[en] Thermal noise sources are relevant for future gravitational wave detectors due to the foreseen increase in sensitivity, especially at frequencies below [Formula presented]. As most thermal noise sources scale with the square root of the temperature, cooling critical optical components and their suspension system is essential. This also requires a much wider range of temperature compatibility from all technology deployed in the last suspension stages, including displacement and inertial sensors. We demonstrate and characterize a setup for stable light sources and light intensity sensing for temperatures from 300 to [Formula presented]. Commercial collimators and fibers were tested to use light from stabilized laser sources in the cryogenic environment. We also investigated multiple semiconductor compositions of photodiodes and identified a solution with high and stable responsivity at [Formula presented].
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Kuhlbusch, Tim J. ; III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
Zeoli, Morgane ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Centre for Cosmology, Particle Physics and Phenomenology (CP3), UCLouvain, Louvain-la-Neuve, Belgium ; Precision Mechatronics Laboratory, Liège, Belgium
Joppe, Robert; III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
Collette, Christophe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Active aerospace structures and advanced mechanical systems ; Precision Mechatronics Laboratory, Liège, Belgium
Hebbeker, Thomas; III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
van Heijningen, Joris V.; Centre for Cosmology, Particle Physics and Phenomenology (CP3), UCLouvain, Louvain-la-Neuve, Belgium ; Department of Physics and Astronomy, VU Amsterdam, Amsterdam, Netherlands ; Nikhef, Science Park 105, Amsterdam, Netherlands
Stahl, Achim; III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
Language :
English
Title :
Characterizing 1550 nm optical components down to 8 K
F.R.S.-FNRS - Fonds de la Recherche Scientifique Interreg Europe ERDF - European Regional Development Fund
Funding text :
The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: All authors report financial support was provided by Interreg V-A Euregio Meuse-Rhine Programme. Morgane Zeoli reports financial support was provided by Fonds National de la Recherche Scientifique (FNRS). If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.This work comes within the scope of the E-TEST project, which is carried out within the framework of the Interreg V-A Euregio Meuse-Rhine Programme, with 7.5 million euros from the European Regional Development Fund (ERDF). By investing EU funds in Interreg projects, the European Union is investing directly in economic development, innovation, territorial development, social inclusion, and education in the Euregio Meuse-Rhine region. Aspects of this work have been previously documented in the internal E-TEST deliverables report. Morgane Zeoli is funded by the Fonds National de la Recherche Scientifique (FNRS) under projet de recherche STELLAR (T.0022.22).This work comes within the scope of the E-TEST project, which is carried out within the framework of the Interreg V-A Euregio Meuse-Rhine Programme, with 7.5 million euros from the European Regional Development Fund (ERDF). By investing EU funds in Interreg projects, the European Union is investing directly in economic development, innovation, territorial development, social inclusion, and education in the Euregio Meuse-Rhine region. Aspects of this work have been previously documented in the internal E-TEST deliverables report. Morgane Zeoli is funded by the Fonds National de la Recherche Scientifique (FNRS) under projet de recherche STELLAR (T.0022.22).
The LIGO Scientific Collaboration Aasi, J., Abbott, B.P., Abbott, R., Abbott, T., Abernathy, M.R., Ackley, K., et al. Advanced LIGO. Classical and Quantum Gravity, 32, 2015, 074001, 10.1088/0264-9381/32/7/074001.
Acernese, F., Agathos, M., Agatsuma, K., Aisa, D., Allemandou, N., Allocca, A., et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 32, 2014, 024001, 10.1088/0264-9381/32/2/024001.
Einstein Telescope Steering Committee Editorial Team, Design report update 2020 for the Einstein Telescope, Technical report, ET-0007B-20, 2020.
Sider, A., Fronzo, C.D., Amez-Droz, L., Amorosi, A., Badaracco, F., Baer, P., et al. E-TEST: a compact low-frequency isolator for a large cryogenic mirror. Classical and Quantum Gravity, 40, 2023, 165002, 10.1088/1361-6382/ace230.
Sider, A., Amez-Droz, L., Amorosi, A., Badaracco, F., Baer, P., Bruno, G., et al. E-TEST prototype design report. arXiv:2212.10083, 2022.
Di Pace, S., Mangano, V., Pierini, L., Rezaei, A., Hennig, J.-S., Hennig, M., et al. Research facilities for Europe's next generation gravitational-wave detector Einstein telescope. Galaxies, 10, 2022, 10.3390/galaxies10030065.
Otero, J., Development and characterization of an observatory-class, broadband, non-fedback, leaf-spring interferometric seismometer. Ph.D. thesis, 2009, University of California, San Diego.
Collette, C., Janssens, S., Fernandez-Carmona, P., Artoos, K., Guinchard, M., Hauviller, C., et al. Review: inertial sensors for low-frequency seismic vibration measurement. Bulletin of the Seismological Society of America 102 (2012), 1289–1300, 10.1785/0120110223.
van Heijningen, J.V., Bertolini, A., van den Brand, J.F.J., A novel interferometrically read out inertial sensor for future gravitational wave detectors. 2018 IEEE sensors applications symposium (SAS), 2018, 1–5, 10.1109/SAS.2018.8336722.
Zumberge, M., Berger, J., Otero, J., Wielandt, E., An optical seismometer without force feedback. Bulletin of the Seismological Society of America 100 (2010), 598–605, 10.1785/0120090136.
Ding, B., Development of high resolution interferometric inertial sensors. Ph.D. thesis, 2021, Université Libre de Bruxelles.
van Heijningen, J.V., A fifty-fold improvement of thermal noise limited inertial sensitivity by operating at cryogenic temperatures. Journal of Instrumentation, 15, 2020, P06034, 10.1088/1748-0221/15/06/p06034.
van Heijningen, J.V., Gatti, A., Ferreira, E.C., Bocchese, F., Badaracco, F., Lucas, S., et al. A cryogenic inertial sensor for terrestrial and lunar gravitational-wave detection. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1041, 2022, 167231, 10.1016/j.nima.2022.167231.
Tavernier, F., Gatti, A., Barretto, C., Chip design for future gravitational wave detectors. 2020 IEEE international electron devices meeting (IEDM), 2020, 25.4.1–25.4.4, 10.1109/IEDM13553.2020.9372071.
Watchi, J., Active seismic isolation using interferometric inertial sensors. Ph.D. thesis, 2022, Université Libre de Bruxelles.
Cooper, S.J., Breaking the seismic wall: how to improve gravitational wave detectors at low frequency. Ph.D. thesis, 2019, University of Birmingham.
Ding, B., Zhao, G., Watchi, J., Sider, A., Collette, C., An interferometric inertial sensor for low-frequency seismic isolation. Sensors and Actuators A: Physical, 335, 2022, 113398, 10.1016/j.sna.2022.113398.
Labello, J.M., Water ice films in cryogenic vacuum chambers. Ph.D. thesis, 2011, University of Tennessee.
Hasegawa, K., Akutsu, T., Kimura, N., Saito, Y., Suzuki, T., Tomaru, T., et al. Molecular adsorbed layer formation on cooled mirrors and its impacts on cryogenic gravitational wave telescopes. Phys Rev D, 99, 2019, 022003, 10.1103/PhysRevD.99.022003.
Westley, M.S., Baratta, G., Baragiola, R., Density and index of refraction of water ice films vapor deposited at low temperatures. The Journal of chemical physics 108 (1998), 3321–3326.
Abid, M.M., Spacecraft sensors, space technology library. 2005, John Wiley & Sons, 135–203.
Gaskill, D., Bottka, N., Aina, L., Mattingly, M., Band-gap determination by photoreflectance of InGaAs and InAlAs lattice matched to InP. Applied physics letters 56 (1990), 1269–1271.
Rogalski, A., Antoszewski, J., Faraone, L., Third-generation infrared photodetector arrays. Journal of Applied Physics, 105, 2009, 091101, 10.1063/1.3099572.
Wertz, J., Larson, W.J., Space mission analysis and design, space technology library. 1999, Springer, Dordrecht, 241–300.
van Heijningen, J., Low-frequency performance improvement of seismic attenuation systems and vibration sensors for next generation gravitational wave detectors. Ph.D. thesis, 2018, Vrije Universiteit of Amsterdam.
Perez, J.V., Multi-band IR sensor for Earth observation. Master Thesis, ULiège, 2019.
Rogalski, A., Infrared detectors: status and trends. Progress in Quantum Electronics 27 (2003), 59–210, 10.1016/S0079-6727(02)00024-1.
Rogalski, A., Martyniuk, P., Kopytko, M., Type-ii superlattice photodetectors versus hgcdte photodiodes. Progress in Quantum Electronics, 68, 2019, 100228, 10.1016/j.pquantelec.2019.100228.
Arslan, Y., Oguz, F., Besikci, C., Extended wavelength swir ingaas focal plane array: characteristics and limitations.Proceedings of international conference on quantum structures infrared photodetectors, 2014. Infrared Physics & Technology, 70, 2015, 134–137, 10.1016/j.infrared.2014.10.012.
Pearsall, T., Hopson, R., Growth and characterization of lattice-matched epitaxial films of GaxIn1−xAs/InP by liquid-phase epitaxy. Journal of Electronic Materials 7 (1978), 133–146.
Bajpai, R., Tomaru, T., Yamamoto, K., Ushiba, T., Kimura, N., Suzuki, T., et al. A laser interferometer accelerometer for vibration sensitive cryogenic experiments. Measurement Science and Technology, 33, 2022.
Sze, S.M., Ng, K.K., Physics of semiconductor devices. third edition ed., 2007, Wiley-Interscience, Hoboken, N.J.
Shockley, W., The theory of p-n junctions in semiconductors and p-n junction transistors. Bell system technical journal 28 (1949), 435–489.
Li, X., Tang, H., Li, T., Wei, P., Gong, H., Fang, J., Study on dark current of extended wavelength InGaAs detectors. Gong, H., Shi, Z., Chen, Q., Lu, J., (eds.) International symposium on photoelectronic detection and imaging 2013: infrared imaging and applications International society for optics and photonics, vol. 8907, 2013, SPIE, 890703, 10.1117/12.2034986.
Eltes, F., Villarreal-Garcia, G.E., Caimi, D., Siegwart, H., Gentile, A.A., Hart, A., et al. An integrated optical modulator operating at cryogenic temperatures. Nature Materials 19 (2020), 1164–1168, 10.1038/s41563-020-0725-5.
van Heijningen, J.V., ter Brake, H.J.M., Gerberding, O., Chalathadka Subrahmanya, S., Harms, J., Bian, X., et al. The payload of the lunar gravitational-wave antenna. Journal of Applied Physics, 133, 2023, 244501, 10.1063/5.0144687.