Altimetry; GNSS; Land subsidence; Nile Delta; SLR, inundation, simulation model; Sentinel-1; Tide gauges
Abstract :
[en] Egypt is confronted with a number of hazardous environmental incidents, mainly sea level rise (SLR) and land subsidence. The Nile Delta is a low-relief surface that is particularly vulnerable to flooding and SLR, making it important to study inundation scenarios for the region. Potential social and economic consequences of this anticipated sea encroachment were projected utilizing (1) crustal deformation calculations derived from the time series analysis using the Persistent Scatterer Interferometry (PSI) technique based on Least Squares Estimation. (a stack of 191 Sentinel-1 ascending scenes), and eight permanent stations of Global Navigation Satellite System (GNSS); both spanning the period 2014-2019, (2) SLR values using Satellite Altimetry, and (3) a high-resolution digital elevation model (TerraSAR-X/TanDEM-X). The The key findings of this study are summarized as follows; (1) large cities and urban regions adjacent to the two main active branches of the Nile Delta (Rosetta and Damietta) experienced the majority of subsidence rates, (2) the cities of Damietta, Mansoura and Port said (eastern side of the Nile Delta) experienced the maximum rates of subsidence (- 11 ± 0.6, - 8.9 ± 0.7, and - 6.3 ± 0.7 mm/year, respectively), (3) the cities of Shebin El Kom, Damanhour, Tanta, New-Damietta, Kafr El-Sheikh had moderate subsidence rates (- 3.2 ± 0.6, - 2.4 ± 0.7, - 4.2 ± 0.6, - 3.8 ± 0.7, - 3.2 ± 0.7 mm/year, respectively), (4) the Nile Delta subsidence seems to be dominated by anthropogenic reasons such as urbanization, ground water and hydrocarbon extraction, (5) the linear trend of sea level anomaly (SLA) from satellite altimetry data over the period from 1993 to 2019 along the Delta shoreline, the SLR is ~ 3.42 ± 0.5 mm/year, and (6) based on GIS tools and IDW interpolation, wide swaths of the northern Nile Delta would be flooded in the worst-case scenario, which would result in approximately 482 km2 being flooded in fifty years, 2433 km2 in one hundred years, and 3320 km2 in one hundred and fifty years due to the ongoing land subsidence and SLR of 3.4 mm/year.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Hassan, Soha; Department of Geodynamics, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, 11421, Egypt. soha.hassan@nriag.sci.eg
Saleh, Mohamed; Department of Geodynamics, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, 11421, Egypt
Mohamed, Bayoumy Abdelaziz ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Oceanography Department, Faculty of Science, Alexandria University, Alexandria, 21500, Egypt
Elhebiry, Mohamed S; Department of Geology, Al-Azhar University, Cairo, 11884, Egypt ; Earth and Environment Department, Albion College, Albion, MI49224, USA
Abdeldayem, Abdelaziz; Department of Geology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
Issawy, Elsayed; Department of Geodynamics, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, 11421, Egypt
Zahran, Khaled; Department of Geodynamics, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, 11421, Egypt
Kamh, Samir; Department of Geology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
Language :
English
Title :
Environmental risk assessment of the Nile Delta, Egypt, based on radar interferometry, altimetry, and geodetic measurements.
A. Cazenave F. Remy Sea level and climate: measurements and causes of changes Wiley Interdiscip Rev. Clim. Chang. 2 5 647 662 10.1002/wcc.139
M.M. Dyurgerov Mass balance of mountain and subpolar glaciers: a new global assessment for 1961–1990 Arct. Alp. Res. 29 379 391 10.2307/1551986
F. García M.I. Vigo D. García-García J.M. Sánchez-Reales Combination of multisatellite altimetry and tide gauge data for determining vertical crustal movements along Northern mediterranean Coast Pure Appl. Geophys. 169 8 1411 1423 10.1007/s00024-011-0400-5
O.E. Frihy The nile delta-Alexandria Coast: vulnerability to sea-level rise, consequences and adaptation Mitig Adapt. Strateg Glob Chang. 10.1023/A:1026015824714
Marshak, R. & Jack, S. Essentials of Geology (W. W. Norton & Company, Inc., 2013).
A. Sánchez-Arcilla et al. Climatic drivers of potential hazards in mediterranean Coasts Reg. Environ. Chang. 11 3 617 636 10.1007/s10113-010-0193-6
I. IPCC IPOCC Climate change 2007 - The physical science basis: working group I contribution to the fourth assessment report of the IPCC Sci. (80-) no. October 2009 p1009
M. El-Quilish M. El-Ashquer G. Dawod G.E. Fiky Development of an inundation model for the Northern coastal zone of the nile Delta region, Egypt using High-Resolution DEM Arab. J. Sci. Eng. 48 1 601 614 10.1007/s13369-022-07013-y
2023 IPCC AR6.: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, [Core Writing Team, H. Lee and J. Romero (eds.)], IPCC, Geneva, Switzerland, 2023. Climate Change (2023). https://doi.org/10.59327/IPCC/AR6-9789291691647
M.E. Hereher Vulnerability of the nile Delta to sea level Rise: an assessment using remote sensing Geomatics Nat. Hazards Risk 1 4 315 321 10.1080/19475705.2010.516912
H. Dahshan et al. Monitoring of pesticides water pollution-The Egyptian river nile J. Environ. Heal Sci. Eng. 14 1 1 9 1:CAS:528:DC%2BC1cXkslOlt7w%3D 10.1186/s40201-016-0259-6
M. El-Raey Vulnerability assessment of the coastal zone of the nile delta of Egypt, to the impacts of sea level rise Ocean. Coast Manag 37 1 29 40 10.1016/S0964-5691(97)00056-2
J.C. Dolson M.V. Shann S.I. Matbouly H. Hammouda R.M. Rashed Egypt in the twenty-first century: petroleum potential in offshore trends GeoArabia 6 2 211 230 10.2113/geoarabia0602211
J.D. Pigott M.I. Abdel-Fattah Seismic stratigraphy of the Messinian nile Delta coastal plain: recognition of the fluvial regressive systems tract and its potential for hydrocarbon exploration J. Afr. Earth Sci. 95 9 12 10.1016/j.jafrearsci.2014.02.003
M. Leila A. Eslam A.A. El-Magd L. Alwaan A. Elgendy Formation evaluation and reservoir characteristics of the Messinian Abu Madi sandstones in Faraskour gas field, onshore nile delta, Egypt J. Pet. Explor. Prod. Technol. 11 133 155 1:CAS:528:DC%2BB3MXlvVymu7o%3D 10.1007/s13202-020-01011-2
M.M. El Banna O.E. Frihy Natural and anthropogenic influences in the Northeastern Coast of the nile delta, Egypt Environ. Geol. 57 1593 1602 10.1007/s00254-008-1434-6
Elsharkawy, H., Rashed, H. & Rached, I. Climate change: the impacts of sea level rise on Egypt. Development, (2009).
S.M. Zaid M.M. Mamoun N.M. Al-Mobark Vulnerability assessment of the impact of sea level rise and land subsidence on North nile Delta region World Appl. Sci. J. 32 3 325 342 10.5829/idosi.wasj.2014.32.03.14505
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. & Wobbe, F. Generic mapping tools: Improved version released. Eos (Washington. DC).94, 409–410. https://doi.org/10.1002/2013EO450001 (2013).
K. Lambeck T.M. Esat E.K. Potter Links between climate and sea levels for the past three million years Nature 419 199 206 1:CAS:528:DC%2BD38XmvV2qtrc%3D 10.1038/nature01089 12226674
Church, J. A. et al. Chapter 13: Sea level change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2013).
Poitevin, C. et al. Vertical land motion and relative sea level changes along the coastline of Brest (France) from combined space-borne geodetic methods, Remote Sens. Environ.222, 275–285. https://doi.org/10.1016/j.rse.2018.12.035 (2018).
B. Mohamed A. Mohamed K. Alam El-Din H. Nagy A. Elsherbiny Sea level changes and vertical land motion from altimetry and tide gauges in the Southern Levantine basin J. Geodyn. 128 1 10 10.1016/j.jog.2019.05.007
S. Dasgupta B. Laplante C. Meisner D. Wheeler J. Yan The impact of sea level rise on developing countries: A comparative analysis Clim. Change 93 3 379 388 10.1007/s10584-008-9499-5
N. Pinardi et al. Mediterranean sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis Prog Oceanogr. 132 318 332 10.1016/j.pocean.2013.11.003
G. Wöppelmann et al. Is land subsidence increasing the exposure to sea level rise in Alexandria, Egypt? Geophys. Res. Lett. 10.1002/grl.50568
M. Wöppelmann G. Marcos Vertical land motion as a key to Understanding sea level change and variability Rev. Geophys. 54 1 64 92 10.1002/2015rg000502
O. Frihy E.A. Deabes S.M. Shereet F.A. Abdalla Alexandria-Nile Delta Coast, Egypt: update and future projection of relative sea-level rise Environ. Earth Sci. 61 2 253 273 1:CAS:528:DC%2BC3cXos1Grurk%3D 10.1007/s12665-009-0340-x
M.N. Tsimplis et al. The effect of the NAO on sea level and on mass changes in the mediterranean sea J. Geophys. Res. Ocean. 118 2 994 952 10.1002/jgrc.20078
M. Haddad H. Hassani H. Taibi Sea level in the mediterranean Sea: seasonal adjustment and trend extraction within the framework of SSA Earth Sci. Inf. 6 2 99 111 10.1007/s12145-013-0114-6
A. Bonaduce N. Pinardi P. Oddo G. Spada G. Larnicol Sea-level variability in the mediterranean sea from altimetry and tide gauges Clim. Dyn. 47 9 10 10.1007/s00382-016-3001-2
G. Dawod H. Mohamed G. Haggag Relative and absolute sea level rise based on recent heterogeneous Geospatial data: a case study in the nile delta Egypt J. Sci. Eng. 6 6 55 64
Stanley, D. J. & Warne, A. G. Nile Delta: Recent Geological Evolution and Human Impact, Science (80-.). 260 (5108), 628–634. https://doi.org/10.1126/science.260.5108.628 (1993).
M. Saleh M. Becker New Estimation of nile Delta subsidence rates from InSAR and GPS analysis Environ. Earth Sci. 78 1 0 10.1007/s12665-018-8001-6
A. Rateb A.Z. Abotalib Inferencing the land subsidence in the nile Delta using Sentinel-1 satellites and GPS between 2015 and 2019 Sci. Total Environ. 10.1016/j.scitotenv.2020.138868 33421786
E. Gebremichael et al. Assessing land deformation and sea encroachment in the nile delta: A radar interferometric and inundation modeling approach J. Geophys. Res. Solid Earth 123 4 3208 3224 10.1002/2017JB015084
M.H. Aly A.G. Klein H.A. Zebker J.R. Giardino Land subsidence in the nile Delta of Egypt observed by persistent scatterer interferometry Remote Sens. Lett. 10.1080/01431161.2011.652311
R.H. Becker M. Sultan Land subsidence in the nile delta: inferences from radar interferometry Holocene 19 949 954 10.1177/0959683609336558
D.J. Stanley P.L. Clemente Increased land subsidence and sea-level rise are submerging Egypt’s nile delta coastal margin GSA Today 27 5 4 11 10.1130/GSATG312A.1
Abd-Elhamid, H. F, Abd-Elkader, B. S, Wahed, O, Zeleňáková, M. & Abd-Elaty, I. Assessment of changing the abstraction and recharge rates on the land subsidence in the nile delta, Egypt. Water (Switzerland). 14 (7). https://doi.org/10.3390/w14071096 (2022).
B. Elsaka A.M. Radwan M. Rashwan Evaluation of nile Delta-Mediterranean sea conjunction using GPS, Satellite-Based gravity and altimetry datasets J. Geosci. Environ. Prot. 10.4236/gep.2020.82003
Candela, T. et al. Subsidence Induced by Gas Extraction: A Data Assimilation Framework to Constrain the Driving Rock Compaction Process at Depth, Front. Earth Sci.10, 1–18. https://doi.org/10.3389/feart.2022.713273 (2022).
D.J. Stanley Recent subsidence and Northeast tilting of the nile delta, Egypt Mar. Geol. 94 1 2 10.1016/0025-3227(90)90108-V
Z.M. Zaghloul A.A. Abdel-Daiem A.A. Taha Geomorphology, geologic, evolution and subsidence of the nile Delta during the quaternary Bull. Fac. Sci. 1 17 471 495
Hoda, F. M, Bahaa, A. S, Magdy, M. H. & Gomaa, M. D. High-Precision GPS Monitoring of the Land Subsidence in the Nile Delta: Status and Preliminary Results, Sharm El-Sheikh, Egypt 2–12 (2008).
H.F. Mohamed G.M. Dawod Recent GNSS-Based estimates of vertical land movements in the nile delta, Egypt over 2012–2019 J. Sci. Eng. Res. 9 4 7 16
A.M.S. Mohamed M.M. AbuBakr M.H. Awad K.O. Sakr M.S. Etman Utilisation of GNSS and seismicity for monitoring crustal deformation of the Northern part of the nile delta, Egypt NRIAG J. Astron. Geophys. 10 1 1 9 10.1080/20909977.2020.1838698
M.A. Mahrous et al. The current state of deformation parameters in the nile delta, Egypt, using GNSS and seismological data Iraqi Geol. J. 55 2 19 28 10.46717/igj.55.2A.2Ms-2022-07-18
E. Stabel P. Fischer Satellite radar interferometric products for the urban application domain Adv. Environ. Res. 5 425 433 10.1016/S1093-0191(01)00094-6
M.H. Aly H.A. Zebker J.R. Giardino A.G. Klein Permanent scatterer investigation of land subsidence in greater Cairo, Egypt Geophys. J. Int. 10.1111/j.1365-246X.2009.04250.x
Hasan, E, Khan, S. I. & Hong, Y. Investigation of potential sea level rise impact on the nile delta, Egypt using digital elevation models. Environ. Monit. Assess. 187 (10). https://doi.org/10.1007/s10661-015-4868-9 (2015).
M. Haggag A. El-Shazly K. Rakha Impact of sea level rise on the nile delta, Egypt J. Eng. Appl. Sci. 60 3 211 230
Hassaan, M. A. & Abdrabo, M. A. Vulnerability of the Nile Delta coastal areas to inundation by sea level rise. Environ. Monit. Assess.185(8), 6607–6616. https://doi.org/10.1007/s10661-012-3050-x (2013).
V. Coutellier D.J. Stanley Late quaternary stratigraphy and paleogeography of the Eastern nile delta, Egypt Mar. Geol. 77 3 4 10.1016/0025-3227(87)90116-2
D. Jean A.G. Warne D.J. Stanley R. Palm B. Florida Of coastal Florida summer 1 Royal nile Delta in its destruction phase Delta 14 3 794 825
Stanley, D. J. Subsidence in the northeastern Nile delta: Rapid rates, possible causes, and consequences, Science (80-.).240(4851), 497–500. https://doi.org/10.1126/science.240.4851.497 (1988).
D.J. Stanley Submergence and burial of ancient coastal sites on the subsiding nile Delta margin, Egypt Méditerranée 104 65 73 10.4000/mediterranee.2282
G. Sestini Nile delta: A review of depositional environments and geological history Geol. Soc. Spec. Publ 41 99 127 10.1144/GSL.SP.1989.041.01.09
Haars, C, Lönsjö, E, Mogos, B. & Winkelaar, B. The uncertain future of the Nile Delta, no. April, pp. 0–54, (2016). https://doi.org/10.13140/RG.2.1.1837.0963.
J.C. Harms J.L. Wray R. Said Nile Delta Geology of Egypt Rotterdam,Netherlands A.A.Balkema 329 344
J.D. Stanley A.G. Warne G. Schnepp Geoarchaeological interpretation of the canopic, largest of the relict nile delta distributaries, Egypt J. Coast Res. 20 3 920 930 10.2112/1551-5036(2004)20[920:giotcl]2.0.co;2
D.S. Macgregor The development of the nile drainage system: integration of onshore and offshore evidence Pet. Geosci. 18 417 431 10.1144/petgeo2011-074
C. Faccenna et al. Role of dynamic topography in sustaining the nile river over 30 million years Nat. Geosci. 12 1012 1017 1:CAS:528:DC%2BC1MXitFegs7nF 10.1038/s41561-019-0472-x
D.J. Stanley J.E. McRea J.C. Waldron Nile Delta drill core and sample database for 1985–1994: mediterranean basin (MEDIBA) program Smithson. Contrib. Mar. Sci. 37 1 428 10.5479/si.01960768.37.1
M.E. Bastawesy O.H. Cherif M. Sultan The Geomorphological evidences of subsidence in the nile delta: analysis of high resolution topographic DEM and multi-temporal satellite images J. Afr. Earth Sci. 136 252 261 10.1016/j.jafrearsci.2016.10.013
Elsohby, M. A, Mazen, S. O, Abou-Shook, M. & Bahr, M. A. Coastal development of Nile Delta. Coast. Lowl. Geol. Geotechnol. Proc. KNGMG Symp. Hague 179, 175–179. https://doi.org/10.1007/978-94-017-1064-0_11 (1987).
Meneisy, M. Vulcanicity, in The geology of Egypt, R. Said, Ed., A.A. Balkema, Rotterdam, The Netherlands., pp. 157–174. (1990).
T. Blenkinsop A. Moore Tectonic geomorphology of passive margins and continental hinterlands Treatise Geomorphol 5 71 92 10.1016/B978-0-12-374739-6.00083-X
Hassan, S. et al. Crustal structure of the nile delta: interpretation of seismic-constrained satellite-based gravity data. Remote Sens.13 (10). https://doi.org/10.3390/rs13101934 (2021).
Kamel, H, Eita, T. & Sarhan, M. Nile delta hydrocarbon potentiality, Egypt. In 14th Egyptian General Petroleum Corporation Exploration and Production Conference, Cairo, Egypt, pp. 485–503. (1998).
M.A. Sarhan R.E.L. Collier A. Basal M.H. Abdel Aal Late miocene normal faulting beneath the Northern nile delta: NNW propagation of the Gulf of Suez rift Arab. J. Geosci. 7 4563 4571 1:CAS:528:DC%2BC2cXhvVyit7fN 10.1007/s12517-013-1089-9
C. Vandré B. Cramer P. Gerling J. Winsemann Natural gas formation in the Western nile delta (Eastern Mediterranean): Thermogenic versus microbial Org. Geochem. 38 4 523 539 1:CAS:528:DC%2BD2sXjs1Clsbw%3D 10.1016/j.orggeochem.2006.12.006
G. Randazzo D.J. Stanley S.I. Di Geronimo C. Amore Human-induced sedimentological changes in Manzala lagoon, nile delta, Egypt Environ. Geol. 36 3 4 10.1007/s002540050340
J.C. Harms J.L. Wray Nile delta Geol. Egypt. 10.1201/9780203736678
Coral, E. G. P. C. C. Egyptian general petroleum Corporation-Conoco coral, geological map of Egypt, scale 1:500,000. Geol Surv. Egypt, (1987).
ESRI. ArcGIS Desktop 10.6.1, (2018).
A. Rizzini F. Vezzani V. Cococcetta G. Milad Stratigraphy and sedimentation of a Neogene-Quaternary section in the nile Delta area (A.R.E) Mar. Geol. 27 327 348 10.1016/0025-3227(78)90038-5
Schlumberger Geology of Egypt, in Well Evaluation Conference, C. M. SMITH, Ed., Cairo, Egypt: Schlumberger Middle East, pp. 1–64. (1984).
Bamler, R, Eineder, M, Kampes, B, Runge, H. & Adam, N. Srtm and beyond: current situation and new developments in spaceborne Insar. Igarss 1, 7 (2005).
Hanssen, R., Zebker, H., Klees, R. & Barlag, S. On the use of meteorological observations in SAR interferometry. In International Geoscience and Remote Sensing Symposium (IGARSS). https://doi.org/10.1109/igarss.1998.691666 (1998).
Hanssen, R. & Klees, R. Development of a stochastic model for repeat-pass SAR interferometry. In European Space Agency, (Special Publication) ESA SP, (2000).
E. Eriksen H.R. Skjoldal H. Gjøsæter R. Primicerio Spatial and Temporal changes in the Barents sea pelagic compartment during the recent warming Prog Oceanogr. 151 206 226 10.1016/j.pocean.2016.12.009
A. Ferretti C. Prati F. Rocca Permanent scatterers in SAR interferometry IEEE Trans. Geosci. Remote Sens. 10.1109/36.898661
Ferretti, A, Monti Guarnieri, A, Prati, C. & Rocca, F. Multi baseline interferometric techniques and applications. In Proceedings of FRINGE ’96 Workshop, Zurich, Switzerland, pp. 243–253. (1996).
ENVI, ENVI®, V. 6.1, SAM Target Finder with BandMax Workflow, NV5 Geospatial Software Documentation Center. [Online]. Available: https://www.nv5geospatialsoftware.com/docs/SAMTargetFinderWithBandMax.html. ENVI®.
Dach, R., Lutz, S., Wasler, P. & Fridez, P. Bernese GPS software version 5.2 user manual, Astron. Institute, Univ. Bern, Bern, (2015).
M. Saleh M. Becker A new velocity field from the analysis of the Egyptian permanent GPS network (EPGN) Arab. J. Geosci. 7 11 4665 4682 10.1007/s12517-013-1132-x
M. Saleh M. Becker New constraints on the Nubia-Sinai-Dead sea fault crustal motion Tectonophysics 651 79 98 10.1016/j.tecto.2015.03.015
N. Bahrouni et al. Active tectonics and GPS data analysis of the Maghrebian thrust belt and Africa-Eurasia plate convergence in Tunisia Tectonophysics 785 228440 10.1016/j.tecto.2020.228440
M.H. Erkoç U. Doğan H. Yıldız E. Sezen Estimation of vertical land motion along the South and West Coast of Turkey from multi-sensor observations Adv. Sp Res. 70 7 1761 1772 10.1016/j.asr.2022.06.022
Altamimi, Z., Rebischung, P., Métivier, L. & Collilieux, X. ITRF: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, J. Geophys. Res. Solid Earth, 2016, (2014). https://doi.org/10.1002/2016JB013098
H. Moritz Geodetic reference system 1980 Bull. Géodésique 54 3 395 405 10.1007/BF02521480
F.W. Landerer D.L. Volkov The anatomy of recent large sea level fluctuations in the mediterranean sea Geophys. Res. Lett. 40 3 553 557 10.1002/grl.50140
L. Carrère F. Lyard Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing - Comparisons with observations Geophys. Res. Lett. 30 6 1275 10.1029/2002GL016473
Wilks, D. S. Statistical methods in the atmospheric sciences. (2011).
Fu, L. L. & Cazenave, A. Satellite altimetry and Earth sciences: A handbook of techniques and applications (Google eBook). Satell Altimetry Earth Sci. Handb. Tech. Appl, (2000).
Woodworth, P. L. & Player, R. The permanent service for mean sea level: an update to the 21st century. J Coast Res, (2003).
Erkoç, M. H., Doğan, U., Simav, M. & Farımaz, İ. Coastal motion at tide gauge stations along the black sea Coast from in-situ and space-based observations. Reg. Stud. Mar. Sci.82. https://doi.org/10.1016/j.rsma.2025.104036 (2025).
Mohamed, B. & Skliris, N. Recent sea level changes in the Red Sea: Thermosteric and halosteric contributions, and impacts of natural climate variability. Prog. Oceanogr.231, 103416. https://doi.org/10.1016/j.pocean.2025.103416 (2024).
Peltier, W. R., Argus, D. F. & Drummond, R. AGU J. Geophys. Res. Solid Earth119, 3076–3095. https://doi.org/10.1002/2014JB011037.Received (2014).
R.S. Nerem D.P. Chambers E.W. Leuliette G.T. Mitchum B.S. Giese Variations in global mean sea level associated with the 1997–1998 ENSO event: implications for measuring long term sea level change Geophys. Res. Lett. 26 3005 3008 10.1029/1999GL002311
Wöppelmann, G. & Marcos, M. Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. J. Geophys. Res. Ocean.117. https://doi.org/10.1029/2011JC007469 (2012).
L. Fenoglio-Marc C. Dietz E. Groten Vertical land motion in the mediterranean sea from altimetry and tide gauge stations Mar. Geod. 10.1080/01490410490883441
H. Taibi M. Haddad Estimating trends of the mediterranean sea level changes from tide gauge and satellite altimetry data (1993–2015) J. Oceanol. Limnol. 37 4 1176 1185 10.1007/s00343-019-8164-3
M. Grgić J. Bender T. Bašić Estimating vertical land motion from remote sensing and in-situ observations in the Dubrovnik area (Croatia): A multi-method case study Remote Sens. 12 21 1 13 10.3390/rs12213543
M.H. Aly J.R. Giardino A.G. Klein H.A. Zebker InSAR study of shoreline change along the Damietta promontory, Egypt J. Coast Res. 28 5 1263 1269 10.2112/JCOASTRES-D-11-00182.1
Liu, Z. et al. Land subsidence modeling and assessment in the West Pearl River Delta from combined InSAR time series, land use and geological data. Int. J. Appl. Earth Obs. Geoinf.118, 103228. https://doi.org/10.1016/j.jag.2023.103228 (2022).
Minderhoud, P. S. J, Hlavacova, I, Kolomaznik, J. & Neussner, O. Towards unraveling total subsidence of a mega-delta-the potential of new PS InSAR data for the Mekong delta. Proc. Int. Assoc. Hydrol. Sci. 382, 327–332. https://doi.org/10.5194/piahs-382-327-2020 (2020).
M.I. Abdelaal M. Bao M. Saleh S. Hassan J. Guo Assessing coastal heritage sustainability: crustal deformation and Sea-Level trends at the Qaitbay citadel in Alexandria, Egypt IEEE J. Sel. Top. Appl. Earth Obs Remote Sens. 17 3971 3984 10.1109/JSTARS.2024.3353249
Stanley, D. J. Subsidence in the Northeastern Nile Delta. Science (80-.).240(2), 497–500 (1988).
Negm, A. M, Sakr, S, Abd-Elaty, I. & Abd-Elhamid, H. F. An overview of groundwater resources in nile delta aquifer. In Handbook of Environmental Chemistry. https://doi.org/10.1007/698_2017_193 (2019).
S.A. Leake Interbed storage changes and compaction in models of regional groundwater flow Water Resour. Res. 26 9 1939 1950 10.1029/WR026i009p01939
J.D. Stanley M.A. Toscano Ancient archaeological sites buried and submerged along Egypt’s nile Delta Coast: gauges of holocene Delta margin subsidence J. Coast Res. 25 1 158 170 10.2112/08-0013.1
Hachemi, E. & Bouali, Y. Utilizing Persistent Scatterer Interferometry to Investigate the Nature and Factors Controlling Nile Delta Subsidence, no. December 2013. (2013).
Fugate, J. M. Measurements of Land Subsidence Rates on the North-western Portion of the Nile Delta Using Radar Interferometry Techniques, Master Sci. Degree Geol. 83 (2014).
B. Mohamed N. Skliris Steric and atmospheric contributions to interannual sea level variability in the Eastern mediterranean sea over 1993–2019 Oceanologia 64 1 50 62 10.1016/j.oceano.2021.09.001
M.H. Rio et al. Computation of a new mean dynamic topography for the mediterranean sea from model outputs, altimeter measurements and oceanographic in situ data Ocean. Sci. 10 4 73 10.5194/os-10-731-2014
M.N. Tsimplis M. Rixen Sea level in the mediterranean Sea: the contribution of temperature and salinity changes Geophys. Res. Lett. 29 23 1 4 10.1029/2002GL015870
Meli, M, Camargo, C. M. L, Olivieri, M, Slangen, A. B. A. & Romagnoli, C. Sea-level trend variability in the Mediterranean during the 1993–2019 period. Front. Mar. Sci. 10, 1–18. https://doi.org/10.3389/fmars.2023.1150488 (2023).
Eldeberky, Y. Coastal adaptation to sea level rise along the Nile delta, Egypt, WIT Trans. Ecol. Environ.149, 41–52. https://doi.org/10.2495/CP110041 (2011).
O.E. Frihy M.M. El Banna A.I. El Kolfat Environmental impacts of Baltim and Ras El bar shore-parallel breakwater systems on the nile delta Littoral zone, Egypt Environ. Geol. 45 3 381 390 10.1007/s00254-003-0886-y
O. Frihy D. Lawrence Evolution of the modern nile delta promontories: development of accretional features during shoreline retreat Environ. Geol. 46 6 7 10.1007/s00254-004-1103-3