disorders of consciousness; electroencephalography; Common spatial patterns; Classification; Robustness; Brain modeling; Signal processing; Biological system modeling; Accuracy; Deep learning
Abstract :
[en] Advances in intensive care have improved the survival rate of patients with severe acute brain injury, but diagnostic errors for patients with disorders of consciousness are still high. Accurate diagnosis of these patients is very important because effective treatment can vary depending on the diagnosis. In this study, we propose a framework for classifying unresponsive wakefulness syndrome and minimally conscious state, focusing on awareness. In particular, power spectral density and common spatial patterns were used together, considering that spatial information is a key feature in consciousness. The 16 patients with unresponsive wakefulness syndrome and 14 with minimally conscious state underwent resting-state electroencephalography measurements. In addition, we compared the performance by utilizing each frequency (delta, theta, alpha, beta, gamma bands) related to consciousness. As a result, the highest accuracy of 95.06% was achieved by the EEGNet classifier, especially in the beta frequency band. We demonstrated that spatial information is very important in consciousness, as we observed that classification performance improved when common spatial patterns were used. These results provide insight into various frameworks for diagnosing patients with disorders of consciousness and may help patients survive by increasing the diagnosis rate in the future.
Disciplines :
Neurology
Author, co-author :
Lee, Chaewon; Dept. Data Science, The Catholic University of Korea, Bucheon, South Korea
Lee, Sunho; Dept. Biomedical Software Engineering, The Catholic University of Korea, Bucheon, South Korea
Annen, Jitka ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group ; Dept. Data Analysis, University of Ghent, Ghent, Belgium
Jeong, Ji-Hoon; Dept. Computer Science, Chungbuk National University, Cheongju, South Korea
Massimini, Marcello; Dept. Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
Casarotto, Silvia; Dept. Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
Boly, Mélanie ; Université de Liège - ULiège > Département des sciences cliniques > Neurologie ; Wisconsin Institute for Sleep and Consciousness, Dept. Psychiatry, University of Wisconsin, Madison, United States
Bodart, Olivier ; Université de Liège - ULiège > Département des sciences cliniques > Neurologie
Thibaut, Aurore ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group
Rosanova, Mario; Dept. Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
Laureys, Steven ; Université de Liège - ULiège > Département des sciences cliniques
Gosseries, Olivia ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group
Lee, Minji; Dept. Biomedical Software Engineering, The Catholic University of Korea, Bucheon, South Korea
F.R.S.-FNRS - Fonds de la Recherche Scientifique TUB - Technische Universität Berlin
Funding text :
This work was partly supported by the IITP (Institute of Information & Coummunications Technology Planning & Evaluation)-ICAN (ICT Challenge and Advanced Network of HRD)(IITP-2024-RS-2024-00438207, 50%) grant funded by the Korea government (Ministry of Science and ICT) and National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (No. RS-2024-00336880). The study was further supported by the University and University Hospital of Li\u00E8ge, the Belgian National Funds for Scientific Research (FRS-FNRS), the FNRS PDR project (T.0134.21), the FNRS MIS project (F.4521.23), the FLAG-ERA JTC2021 project ModelDXConsciousness (Human Brain Project Partnering Project) and FLAG-ERA JTC 2023 - HBP - Basic and Applied Research, project BrainAct, the fund Generet, the King Baudouin Foundation, the Funds Chantal Schaeck Yolande, the BIAL Foundation, the Mind Science Foundation, the European Commission, the Fondation Leon Fredericq, the Mind-Care foundation, the Horizon 2020 MSCA \u2013 Research and Innovation Staff Exchange DoC-Box project (HORIZON-MSCA-2022-SE-01-01; 101131344). OG & AT are Research Associates and SL research director at FRS-FNRS. JA is postdoctoral fellow funded (1265522N) by the Fund for Scientific Research-Flanders (FWO).
M. Lee and S. Laureys, “Artificial intelligence and machine learning in disorders of consciousness,” Curr. Opin. Neurol., pp. 10–1097.
S. Chennu, L. O’Connor, R. Adapa, D. K. Menon, H. Cassol, R. Marotta, B. Kimm, Y. Zhang, and et al., “Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness,” Brain, vol. 140, no. 8, pp. 2120–2132, 2017.
J. L. Bernat, “Chronic disorders of consciousness,” Lancet, vol. 367, no. 9517, pp. 1181–1192, 2006.
M. Amiri, P. M. Fisher, F. Raimondo, A. Sidaros, M. Cacic Hribljan, M. H. Othman, I. Zibrandtsen, S. S. Albrechtsen, O. Bergdal, A. E. Hansen et al., “Multimodal prediction of residual consciousness in the intensive care unit: the CONNECT-ME study,” Brain, vol. 146, no. 1, pp. 50–64, 2023.
J. Kalafatovich, M. Lee, and S.-W. Lee, “Decoding declarative memory process for predicting memory retrieval based on source localization,” PLoS One, vol. 17, no. 9, p. e0274101, 2022.
S. Ballanti, S. Campagnini, P. Liuzzi, B. Hakiki, M. Scarpino, C. Macchi, C. M. Oddo, M. C. Carrozza, A. Grippo, and A. Mannini, “EEG-based methods for recovery prognosis of patients with disorders of consciousness: a systematic review,” Clin. Neurophysiol., vol. 144, pp. 98–114, 2022.
S. Chennu, P. Finoia, E. Kamau, J. Allanson, G. B. Williams, M. M. Monti, V. Noreika, A. Arnatkeviciute, A. Canales-Johnson, F. Olivares et al., “Spectral signatures of reorganised brain networks in disorders of consciousness,” PLoS Comput. Biol., vol. 10, no. 10, p. e1003887, 2014.
L. Wang, W. Wang, T. Yan, J. Song, W. Yang, B. Wang, R. Go, Q. Huang, and J. Wu, “Beta-band functional connectivity influences audiovisual integration in older age: an EEG study,” Front. Aging Neurosci., vol. 9, p. 239, 2017.
C. Herrmann and T. Demiralp, “Human eeg gamma oscillations in neuropsychiatric disorders,” Clin Neurophysiol, vol. 116, no. 12, pp. 2719–2733, 2005.
D. Lehmann, P. Faber, P. Achermann, D. Jeanmonod, L. R. Gianotti, and D. Pizzagalli, “Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self,” Psychiatry Res. Neuroimaging, vol. 108, no. 2, pp. 111–121, 2001.
S. Raveendran, R. Kenchaiah, S. Kumar, J. Sahoo, M. Farsana, R. Chowdary Mundlamuri, S. Bansal, V. Binu, A. Ramakrishnan, S. Ramakrishnan et al., “Variational mode decomposition-based EEG analysis for the classification of disorders of consciousness,” Front. Neurosci., vol. 18, p. 1340528, 2024.
C. Porcaro, M. Marino, S. Carozzo, M. Russo, M. Ursino, V. Ruggiero, C. Ragno, S. Proto, and P. Tonin, “Fractal dimension feature as a signature of severity in disorders of consciousness: an EEG study,” Int. J. Neural Syst., vol. 32, no. 07, p. 2250031, 2022.
M. Lee, R. D. Sanders, S.-K. Yeom, D.-O. Won, K.-S. Seo, H. J. Kim, G. Tononi, and S.-W. Lee, “Network properties in transitions of consciousness during propofol-induced sedation,” Sci. Rep., vol. 7, no. 1, pp. 1–13, 2017.
M. Lee, J.-H. Jeong, Y.-H. Kim, and S.-W. Lee, “Decoding finger tapping with the affected hand in chronic stroke patients during motor imagery and execution,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 1099–1109, 2021.
M. Lee, H.-Y. Park, W. Park, K.-T. Kim, Y.-H. Kim, and J.-H. Jeong, “Multi-task Heterogeneous Ensemble Learning-based Cross-Subject EEG Classification under Stroke Patients,” IEEE Trans. Neural Syst. Rehabil. Eng., 2024.
V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J. Lance, “EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces,” J. Neural Eng., vol. 15, no. 5, p. 056013, 2018.
O. Bodart, O. Gosseries, S. Wannez, A. Thibaut, J. Annen, M. Boly, M. Rosanova, A. G. Casali, S. Casarotto, G. Tononi et al., “Measures of metabolism and complexity in the brain of patients with disorders of consciousness,” NeuroImage: Clinical, vol. 14, pp. 354–362, 2017.
O. Bodart, E. Amico, F. Gómez, A. G. Casali, S. Wannez, L. Heine, A. Thibaut, J. Annen, M. Boly, S. Casarotto et al., “Global structural integrity and effective connectivity in patients with disorders of consciousness,” Brain Stimul., vol. 11, no. 2, pp. 358–365, 2018.
M. Rosanova, M. Fecchio, S. Casarotto, S. Sarasso, A. G. Casali, A. Pigorini, A. Comanducci, F. Seregni, G. Devalle, G. Citerio et al., “Sleep-like cortical OFF-periods disrupt causality and complexity in the brain of unresponsive wakefulness syndrome patients,” Nat. Commun., vol. 9, no. 1, p. 4427, 2018.
M. Lee, L. R. Sanz, A. Barra, A. Wolff, J. O. Nieminen, M. Boly, M. Rosanova, S. Casarotto, O. Bodart, J. Annen et al., “Quantifying arousal and awareness in altered states of consciousness using interpretable deep learning,” Nat. Commun., vol. 13, no. 1, p. 1064, 2022.
M. J. Hasan, D. Shon, K. Im, H.-K. Choi, D.-S. Yoo, and J.-M. Kim, “Sleep state classification using power spectral density and residual neural network with multichannel EEG signals,” Appl. Sci., vol. 10, no. 21, p. 7639, 2020.
C. C. W. Fadzal, W. Mansor, L. Y. Khuan, N. B. Mohamad, Z. Mahmoodin, S. Mohamad, and S. Amirin, “Welch power spectral density of eeg signal generated from dyslexic children,” 2014 IEEE Reg. 10 Symp., pp. 560–562, April 2014.
K. Darvish Ghanbar, T. Yousefi Rezaii, A. Farzamnia, and I. Saad, “Correlation-based common spatial pattern (CCSP): A novel extension of CSP for classification of motor imagery signal,” PLoS One, vol. 16, no. 3, p. e0248511, 2021.
M. Ala’raj, M. Majdalawieh, and M. F. Abbod, “Improving binary classification using filtering based on k-NN proximity graphs,” J. Big Data, vol. 7, no. 1, p. 15, 2020.
A. J. Ferreira and M. A. Figueiredo, “Boosting algorithms: A review of methods, theory, and applications,” Ensemble Mach. Learn., pp. 35–85, 2012.
P. Liuzzi, A. Magliacano, F. De Bellis, A. Mannini, and A. Estraneo, “Predicting outcome of patients with prolonged disorders of consciousness using machine learning models based on medical complexity,” Sci. Rep., vol. 12, no. 1, p. 13471, 2022.
M. Lee, H. Kang, S.-H. Yu, H. Cho, J. Oh, G. Van Der Lande, O. Gosseries, and J.-H. Jeong, “Automatic Sleep stage Classification Using Nasal Pressure Decoding Based on a Multi-Kernel Convolutional BiLSTM Network,” IEEE Trans. Neural Syst. Rehabil. Eng., 2024.
M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation,” Australas. Jt. Conf. Artif. Intell., pp. 1015–1021, 2006.
Y. Bai, Y. Lin, and U. Ziemann, “Managing disorders of consciousness: the role of electroencephalography,” J. Neurol., vol. 268, pp. 4033–4065, 2021.
A. Piarulli, M. Bergamasco, A. Thibaut, V. Cologan, O. Gosseries, and S. Laureys, “EEG ultradian rhythmicity differences in disorders of consciousness during wakefulness,” J. Neurol., vol. 263, pp. 1746–1760, 2016.
K. Kuizenga, J. Wierda, and C. Kalkman, “Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane,” Br. J. Anaesth., vol. 86, no. 3, pp. 354–360, 2001.
B. L. Edlow, “Dopaminergic modulation of human consciousness via default mode network connectivity,” Proc. Natl. Acad. Sci. U.S.A., vol. 118, no. 31, p. e2111268118, 2021.