[en] The visual systems of Odonata are characterized by many opsin genes, which form the primary light-sensitive photopigments of the eye. Female-limited colour polymorphisms are also common in Odonata, with one morph typically exhibiting male-like (androchrome) coloration and one or two morphs exhibiting female-specific coloration (gynochromes). These colour polymorphisms are thought to be maintained by frequency-dependent sexual conflict, in which males form search images for certain morphs, causing disproportionate mating harassment. Here, we investigate opsin sensitivity and gene expression plasticity in mate-searching males of the damselfly Ischnura elegans during adult maturation and across populations with different female morph frequencies. We find evidence for opsin-specific plasticity in relative and proportional opsin mRNA expression, suggesting changes in opsin regulation and visual sensitivity during sexual maturation. In particular, expression of the long-wavelength-sensitive opsin LWF2 changed over development and varied between populations with different female morph frequencies. UV-Vis analyses indicate that short- and long-wavelength opsins absorb wavelengths of light between 350 and 650 nm. Assuming opponency between photoreceptors with distinct short- and long-wavelength sensitivities, these sensitivities suggest male spectral visual discrimination ability of androchrome and gynochrome females. Overall, our results suggest that opsin sensitivity and expression changes contribute to visual tuning that could impact conspecific discrimination.
Swedish Research Council Stiftelsen Längmanska Kulturfonden Carl Trygger Foundation
Subventionnement (détails) :
This work was supported by grants from the Swedish Research Council (VR 2020-0517 to M.A.L. and VR2020-03123 to E.I.S.), Carl Trygger Foundation (CTS20:248) to M.A.L., Erik Philip-Sorensens Stiftelse (G2022-007) to E.I.S. and Stiftelsen Lungmanska Kulturfonden (BA21-1192) to N.S.R. Acknowledgements
Terakita A. 2005 The opsins. Genome Biol. 6, 213. (doi:10.1186/gb-2005-6-3-213)
Briscoe AD, Chittka L. 2001 The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471-510. (doi:10.1146/annurev.ento.46.1.471)
van der Kooi CJ, Stavenga DG, Arikawa K, Belušič G, Kelber A. 2021 Evolution of insect color vision: from spectral sensitivity to visual ecology. Annu. Rev. Entomol. 66, 435-461. (doi:10.1146/annurev-ento-061720-071644)
Castiglione GM, Hauser FE, Van Nynatten A, Chang BSW. 2023 Adaptation of Antarctic icefish vision to extreme environments. Mol. Biol. Evol. 40, d030. (doi:10.1093/molbev/msad030)
Liénard MA et al,. 2021 The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies. Proc. Natl Acad. Sci. USA 118, e2008986118. (doi:10.1073/pnas.2008986118)
Sharkey CR, Blanco J, Lord NP, Wardill TJ. 2023 Jewel beetle opsin duplication and divergence is the mechanism for diverse spectral sensitivities. Mol. Biol. Evol. 40, 023. (doi:10.1093/molbev/msad023)
Jacobs GH. 2013 Losses of functional opsin genes, short-wavelength cone photopigments, and color vision-a significant trend in the evolution of mammalian vision. Vis. Neurosci. 30, 39-53. (doi:10.1017/s0952523812000429)
Rossetto IH, Sanders KL, Simões BF, Van Cao N, Ludington AJ. 2023 Functional duplication of the short-wavelength-sensitive opsin in sea snakes: evidence for reexpanded color sensitivity following ancestral regression. Genome Biol. Evol. 15, d107. (doi:10.1093/gbe/evad107)
McCulloch KJ, Yuan F, Zhen Y, Aardema ML, Smith G, Llorente-Bousquets J, Andolfatto P, Briscoe AD. 2017 Sexual dimorphism and retinal mosaic diversification following the evolution of a violet receptor in butterflies. Mol. Biol. Evol. 34, 2271-2284. (doi:10.1093/molbev/msx163)
Chang CH, Catchen J, Moran RL, Rivera-Colón AG, Wang YC, Fuller RC. 2021 Sequence analysis and ontogenetic expression patterns of cone opsin genes in the bluefin killifish (Lucania goodei). J. Hered. 112, 357-366. (doi:10.1093/jhered/esab017)
Fuller RC, Noa LA, Strellner RS. 2010 Teasing apart the many effects of lighting environment on opsin expression and foraging preference in bluefin killifish. Am. Nat. 176, 1-13. (doi:10.1086/652994)
Shand J et al,. 2008 The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri. J. Exp. Biol. 211, 1495-1503. (doi:10.1242/jeb.012047)
Sasagawa H, Narita R, Kitagawa Y, Kadowaki T. 2003 The expression of genes encoding visual components is regulated by a circadian clock, light environment and age in the honeybee (Apis mellifera). Eur. J. Neurosci. 17, 963-970. (doi:10.1046/j.1460-9568.2003.02528.x)
Yilmaz A, Lindenberg A, Albert S, Grübel K, Spaethe J, Rössler W, Groh C. 2016 Age-related and light-induced plasticity in opsin gene expression and in primary and secondary visual centers of the nectar-feeding ant Camponotus rufipes. Dev. Neurobiol. 76, 1041-1057. (doi:10.1002/dneu.22374)
Everett A, Tong X, Briscoe AD, Monteiro A. 2012 Phenotypic plasticity in opsin expression in a butterfly compound eye complements sex role reversal. BMC Evol. Biol. 12, 232. (doi:10.1186/1471-2148-12-232)
Willink B, Duryea MC, Wheat C, Svensson EI. 2020 Changes in gene expression during female reproductive development in a color polymorphic insect. Evolution 74, 1063-1081. (doi:10.1111/evo.13979)
Bybee SM, Johnson KK, Gering EJ, Whiting MF, Crandall KA. 2012 All the better to see you with: a review of odonate color vision with transcriptomic insight into the odonate eye. Org. Divers. Evol. 12, 241-250. (doi:10.1007/s13127-012-0090-6)
Corbet PS. 1999 Dragonflies: behavior and ecology of odonata,. p. 829. Ithaca, NY: Cornell University Press.
Labhart T, Nilsson DE. 1995 The dorsal eye of the dragonfly Sympetrum: specializations for prey detection against the blue sky. J. Comp. Physiol. 176, 437-453. (doi:10.1007/bf00196410)
Futahashi R, Kawahara-Miki R, Kinoshita M, Yoshitake K, Yajima S, Arikawa K, Fukatsu T. 2015 Extraordinary diversity of visual opsin genes in dragonflies. Proc. Natl Acad. Sci. USA 112, E1247-56. (doi:10.1073/pnas.1424670112)
Rebora M, Frati F, Piersanti S, Salerno G, Selvaggini R, Fincke OM. 2018 Field tests of multiple sensory cues in sex recognition and harassment of a colour polymorphic damselfly. Anim. Behav. 136, 127-136. (doi:10.1016/j.anbehav.2018.09.009)
Winfrey C, Fincke OM. 2017 Role of visual and non-visual cues in damselfly mate recognition. Int. J. Odonatol. 20, 43-52. (doi:10.1080/13887890.2017.1297259)
Blow R, Willink B, Svensson EI. 2021 A molecular phylogeny of forktail damselflies (genus Ischnura) reveals a dynamic macroevolutionary history of female colour polymorphisms. Mol. Phylogenetics Evol. 160, 107134. (doi:10.1016/j.ympev.2021.107134)
Fincke OM, Jödicke R, Paulson DR, Schultz TD. 2005 The evolution and frequency of female color morphs in Holarctic Odonata: why are male-like females typically the minority? Int. J. Odonatol. 8, 183-212. (doi:10.1080/13887890.2005.9748252)
Fincke OM. 2004 Polymorphic signals of harassed female odonates and the males that learn them support a novel frequency-dependent model. Anim. Behav. 67, 833-845. (doi:10.1016/j.anbehav.2003.04.017)
Miller MN, Fincke OM. 1999 Cues for mate recognition and the effect of prior experience on mate recognition in Enallagma damselflies. J. Insect Behav. 12, 801-814. (doi:10.1023/A:1020957110842)
Takahashi Y, Kagawa K, Svensson EI, Kawata M. 2014 Evolution of increased phenotypic diversity enhances population performance by reducing sexual harassment in damselflies. Nat. Commun. 5, 4468. (doi:10.1038/ncomms5468)
Robertson HM. 1985 Female dimorphism and mating behaviour in a damselfly, Ischnura ramburi: females mimicking males. Anim. Behav. 33, 805-809. (doi:10.1016/s0003-3472(85)80013-0)
Miller MN, Fincke OM. 2004 Mistakes in sexual recognition among sympatric Zygoptera vary with time of day and color morphism (Odonata: Coenagrionidae). Int. J. Odonatol. 7, 471-491. (doi:10.1080/13887890.2004.9748233)
Fincke OM, Fargevieille A, Schultz TD. 2007 Lack of innate preference for morph and species identity in mate-searching Enallagma damselflies. Behav. Ecol. Sociobiol. 61, 1121-1131. (doi:10.1007/s00265-006-0345-3)
van Gossum H, Stoks R, Bruyn LD. 2001 Reversible frequency-dependent switches in male mate choice. Proc. R. Soc. B 268, 83-85. (doi:10.1098/rspb.2000.1333)
Gering EJ. 2017 Male-mimicking females increase male-male interactions, and decrease male survival and condition in a female-polymorphic damselfly. Evolution 71, 1390-1396. (doi:10.1111/evo.13221)
Gosden TP, Svensson EI. 2009 Density-dependent male mating harassment, female resistance, and male mimicry. Am. Nat. 173, 709-721. (doi:10.1086/598491)
Willink B, Tunström K, Nilén S, Chikhi R, Lemane T, Takahashi M, Takahashi Y, Svensson EI, Wheat CW. 2024 The genomics and evolution of inter-sexual mimicry and female-limited polymorphisms in damselflies. Nat. Ecol. Evol. 8, 83-97. (doi:10.1038/s41559-023-02243-1)
Le Rouzic A, Hansen TF, Gosden TP, Svensson EI. 2015 Evolutionary time-series analysis reveals the signature of frequency-dependent selection on a female mating polymorphism. Am. Nat. 185, E182-E196. (doi:10.1086/680982)
Svensson EI, Abbott J, Härdling R. 2005 Female polymorphism, frequency dependence, and rapid evolutionary dynamics in natural populations. Am. Nat. 165, 567-576. (doi:10.1086/429278)
Henze MJ, Lind O, Wilts BD, Kelber A. 2019 Pterin-pigmented nanospheres create the colours of the polymorphic damselfly Ischnura elegans. J. R. Soc. Interface 16, 20180785. (doi:10.1098/rsif.2018.0785)
Van Gossum H, Bots J, Van Heusden J, Hammers M, Huyghe K, Morehouse NI. 2011 Reflectance spectra and mating patterns support intraspecific mimicry in the colour polymorphic damselfly Ischnura elegans. Evol. Ecol. 25, 139-154. (doi:10.1007/s10682-010-9388-z)
Willink B, Duryea MC, Svensson EI. 2019 Macroevolutionary origin and adaptive function of a polymorphic female signal involved in sexual conflict. Am. Nat. 194, 707-724. (doi:10.1086/705294)
Willink B, Svensson EI. 2017 Intra-and intersexual differences in parasite resistance and female fitness tolerance in a polymorphic insect. Proc. R. Soc. B 284, 20162407. (doi:10.1098/rspb.2016.2407)
Abbott JK, Bensch S, Gosden TP, Svensson EI. 2008 Patterns of differentiation in a colour polymorphism and in neutral markers reveal rapid genetic changes in natural damselfly populations. Mol. Ecol. 17, 1597-1604. (doi:10.1111/j.1365-294x.2007.03641.x)
Varma N, Mutt E, Mühle J, Panneels V, Terakita A, Deupi X, Nogly P, Schertler GFX, Lesca E. 2019 Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR. Proc. Natl Acad. Sci. USA 116, 14547-14556. (doi:10.1073/pnas.1902192116)
Livak KJ, Schmittgen TD. 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408. (doi:10.1006/meth.2001.1262)
Pfaffl MW. 2001 A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. (doi:10.1093/nar/29.9.e45)
Huang S, Chiou T, Marshall J, Reinhard J. 2014 Spectral sensitivities and color signals in a polymorphic damselfly. PLoS One 9, e87972. (doi:10.1371/journal.pone.0087972)
Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM. 2009 Mixed effects models and extensions in ecology with R. New York, NY: Springer. (doi:10.1007/978-0-387-87458-6)
Terakita A, Tsukamoto H, Koyanagi M, Sugahara M, Yamashita T, Shichida Y. 2008 Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin. J. Neurochem. 105, 883-890. (doi:10.1111/j.1471-4159.2007.05184.x)
Townson SM, Chang BSW, Salcedo E, Chadwell LV, Pierce NE, Britt SG. 1998 Honeybee blue-and ultraviolet-sensitive opsins: Cloning, heterologous expression in drosophila, and physiological characterization. Journal of Neuroscience 18, 2412-2422. (doi:10.1523/JNEUROSCI.18-07-02412.1998)
Van gossum H, Stoks R, Matthysen E, Valck F, De bruyn L. 1999 Male choice for female colour morphs in Ischnura elegans (Odonata, Coenagrionidae): testing the hypotheses. Anim. Behav. 57, 1229-1232. (doi:10.1006/anbe.1999.1100)
Lancer BH, Evans BJE, Wiederman SD. 2020 The visual neuroecology of anisoptera. Curr. Opin. Insect Sci. 42, 14-22. (doi:10.1016/j.cois.2020.07.002)
Kelber A. 2005 Alternative use of chromatic and achromatic cues in a hawkmoth. Proc. R. Soc. B 272, 2143-2147. (doi:10.1098/rspb.2005.3207)
Kelber A, Osorio D. 2010 From spectral information to animal colour vision: experiments and concepts. Proc. R. Soc. B 277, 1617-1625. (doi:10.1098/rspb.2009.2118)
Lind O, Henze MJ, Kelber A, Osorio D. 2017 Coevolution of coloration and colour vision? Phil. Trans. R. Soc. B 372, 20160338. (doi:10.1098/rstb.2016.0338)
Futahashi R. 2016 Color vision and color formation in dragonflies. Curr. Opin. Insect Sci. 17, 32-39. (doi:10.1016/j.cois.2016.05.014)
Cronin TW, Caldwell RL, Marshall J. 2001 Tunable colour vision in a mantis shrimp. Nature 411, 547-548. (doi:10.1038/35079184)
Stavenga DG, Arikawa K. 2011 Photoreceptor spectral sensitivities of the Small White butterfly Pieris rapae crucivora interpreted with optical modeling. J. Comp. Physiol. 197, 373-385. (doi:10.1007/s00359-010-0622-5)
Kelber A, Vorobyev M, Osorio D. 2003 Animal colour vision-behavioural tests and physiological concepts. Biol. Rev. 78, 81-118. (doi:10.1017/s1464793102005985)
Rister J, Desplan C. 2011 The retinal mosaics of opsin expression in invertebrates and vertebrates. Dev. Neurobiol. 71, 1212-1226. (doi:10.1002/dneu.20905)
Frentiu FD, Yuan F, Savage WK, Bernard GD, Mullen SP, Briscoe AD. 2015 Opsin clines in butterflies suggest novel roles for insect photopigments. Mol. Biol. Evol. 32, 368-379. (doi:10.1093/molbev/msu304)
Wakakuwa M, Terakita A, Koyanagi M, Stavenga DG, Shichida Y, Arikawa K. 2010 Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies. PLoS One 5, e15015. (doi:10.1371/journal.pone.0015015)
Liénard MA, Valencia-Montoya WA, Pierce NE. 2022 Molecular advances to study the function, evolution and spectral tuning of arthropod visual opsins. Phil. Trans. R. Soc. B 377, 20210279. (doi:10.1098/rstb.2021.0279)
Dungan SZ, Chang BSW. 2022 Ancient whale rhodopsin reconstructs dim-light vision over a major evolutionary transition: implications for ancestral diving behavior. Proc. Natl Acad. Sci. USA 119, e2118145119. (doi:10.1073/pnas.2118145119)
Hauzman E, Pierotti MER, Bhattacharyya N, Tashiro JH, Yovanovich CAM, Campos PF, Ventura DF, Chang BSW. 2021 Simultaneous expression of UV and Violet SWS1 opsins expands the visual palette in a group of freshwater snakes. Mol. Biol. Evol. 38, 5225-5240. (doi:10.1093/molbev/msab285)
Schott RK et al,. 2024 Diversity and evolution of frog visual opsins: spectral tuning and adaptation to distinct light environments. Mol. Biol. Evol. 41, e049. (doi:10.1093/molbev/msae049)
Verzijden MN, ten Cate C, Servedio MR, Kozak GM, Boughman JW, Svensson EI. 2012 The impact of learning on sexual selection and speciation. Trends Ecol. Evol. 27, 511-519. (doi:10.1016/j.tree.2012.05.007)
West-Eberhard MJ. 2003 Developmental plasticity and evolution. New York, NY: Oxford University Press. (doi:10.1093/oso/9780195122343.003.0008)
Svensson EI, Eroukhmanoff F, Karlsson K, Runemark A, Brodin A. 2010 A role for learning in population divergence of mate preferences. Evolution 64, 3101-3113. (doi:10.1111/j.1558-5646.2010.01085.x)
Westerman EL, Hodgins-Davis A, Dinwiddie A, Monteiro A. 2012 Biased learning affects mate choice in a butterfly. Proc. Natl Acad. Sci. USA 109, 10948-10953. (doi:10.1073/pnas.1118378109)
Wright DS, van Eijk R, Schuart L, Seehausen O, Groothuis TGG, Maan ME. 2020 Testing sensory drive speciation in cichlid fish: linking light conditions to opsin expression, opsin genotype and female mate preference. J. Evol. Biol. 33, 422-434. (doi:10.1111/jeb.13577)
Sakai Y, Kawamura S, Kawata M. 2018 Genetic and plastic variation in opsin gene expression, light sensitivity, and female response to visual signals in the guppy. Proc. Natl Acad. Sci. USA 115, 12247-12252. (doi:10.1073/pnas.1706730115)
Seehausen O et al,. 2008 Speciation through sensory drive in cichlid fish. Nature 455, 620-626. (doi:10.1038/nature07285)
Sandkam B, Young CM, Breden F. 2015 Beauty in the eyes of the beholders: colour vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata). Mol. Ecol. 24, 596-609. (doi:10.1111/mec.13058)
Roberts N, Svensson E, Liénard M. 2025 Supplemental datasets: Opsin gene expression plasticity and spectral sensitivity in male damselflies could mediate female colour morph detection. Dryad digital repository. (doi:10.5061/dryad.7sqv9s4z1)
Roberts NS, Svensson EI, Liénard MA. 2025 Supplementary material from: Opsin gene expression plasticity and spectral sensitivity in male damselflies could mediate female colour morph detection. Figshare. (doi:10.6084/m9.figshare.c.7813382)