 423–424.
Lembrechts, J. J., van den Hoogen, J., Aalto, J., Ashcroft, M. B., De Frenne, P., Kemppinen, J., Kopecky, M., Luoto, M., Maclean, I. M. D., Crowther, T. W., Bailey, J. J., Haesen, S., Klinges, D. H., Niittynen, P., Scheffers, B. R., Van Meerbeek, K., Aartsma, P., Abdalaze, O., Abedi, M., … Lenoir, J. (2022). Global maps of soil temperature. Global Change Biology, 28, 3110–3144.
Lenoir, J., Hattab, T., & Pierre, G. (2017). Climatic microrefugia under anthropogenic climate change: Implications for species redistribution. Ecography, 40, 253–266.
Lomba, A., Pellissier, L., Randin, C., Vicente, J., Moreira, F., Honrado, J., & Guisan, A. (2010). Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 143, 2647–2657.
Ludwig, M., Moreno-Martinez, A., Hölzel, N., Pebesma, E., & Meyer, H. (2023). Assessing and improving the transferability of current global spatial prediction models. Global Ecology and Biogeography, 32, 356–368.
Maiorano, L., Cheddadi, R., Zimmermann, N. E., Pellissier, L., Petitpierre, B., Pottier, J., Laborde, H., Hurdu, B. I., Pearman, P. B., Psomas, A., Singarayer, J. S., Broennimann, O., Vittoz, P., Dubuis, A., Edwards, M. E., Binney, H. A., & Guisan, A. (2013). Building the niche through time: Using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecology and Biogeography, 22, 302–317.
Maitner, B. S., Boyle, B., Casler, N., Condit, R., Donoghue, J., II, Durán, S. M., Guaderrama, D., Hinchliff, C. E., Jørgensen, P. M., Kraft, N. J. B., McGill, B., Merow, C., Morueta-Holme, N., Peet, R. K., Sandel, B., Schildhauer, M., Smith, S. A., Svenning, J.-C., Thiers, B., … Enquist, B. J. (2017). The bien r package: A tool to access the botanical information and ecology network (BIEN) database. Methods in Ecology and Evolution, 9, 373–379.
Maréchaux, I., Rodrigues, A. S. L., & Charpentier, A. (2017). The value of coarse species range maps to inform local biodiversity conservation in a global context. Ecography, 40, 1166–1176.
Mateo, R. G., Aroca-Fernández, M. J., Gastón, A., Gómez-Rubio, V., Saura, S., & García-Viñas, J. I. (2019). Looking for an optimal hierarchical approach for ecologically meaningful niche modelling. Ecological Modelling, 409, 108735. https://doi.org/10.1016/j.ecolmodel.2019.108735
Mateo, R. G., Gaston, A., Aroca-Fernandez, M. J., Broennimann, O., Guisan, A., Saura, S., & Garcia-Vinas, J. I. (2019). Hierarchical species distribution models in support of vegetation conservation at the landscape scale. Journal of Vegetation Science, 30, 386–396.
Mateo, R. G., Mokany, K., & Guisan, A. (2017). Biodiversity models: What if unsaturation is the rule? Trends in Ecology & Evolution, 32, 556–566.
Mateo, R. G., Morales-Barbero, J., Zarzo-Arias, A., Lima, H., Gómez-Rubio, V., & Goicolea, T. (2024). sabinaNSDM: An R package for spatially nested hierarchical species distribution modelling. Methods in Ecology and Evolution, 15, 1796–1803.
McGill, B. J. (2010). Matters of scale. Science, 328, 575–576.
McPherson, J. M., Jetz, W., & Rogers, D. J. (2006). Using coarse-grained occurrence data to predict species distributions at finer spatial resolutions: Possibilities and limitations. Ecological Modelling, 192, 499–522.
Merow, C., Smith, M. J., Edwards, T. C., Guisan, A., McMahon, S. M., Normand, S., Thuiller, W., Wuest, R. O., Zimmermann, N. E., & Elith, J. (2014). What do we gain from simplicity versus complexity in species distribution models? Ecography, 37, 1267–1281.
Miller, D. A. W., Pacifici, K., Sanderlin, J. S., & Reich, B. J. (2019). The recent past and promising future for data integration methods to estimate species' distributions. Methods in Ecology and Evolution, 10, 22–37.
Mod, H. K., Scherrer, D., Luoto, M., & Guisan, A. (2016). What we use is not what we know: Environmental predictors in plant distribution models. Journal of Vegetation Science, 27, 1308–1322.
Moudry, V., Keil, P., Cord, A. F., Gabor, L., Lecours, V., Zarzo-Arias, A., Bartak, V., Malavasi, M., Rocchini, D., Torresani, M., Gdulova, K., Grattarola, F., Leroy, F., Marchetto, E., Thouverai, E., Prosek, J., Wild, J., & Simova, P. (2023). Scale mismatches between predictor and response variables in species distribution modelling: A review of practices for appropriate grain selection. Progress in Physical Geography: Earth and Environment, 47, 467–482.
Nogues-Bravo, D. (2009). Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18, 521–531.
Owens, H. L., Campbell, L. P., Dornak, L. L., Saupe, E. E., Barve, N., Soberon, J., Ingenloff, K., Lira-Noriega, A., Hensz, C. M., Myers, C. E., & Peterson, A. T. (2013). Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling, 263, 10–18.
Pang, S. E. H., Zeng, Y., De Alban, J. D. T., & Webb, E. L. (2022). Occurrence–habitat mismatching and niche truncation when modelling distributions affected by anthropogenic range contractions. Diversity and Distributions, 28, 1327–1343.
Patiño, J., Collart, F., Vanderpoorten, A., Martin-Esquivel, J. L., Naranjo-Cigala, A., Mirolo, S., & Karger, D. N. (2023). Spatial resolution impacts projected plant responses to climate change on topographically complex islands. Diversity and Distributions, 29, 1245–1262.
Pearman, P. B., D'Amen, M., Graham, C. H., Thuiller, W., & Zimmermann, N. E. (2010). Within-taxon niche structure: Niche conservatism, divergence and predicted effects of climate change. Ecography, 33, 990–1003.
Pearman, P. B., Guisan, A., Broennimann, O., & Randin, C. F. (2008). Niche dynamics in space and time. Trends in Ecology & Evolution, 23, 149–158.
Pearson, D., Dawson, T. P., & Liu, C. (2004). Modelling species distribution in Britain: A hierarchical integration of climate and land-cover data. Ecography, 27, 285–298.
Pearson, R. G., & Dawson, T. E. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361–372.
Peterson, A. T., Cobos, M. E., & Jimenez-Garcia, D. (2018). Major challenges for correlational ecological niche model projections to future climate conditions. Annals of the New York Academy of Sciences, 1429, 66–77.
Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R., Martínez-Meyer, E., Nakamura, M., & Araújo, M. P. (2011). Ecological niches and geographic distributions. Princeton University Press.
Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C., & Guisan, A. (2017). Selecting predictors to maximize the transferability of species distribution models: Lessons from cross-continental plant invasions. Global Ecology and Biogeography, 26, 275–287.
Petitpierre, B., McDougall, K., Seipel, T., Broennimann, O., Guisan, A., & Kueffer, C. (2016). Will climate change increase the risk of plant invasions into mountains? Ecological Applications, 26, 530–544.
Poggiato, G., Munkemuller, T., Bystrova, D., Arbel, J., Clark, J. S., & Thuiller, W. (2021). On the interpretations of joint modeling in community ecology. Trends in Ecology & Evolution, 36, 391–401.
Pollock, L. J., Morris, W. K., & Vesk, P. A. (2012). The role of functional traits in species distributions revealed through a hierarchical model. Ecography, 35, 716–725.
Qiao, H., Feng, X., Escobar, L. E., Peterson, A. T., Soberón, J., Zhu, G., & Papeş, M. (2019). An evaluation of transferability of ecological niche models. Ecography, 42, 521–534.
Randin, C. F., Dirnbock, T., Dullinger, S., Zimmermann, N. E., Zappa, M., & Guisan, A. (2006). Are niche-based species distribution models transferable in space? Journal of Biogeography, 33, 1689–1703.
Randin, C. F., Engler, R., Normand, S., Zappa, M., Zimmermann, N. E., Pearman, P. B., Vittoz, P., Thuiller, W., & Guisan, A. (2009). Climate change and plant distribution: Local models predict high-elevation persistence. Global Change Biology, 15, 1557–1569.
Regos, A., Gagne, L., Alcaraz-Segura, D., Honrado, J. P., & Dominguez, J. (2019). Effects of species traits and environmental predictors on performance and transferability of ecological niche models. Scientific Reports, 9, 4221.
Riva, F., Barbero, F., Balletto, E., & Bonelli, S. (2023). Combining environmental niche models, multi-grain analyses, and species traits identifies pervasive effects of land use on butterfly biodiversity across Italy. Global Change Biology, 29, 1715–1728.
Riva, F., Martin, C. J., Galán Acedo, C., Bellon, E. N., Keil, P., Morán-Ordóñez, A., Fahrig, L., & Guisan, A. (2024). Incorporating effects of habitat patches into species distribution models. Journal of Ecology, 112, 2162–2182.
Rocchini, D., Tordoni, E., Marchetto, E., Marcantonio, M., Barbosa, A. M., Bazzichetto, M., Beierkuhnlein, C., Castelnuovo, E., Gatti, R. C., Chiarucci, A., Chieffallo, L., Da Re, D., Di Musciano, M., Foody, G. M., Gabor, L., Garzon-Lopez, C. X., Guisan, A., Hattab, T., Hortal, J., … Malavasi, M. (2023). A quixotic view of spatial bias in modelling the distribution of species and their diversity. npj Biodiversity, 2, 1–11.
Sales, L. P., Galetti, M., Carnaval, A., Monsarrat, S., Svenning, J.-C., & Pires, M. M. (2022). The effect of past defaunation on ranges, niches, and future biodiversity forecasts. Global Change Biology, 28, 3683–3693.
Sanchez-Fernandez, D., Lobo, J. M., & Hernandez-Manrique, O. L. (2011). Species distribution models that do not incorporate global data misrepresent potential distributions: A case study using Iberian diving beetles. Diversity and Distributions, 17, 163–171.
Sanguet, A., Wyler, N., Guinaudeau, B., Waller, N., Urbina, L., Huber, L., Fischer, C., & Lehmann, A. (2023). Mapping ecological infrastructure in a cross-border regional context. Lands, 12, 2010.
Scherrer, D., Christe, P., & Guisan, A. (2019). Modelling bat distributions and diversity in a mountain landscape using focal predictors in ensemble of small models. Diversity and Distributions, 25, 770–782.
Scherrer, D., Esperon-Rodriguez, M., Beaumont, L. J., Barradas, V. L., & Guisan, A. (2021). National assessments of species vulnerability to climate change strongly depend on selected data sources. Diversity and Distributions, 27, 1367–1382.
Sirami, C., Caplat, P., Popy, S., Clamens, A., Arlettaz, R., Jiguet, F., Brotons, L., & Martin, J.-L. (2017). Impacts of global change on species distributions: Obstacles and solutions to integrate climate and land use. Global Ecology and Biogeography, 26, 385–394.
Smith, A. B., Godsoe, W., Rodriguez-Sanchez, F., Wang, H. H., & Warren, D. (2019). Niche estimation above and below the species level. Trends in Ecology & Evolution, 34, 260–273.
Soberon, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10, 1115–1123.
Talluto, M. V., Boulangeat, I., Ameztegui, A., Aubin, I., Berteaux, D., Butler, A., Doyon, F., Drever, C. R., Fortin, M. J., Franceschini, T., Liénard, J., McKenney, D., Solarik, K. A., Strigul, N., Thuiller, W., & Gravel, D. (2016). Cross-scale integration of knowledge for predicting species ranges: A metamodelling framework. Global Ecology and Biogeography, 25, 238–249.
Thuiller, W., Araujo, M. B., & Lavorel, S. (2004). Do we need land-cover data to model species distributions in Europe? Journal of Biogeography, 31, 353–361.
Thuiller, W., Brotons, L., Araujo, M. B., & Lavorel, S. (2004). Effects of restricting environmental range of data to project current and future species distributions. Ecography, 27, 165–172.
Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N., & Zimmermann, N. E. (2019). Uncertainty in ensembles of global biodiversity scenarios. Nature Communications, 10, 1446.
Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 102, 8245–8250.
Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R., & Legendre, F. (2017). Taxonomic bias in biodiversity data and societal preferences. Scientific Reports, 7, 9132.
Tulloch, A. I. T., Sutcliffe, P., Naujokaitis-Lewis, I., Tingley, R., Brotons, L., Ferraz, K., Possingham, H., Guisan, A., & Rhodes, J. R. (2016). Conservation planners tend to ignore improved accuracy of modelled species distributions to focus on multiple threats and ecological processes. Biological Conservation, 199, 157–171.
Velazco, S. J. E., Rose, M. B., De Marco, P. J. r., Regan, H. M., & Franklin, J. (2024). How far can I extrapolate my species distribution model? Exploring shape, a novel method. Ecography, 2024, e06992.
Vetaas, O. R. (2002). Realized and potential climate niches: A comparison of four Rhododendron tree species. Journal of Biogeography, 29(4), 545–554. https://doi.org/10.1046/j.1365-2699.2002.00694.x
Vicente, J. R., Gonçalves, J., Honrado, J. P., Randin, C. F., Pottier, J., Broennimann, O., Lomba, A., & Guisan, A. (2014). A framework for assessing the scale of influence of environmental factors on ecological patterns. Ecological Complexity, 20, 151–156.
Vicente, J. R., Kueffer, C., Richardson, D. M., Vaz, A. S., Cabral, J. A., Hui, C., Araujo, M. B., Kuhn, I., Kull, C. A., Verburg, P. H., Marchante, E., & Honrado, J. P. (2019). Different environmental drivers of alien tree invasion affect different life-stages and operate at different spatial scales. Forest Ecology and Management, 433, 263–275.
Vincent, C., Fernandes, R. F., Cardoso, A. R., Broennimann, O., Di Cola, V., D'Amen, M., Ursenbacher, S., Schmidt, B. R., Pradervand, J. N., Pellissier, L., & Guisan, A. (2019). Climate and land-use changes reshuffle politically-weighted priority areas of mountain biodiversity. Global Ecology and Conservation, 17, e00589.
Webber, B. L., Yates, C. J., Le Maitre, D. C., Scott, J. K., Kriticos, D. J., Ota, N., McNeill, A., Le Roux, J. J., & Midgley, G. F. (2011). Modelling horses for novel climate courses: Insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Diversity and Distributions, 17, 978–1000.
Yates, K. L., Bouchet, P. J., Caley, M. J., Mengersen, K., Randin, C. F., Parnell, S., Fielding, A. H., Bamford, A. J., Ban, S., Barbosa, A. M., Dormann, C. F., Elith, J., Embling, C. B., Ervin, G. N., Fisher, R., Gould, S., Graf, R. F., Gregr, E. J., Halpin, P. N., … Sequeira, A. M. M. (2018). Outstanding challenges in the transferability of ecological models. Trends in Ecology & Evolution, 33, 790–802.
Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J., Fandos, G., Feng, X., Guillera-Arroita, G., Guisan, A., Lahoz-Monfort, J. J., Leitão, P. J., Park, D. S., Peterson, A. T., Rapacciuolo, G., Schmatz, D. R., Schröder, B., Serra-Diaz, J. M., Thuiller, W., … Merow, C. (2020). A standard protocol for reporting species distribution models. Ecography, 43, 1261–1277.