[en] Both carbon dioxide uptake and albedo of the land surface affect global climate. However, climate change mitigation by increasing carbon uptake can cause a warming trade-off by decreasing albedo, with most research focusing on afforestation and its interaction with snow. Here, we present carbon uptake and albedo observations from 176 globally distributed flux stations. We demonstrate a gradual decline in maximum achievable annual albedo as carbon uptake increases, even within subgroups of non-forest and snow-free ecosystems. Based on a paired-site permutation approach, we quantify the likely impact of land use on carbon uptake and albedo. Shifting to the maximum attainable carbon uptake at each site would likely cause moderate net global warming for the first approximately 20 years, followed by a strong cooling effect. A balanced policy co-optimizing carbon uptake and albedo is possible that avoids warming on any timescale, but results in a weaker long-term cooling effect.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Graf, Alexander ; Institute of Bio- and Geosciences: Agrosphere (IBG-3), Research Centre Jülich, Jülich, Germany
Wohlfahrt, Georg ; Universität Innsbruck, Institut für Ökologie, Innsbruck, Austria
Aranda-Barranco, Sergio ; Andalusian Institute for Earth System Research (IISTA-CEAMA), 18071 Granada, Spain ; Departament of Ecology, University of Granada, 18071 Granada, Spain
Arriga, Nicola ; European Commission, Joint Research Centre (JRC), Ispra, Italy
Brümmer, Christian ; Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany
Ceschia, Eric ; CESBIO, Université de Toulouse, CNES/CNRS/INRA/IRD/UPS, Toulouse, France
Ciais, Philippe ; Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191 France
Desai, Ankur R ; Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI USA
Di Lonardo, Sara ; Research Institute on Terrestrial Ecosystems-National Research Council (IRET-CNR), Sesto Fiorentino, Italy
Gharun, Mana ; Institute of Landscape Ecology, University of Münster, Münster, Germany
Grünwald, Thomas ; Technische Universität Dresden, Institute of Hydrology and Meteorology, Dresden, Germany
Hörtnagl, Lukas ; Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, Zürich, 8092 Switzerland
Kasak, Kuno ; Department of Geography, University of Tartu, Tartu, Estonia
Klosterhalfen, Anne ; Bioclimatology, University of Göttingen, Göttingen, Germany
Knohl, Alexander ; Bioclimatology, University of Göttingen, Göttingen, Germany
Kowalska, Natalia ; Global Change Research Institute CAS, Bělidla 986/4a, CZ-60300 Brno, Czech Republic
Leuchner, Michael ; Physical Geography and Climatology, Institute of Geography, RWTH Aachen University, Aachen, Germany
Lindroth, Anders ; Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
Mauder, Matthias; Technische Universität Dresden, Institute of Hydrology and Meteorology, Dresden, Germany
Migliavacca, Mirco ; European Commission, Joint Research Centre (JRC), Ispra, Italy
Morel, Alexandra C; Division of Energy, Environment and Society, University of Dundee, Dundee, UK
Pfennig, Andreas ; Université de Liège - ULiège > Department of Chemical Engineering
Poorter, Hendrik; Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Research Centre Jülich, Jülich, Germany ; Department of Natural Sciences, Macquarie University, North Ryde, NSW 2109 Australia
Terán, Christian Poppe ; Institute of Bio- and Geosciences: Agrosphere (IBG-3), Research Centre Jülich, Jülich, Germany
Reitz, Oliver; Physical Geography and Climatology, Institute of Geography, RWTH Aachen University, Aachen, Germany
Rebmann, Corinna ; Department Computational Hydrosystems, Helmholtz Centre for Environmental Research (UFZ), Permoserstr. 15, 04318 Leipzig, Germany
Sanchez-Azofeifa, Arturo; Earth and Atmospheric Sciences Department, Centre for Earth Observation Sciences (CEOS), Edmonton, AB Canada
Schmidt, Marius ; Institute of Bio- and Geosciences: Agrosphere (IBG-3), Research Centre Jülich, Jülich, Germany
Šigut, Ladislav ; Global Change Research Institute CAS, Bělidla 986/4a, CZ-60300 Brno, Czech Republic
Tomelleri, Enrico ; Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
Yu, Ke ; Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191 France
Varlagin, Andrej; A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Leninsky pr.33, Moscow, Russia
Vereecken, Harry ; Institute of Bio- and Geosciences: Agrosphere (IBG-3), Research Centre Jülich, Jülich, Germany
HGF - Helmholtz Association of German Research Centres FFG - Österreichische Forschungsförderungsgesellschaft MICINN - Ministerio de Ciencia e Innovacion INSU - Institut National des Sciences de l'Univers CNRS - Centre National de la Recherche Scientifique UPS - Université Toulouse 3 Paul Sabatier IRD - Institut de Recherche pour le Développement DOE - United States. Department of Energy SNF - Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung BMBF - Bundesministerium für Bildung und Forschung DFG - Deutsche Forschungsgemeinschaft MSMT - Ministerstvo školství, mládeže a tělovýchovy České republiky RSF - Russian Science Foundation
Funding text :
We thank Talie Musavi, Max Planck Institute for Biogeochemistry, Jena, Germany, for providing species information originally collected for Musavi, et al. , Manuel Acosta, CzechGlobe, Czech republic, for provision of the data of site CZ-Krp, and the ICOS research infrastructure for data provision. L.\u0160. and N.K. acknowledge support by the Ministry of Education, Youth and Sports of the Czech Republic within the CzeCOS program (grant number LM2018123) and SustES\u2014Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16019/0000797). In 2009 funding for the Australian sites was provided to the Australia Terrestrial Ecosystem Research Network (TERN) ( http://www.tern.org.au ) through the Australian government\u2019s National Collaborative Research Infrastructure Strategy (NCRIS), which provides support for many OzFlux sites along with other capabilities; an overview of all Australian sites is given in Beringer, et al. . Data acquisition for FR-Lam were mainly funded by the Institut National des Sciences de l\u2019Univers of the Centre National de la Recherche Scientifique (CNRS-INSU) through the ICOS and OSR SW observatories. Facilities and staff were also funded and supported by the University Toulouse III - Paul Sabatier, the CNES and 732 IRD (Institut de Recherche pour le D\u00E9veloppement). We are grateful to CESBIO technical team for their technical support at the field and to Aurore BRUT for data processing. We extend special thanks to Ecole d\u2019Ing\u00E9nieur de Purpan for accommodating the measurement devices in the plot at FR-Lam. M.G. and L.H. acknowledge funding by the Swiss National Science Foundation project ICOS-CH Phase 3 20F120_198227. A.R.D. acknowledges support for US-WCr, Us-Syv, and US-Los from the U.S. Dept of Energy Ameriflux Network Management Project subaward to the ChEAS core site cluster. K.K. acknolwedges funding by Estonian Research Council (grants nr PSG631 and PSG714). G.W. acknowledges funding by the Austrian Research Promotion Agency (FFG) within the frame of the AustroSIF project. A.Kl. and A.Kn. acknowledge funding by the German Federal Ministry of Education and Research (BMBF) as part of the European Integrated Carbon Observation System (ICOS), by the Deutsche Forschungsgemeinschaft (INST 186/1118-1 FUGG) and by the Ministry of Lower-Saxony for Science and Culture (DigitalForst: Nieders\u00E4chsisches Vorab (ZN 3679)). Data acquisition for ES-Cnd was supported by the projects PID2020-117825GB-C21, PID2020-117825GB-C22, B-RNM-60-UGR20, P18-RT-3629 and grant FPU19/01647 funded by MCIN/AEI/10.13039/501100011033, \u201CESF Investing in your future\u201D and FEDER/Junta de Andaluc\u00EDa. H.V. and A.G. acknowledge support from the Terrestrial Environmental Observatories, TERENO, funded by the Helmholtz\u2013Gemeinschaft, Germany and the Deutsche Forschungsgemeinschaft \u2013 SFB 1502/1\u20132022 - Projektnummer: 450058266. A.V. was supported by the Russian Science Foundation (grant no. 21-14-00209). The Scientific colour maps hawaii and vik are used in Figs. and to prevent visual distortion of the data and exclusion of readers with colour-vision deficiencies. We thank three reviewers for suggesting important improvements to the study.
Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259–262 (2018). DOI: 10.1038/s41586-018-0577-1
Marland, G. et al. The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. Clim. Polic. 3, 149–157 (2003). DOI: 10.3763/cpol.2003.0318
Bright, R. M. & Lund, M. T. CO2-equivalence metrics for surface albedo change based on the radiative forcing concept: a critical review. Atmos. Chem. Phys. 21, 9887–9907 (2021). DOI: 10.5194/acp-21-9887-2021
Jones, A. D., Collins, W. D. & Torn, M. S. On the additivity of radiative forcing between land use change and greenhouse gases. Geophys. Res. Lett. 40, 4036–4041 (2013). DOI: 10.1002/grl.50754
Kirschbaum, M. U. F. et al. Implications of albedo changes following afforestation on the benefits of forests as carbon sinks. Biogeosciences 8, 3687–3696 (2011). DOI: 10.5194/bg-8-3687-2011
Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000). DOI: 10.1038/35041545
Ney, P. et al. CO2 fluxes before and after partial deforestation of a Central European spruce forest. Agric. For. Meteorol. 274, 61–74 (2019). DOI: 10.1016/j.agrformet.2019.04.009
Rotenberg, E. & Yakir, D. Contribution of semi-arid forests to the climate system. Science 327, 451–454 (2010). DOI: 10.1126/science.1179998
Rohatyn, S., Yakir, D., Rotenberg, E. & Carmel, Y. Limited climate change mitigation potential through forestation of the vast dryland regions. Science 377, 1436–1439 (2022). DOI: 10.1126/science.abm9684
Mykleby, P. M., Snyder, P. K. & Twine, T. E. Quantifying the trade-off between carbon sequestration and albedo in midlatitude and high-latitude North American forests. Geophys. Res. Lett. 44, 2493–2501 (2017). DOI: 10.1002/2016GL071459
Rautiainen, A., Lintunen, J. & Uusivuori, J. Market-Level Implications of Regulating Forest Carbon Storage and Albedo for Climate Change Mitigation. Agric. Resour. Econ. Rev. 47, 239–271 (2018). DOI: 10.1017/age.2018.8
Thompson, M., Adams, D. & Johnson, K. N. The Albedo Effect and Forest Carbon Offset Design. J. For. 107, 425–431 (2009). ://WOS:000272987700010.
IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/9781009157926 (Cambridge University Press, 2022).
Lenton, T. M. & Vaughan, N. E. The radiative forcing potential of different climate geoengineering options. Atmos. Chem. Phys. 9, 5539–5561 (2009). DOI: 10.5194/acp-9-5539-2009
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2021).
Pongratz, J., Reick, C. H., Raddatz, T., Caldeira, K. & Claussen, M. Past land use decisions have increased mitigation potential of reforestation. Geophys. Res. Lett. 38 https://doi.org/10.1029/2011gl047848 (2011).
Pongratz, J. et al. Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics. Curr. Clim. Chang. Rep. 7, 99–120 (2021). DOI: 10.1007/s40641-021-00178-y
Jackson, R. B. et al. Protecting climate with forests. Environ. Res. Lett. 3 10.1088/1748-9326/3/4/044006 (2008).
Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008). DOI: 10.1126/science.1155121
Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 6, 42–50 (2016). DOI: 10.1038/nclimate2870
Genesio, L. et al. Surface albedo following biochar application in durum wheat. Environ. Res. Lett. 7 10.1088/1748-9326/7/1/014025 (2012).
Genesio, L., Bassi, R. & Miglietta, F. Plants with less chlorophyll: A global change perspective. Glob. Chang. Biol. 27, 959–967 (2021). DOI: 10.1111/gcb.15470
Ollinger, S. V. et al. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks. Proc. Natl. Acad. Sci. USA 105, 19336–19341 (2008). DOI: 10.1073/pnas.0810021105
Eichelmann, E., Wagner-Riddle, C., Warland, J., Deen, B. & Voroney, P. Comparison of carbon budget, evapotranspiration, and albedo effect between the biofuel crops switchgrass and corn. Agric. Ecosyst. Environ. 231, 271–282 (2016). DOI: 10.1016/j.agee.2016.07.007
Carrer, D., Pique, G., Ferlicoq, M., Ceamanos, X. & Ceschia, E. What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops. Environ. Res. Lett. 13 https://doi.org/10.1088/1748-9326/aab650 (2018).
Lugato, E., Cescatti, A., Jones, A., Ceccherini, G. & Duveiller, G. Maximising climate mitigation potential by carbon and radiative agricultural land management with cover crops. Environ. Res. Lett. 15 https://doi.org/10.1088/1748-9326/aba137 (2020).
Ceschia, E. et al. Potentiel d’attenuation des changements climatiques par les couverts intermediaires. Innov. Agron. 62, 43–58 (2017).
Guardia, G. et al. Effective climate change mitigation through cover cropping and integrated fertilization: A global warming potential assessment from a 10-year field experiment. J. Clean. Prod. 241 https://doi.org/10.1016/j.jclepro.2019.118307 (2019).
Kaye, J. P. & Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 37 https://doi.org/10.1007/s13593-016-0410-x (2017).
Sieber, P., Ericsson, N. & Hansson, P. A. Climate impact of surface albedo change in Life Cycle Assessment: Implications of site and time dependence. Environ. Impact Assess. Rev. 77, 191–200 (2019). DOI: 10.1016/j.eiar.2019.04.003
Smith, C. J. et al. Effective radiative forcing and adjustments in CMIP6 models. Atmos. Chem. Phys. 20, 9591–9618 (2020). DOI: 10.5194/acp-20-9591-2020
Xu, R. et al. Contrasting impacts of forests on cloud cover based on satellite observations. Nat. Commun. 13 https://doi.org/10.1038/s41467-022-28161-7 (2022).
L’Ecuyer, T. S., Hang, Y., Matus, A. V. & Wang, Z. E. Reassessing the Effect of Cloud Type on Earth’s Energy Balance in the Age of Active Spaceborne Observations. Part I: Top of Atmosphere and Surface. J. Clim 32, 6197–6217 (2019). DOI: 10.1175/JCLI-D-18-0753.1
Teuling, A. J. et al. Observational evidence for cloud cover enhancement over western European forests. Nat. Commun. 8 10.1038/ncomms14065 (2017).
Britton, C. M. & Dodd, J. D. Relationships of photosynthetically active radiation and shortwave irradiance. Agric. Meteorol. 17, 1–7 (1976). DOI: 10.1016/0002-1571(76)90080-7
Hovi, A., Lukes, P. & Rautiainen, M. Seasonality of albedo and FAPAR in a boreal forest. Agric. For. Meteorol. 247, 331–342 (2017). DOI: 10.1016/j.agrformet.2017.08.021
Lukes, P., Stenberg, P., Mottus, M., Manninen, T. & Rautiainen, M. Multidecadal analysis of forest growth and albedo in boreal Finland. Int. J. Appl. Earth Obs. Geoinform. 52, 296–305 (2016).
Blanken, P. D. et al. Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. J. Geophys. Res.-Atmos. 102, 28915–28927 (1997). DOI: 10.1029/97JD00193
Black, T. A. et al. Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Glob. Chang. Biol. 2, 219–229 (1996). DOI: 10.1111/j.1365-2486.1996.tb00074.x
Chen, W. J. et al. Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Glob. Chang. Biol. 5, 41–53 (1999). DOI: 10.1046/j.1365-2486.1998.00201.x
Tucker, C. J. & Sellers, P. J. Satellite Remote-Sensing of Primary Production. Int. J. Remote Sens. 7, 1395–1416 (1986). DOI: 10.1080/01431168608948944
Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468 (2021). DOI: 10.1038/s41586-021-03939-9
Luyssaert, S. et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Chang. 4, 389–393 (2014). DOI: 10.1038/nclimate2196
Genesio, L., Vaccari, F. P. & Miglietta, F. Black carbon aerosol from biochar threats its negative emission potential. Glob. Chang. Biol. 22, 2313–2314 (2016). DOI: 10.1111/gcb.13254
Post, D. F. et al. Predicting soil albedo from soil color and spectral reflectance data. Soil Sci. Soc. Am. J. 64, 1027–1034 (2000). DOI: 10.2136/sssaj2000.6431027x
Proulx, R. On the general relationship between plant height and aboveground biomass of vegetation stands in contrasted ecosystems. PLoS One 16 10.1371/journal.pone.0252080 (2021).
Krstic, D. et al. The Effect of Cover Crops on Soil Water Balance in Rain-Fed Conditions. Atmosphere 9 https://doi.org/10.3390/atmos9120492 (2018).
Meyer, N., Bergez, J. E., Constantin, J. & Justes, E. Cover crops reduce water drainage in temperate climates: A meta-analysis. Agrono. Sustain. Dev. 39 https://doi.org/10.1007/s13593-018-0546-y (2019).
Constantin, J., Le Bas, C. & Justes, E. Large-scale assessment of optimal emergence and destruction dates for cover crops to reduce nitrate leaching in temperate conditions using the STICS soil-crop model. Eur. J. Agron. 69, 75–87 (2015). DOI: 10.1016/j.eja.2015.06.002
Tribouillois, H., Constantin, J. & Justes, E. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers. Glob. Chang. Biol. 24, 2513–2529 (2018). DOI: 10.1111/gcb.14091
Sakowska, K. et al. Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant. Plant Cell Environ. 41, 1427–1437 (2018). DOI: 10.1111/pce.13180
Bartlett, M. K., Ollinger, S. V., Hollinger, D. Y., Wicklein, H. F. & Richardson, A. D. Canopy-scale relationships between foliar nitrogen and albedo are not observed in leaf reflectance and transmittance within temperate deciduous tree species. Botany 89, 491–497 (2011). DOI: 10.1139/b11-037
Knyazikhin, Y. et al. Hyperspectral remote sensing of foliar nitrogen content. Proc. Natl Acad. Sci. USA 110, E185–E192 (2013). DOI: 10.1073/pnas.1210196109
Hollinger, D. Y. et al. Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Glob. Chang. Biol. 16, 696–710 (2010). DOI: 10.1111/j.1365-2486.2009.02028.x
Doughty, C. E. et al. Tropical forest leaves may darken in response to climate change. Nat. Ecol. Evol. 2, 1918–1924 (2018). DOI: 10.1038/s41559-018-0716-y
Jin, X., Wan, L. & Su, Z. Research on evaporation of Taiyuan basin area by using remote sensing. Hydrol. Earth Syst. Sci. Discuss 2005, 209–227 (2005).
Schwaab, J. et al. Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes. Sci. Rep. 10 10.1038/s41598-020-71055-1 (2020).
Felton, A. et al. Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. Ambio 45, S124–S139 (2016). DOI: 10.1007/s13280-015-0749-2
Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4 10.1038/ncomms2328 (2013).
Jonsson, M., Bengtsson, J., Gamfeldt, L., Moen, J. & Snall, T. Levels of forest ecosystem services depend on specific mixtures of commercial tree species. Nat. Plants 5, 141 (2019). DOI: 10.1038/s41477-018-0346-z
Farley, K. A., Jobbagy, E. G. & Jackson, R. B. Effects of afforestation on water yield: a global synthesis with implications for policy. Glob. Chang. Biol. 11, 1565–1576 (2005). DOI: 10.1111/j.1365-2486.2005.01011.x
Filoso, S., Bezerra, M. O., Weiss, K. C. B. & Palmer, M. A. Impacts of forest restoration on water yield: A systematic review. PLoS One 12 https://doi.org/10.1371/journal.pone.0183210 (2017).
Hoek van Dijke, A. J. et al. Shifts in regional water availability due to global tree restoration. Nat. Geosci. 15, 363–368 (2022). DOI: 10.1038/s41561-022-00935-0
Aragao, L. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9 10.1038/s41467-017-02771-y (2018).
Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Chang. Biol. 8, 1–16 (2002). DOI: 10.1046/j.1365-2486.2002.00451.x
Kovenock, M. & Swann, A. L. S. Leaf Trait Acclimation Amplifies Simulated Climate Warming in Response to Elevated Carbon Dioxide. Glob. Biogeochem. Cycles 32, 1437–1448 (2018). DOI: 10.1029/2018GB005883
Monson, R. & Baldocchi, D. Terrestrial Biosphere-Atmosphere Fluxes. (Cambridge University Press, 2014).
Graf, A. et al. Altered energy partitioning across terrestrial ecosystems in the European drought year 2018. Philos. Transac. R. Soc. B 375, 20190524 (2020). DOI: 10.1098/rstb.2019.0524
Sherwood, S. C. et al. Adjustments in the forcing-feedback framework for understanding climate change. Bull. Am. Meteorol. Soc. 96, 217–228 (2015). DOI: 10.1175/BAMS-D-13-00167.1
Andrews, T., Betts, R. A., Booth, B. B. B., Jones, C. D. & Jones, G. S. Effective radiative forcing from historical land use change. Clim. Dyn. 48, 3489–3505 (2017). DOI: 10.1007/s00382-016-3280-7
Forster, P. M. et al. Recommendations for diagnosing effective radiative forcing from climate models for CMIP6. J. Geophys. Res.-Atmos. 121, 12460–12475 (2016). DOI: 10.1002/2016JD025320
Baldocchi, D. et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001). ://000171929700004. DOI: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020). DOI: 10.1038/s41597-020-0534-3
Warm Winter 2020 Team & ICOS Ecosystem Thematic Centre. Warm Winter 2020 ecosystem eddy covariance flux product for 73 stations in FLUXNET-Archive format—release 2022-1 (Version 1.0), < https://doi.org/10.18160/2G60-ZHAK > (2022).
Graf, A. et al. Spatiotemporal relations between water budget components and soil water content in a forested tributary catchment. Water Resour. Res. 50, 4837–4857 (2014). DOI: 10.1002/2013WR014516
Myhre, G., Highwood, E. J., Shine, K. P. & Stordal, F. New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 25, 2715–2718 (1998). DOI: 10.1029/98GL01908
Besnard, S. et al. Quantifying the effect of forest age in annual net forest carbon balance. Environ. Res. Lett. 13 10.1088/1748-9326/aaeaeb (2018).
Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth System Sci. Data 13, 3927–3950 (2021). DOI: 10.5194/essd-13-3927-2021
Friedlingstein, P. et al. Global Carbon Budget 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022). DOI: 10.5194/essd-14-1917-2022
Kutsch, W. L. et al. The net biome production of full crop rotations in Europe. Agric. Ecosyst. Environ. 139, 336–345 (2010). DOI: 10.1016/j.agee.2010.07.016
Ciais, P. et al. The European carbon balance. Part 2: croplands. Glob. Chang. Biol. 16, 1409–1428 (2010). DOI: 10.1111/j.1365-2486.2009.02055.x
Chang, J. F. et al. The greenhouse gas balance of European grasslands. Glob. Chang. Biol. 21, 3748–3761 (2015). DOI: 10.1111/gcb.12998
Luyssaert, S. et al. The European carbon balance. Part 3: forests. Glob. Chang. Biol. 16, 1429–1450 (2010). DOI: 10.1111/j.1365-2486.2009.02056.x
Bright, R. M. & O’Halloran, T. L. Developing a monthly radiative kernel for surface albedo change from satellite climatologies of Earth’s shortwave radiation budget: CACK v1.0. Geosci. Model Dev. 12, 3975–3990 (2019). DOI: 10.5194/gmd-12-3975-2019
Smith, C. J. et al. Understanding Rapid Adjustments to Diverse Forcing Agents. Geophys. Res. Lett. 45, 12023–12031 (2018). DOI: 10.1029/2018GL079826
Pendergrass, A. G., Conley, A. & Vitt, F. M. Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. Earth Syst. Sci. Data 10, 317–324 (2018). DOI: 10.5194/essd-10-317-2018
Flechard, C. R. et al. Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling. Biogeosciences 17, 1583–1620 (2020). DOI: 10.5194/bg-17-1583-2020
Musavi, T. et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol. 1 10.1038/s41559-016-0048 (2017).
Pendergrass, A. G. CAM5 Radiative Kernels, < https://zenodo.org/record/997902 > (2017).
Smith, C. J. HadGEM2 radiative kernels, < https://doi.org/10.5518/406 > (2018).
Bright, R. M. & O’Halloran, T. L. A monthly shortwave radiative forcing kernel for surface albedo change using CERES satellite data, < https://doi.org/10.6073/pasta/d77b84b11be99ed4d5376d77fe0043d8 > (2019).
Smith, C. J. HadGEM3-GA7.1 radiative kernels, < https://doi.org/10.5281/zenodo.3594673 > (2019).
Graf, A. et al. Dataset for “Joint optimization of land carbon uptake and albedo can help achieve moderate instantaneous and long-term cooling effects”, < https://doi.org/10.5281/zenodo.8172207 > (2023).
Beringer, J. et al. Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network. Glob. Chang. Biol. 28, 3489–3514 (2022). DOI: 10.1111/gcb.16141
Crameri, F., Shephard, G. E. & Heron, P. J. The misuse of colour in science communication. Nat. Commun. 11 https://doi.org/10.1038/s41467-020-19160-7 (2020).