Hydraulic structures; river-canal systems; modelling; Discontinuous Galerkin method; Meuse River
Abstract :
[en] Flow in navigable rivers is generally controlled by hydraulic structures, such as weirs. The numerical representation of such structures requires special consideration. In this study, we introduce a new numerical technique to represent these structures in a discontinuous Galerkin method. Compared to other methods, the new approach offers more flexibility in terms of node treatment and better stability by reducing sensitivity to flux treatment. The model is demonstrated on a real case study, the Meuse River and its canal network in Belgium. The simulation outcomes are in good agreement with the available measurements. The inclusion of the operation rules of the hydraulic structures in the model allowed the representation of the flow in a large navigation system (about 450 km of river and canal network) and the simulation of the discharge distribution for a wide range of flow regimes in the Meuse River and the associated canals. The DG method proved capable of handling different hydraulic structures, such as weirs and sluice gates, within complex flow networks. Finally, the influence of alternative implementations of the weir operation rules on the computed discharge in the Meuse River is evaluated.
Research Center/Unit :
UEE - Urban and Environmental Engineering - ULiège
Disciplines :
Civil engineering
Author, co-author :
Patil, Amit Ravindra; Belgian Nuclear Research Centre ; Université catholique de Louvain
Fiengo Perez, Fabricio; Aquafin
Lambrechts, Jonathan; Université catholique de Louvain
Draoui, Insaf; Université catholique de Louvain
Deleersnijder, Eric; Université catholique de Louvain ; Université catholique de Louvain
Dewals, Benjamin ; Université de Liège - ULiège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Language :
English
Title :
Numerical modelling of navigable waterways using a discontinuous Galerkin method: study of Meuse River – Campine canal flow
Publication date :
30 May 2025
Journal title :
International Journal of River Basin Management
ISSN :
1571-5124
eISSN :
1814-2060
Publisher :
Informa UK Limited
Pages :
1-24
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
7. Affordable and clean energy 11. Sustainable cities and communities
Arcement, G.J., and Schneider, V.R., 1989. Guide for selecting Manning’s roughness coefficients for natural channels and flood plains. USGS Numbered Series 2339. U.S. Geological Survey. doi:10.3133/wsp2339
Ashagrie, A.G., et al., 2006. Detecting the influence of land use changes on discharges and floods in the Meuse River Basin - the predictive power of a ninety-year rainfall-runoff relation?Hydrology and Earth System Sciences, 10 (5), 691–701. doi:10.5194/hess-10-691-2006.
Batlle-Aguilar, J., et al., 2007. Identification of groundwater quality trends in a chalk aquifer threatened by intensive agriculture in Belgium. Hydrogeology Journal, 15, 1615–1627. doi:10.1007/s10040-007-0204-y.
Beckers, A., et al., 2013. Contribution of land use changes to future flood damage along the river Meuse in the Walloon region. Natural Hazards and Earth System Sciences, 13 (9), 2301–2318. doi:10.5194/nhess-13-2301-2013.
Bertels, D., and Willems, P., 2022. Climate change impact on salinization of drinking water inlets along the Campine Canals. Belgium, Journal of Hydrology: Regional Studies, 42, 101129. doi:10.1016/j.ejrh.2022.101129.
Cockburn, B., Hou, S., and Shu, C. W., 1990. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: The multidimensional case. Mathematics of Computation, 54 (190), 545–581. doi:10.2307/2008501.
Cockburn, B., and Shu, C. W., 1989. Tvb Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Mathematics of Computation, 52 (186), 411–435. doi:10.2307/2008474.
Cockburn, B., and Shu, C. W., 1998. The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. Journal of Computational Physics, 141 (2), 199–224. doi:10.1006/jcph.1998.5892.
Cozzolino, L., et al., 2019. Flood propagation modeling with the local inertia approximation: theoretical and numerical analysis of Its physical limitations. Advances in Water Resources, 133, 103422. doi:10.1016/j.advwatres.2019.103422.
Dazzi, S., Vacondio, R., and Mignosa, P., 2020. Internal boundary conditions for a GPU-accelerated 2D shallow water model: implementation and applications. Advances in Water Resources, 137, 103525. doi:10.1016/j.advwatres.2020.103525.
de Brye, B., et al., 2010. A finite-element, multi-scale model of the Scheldt tributaries, river, estuary and ROFI. Coastal Engineering, 57 (9), 850–863. doi:10.1016/j.coastaleng.2010.04.001.
de Paiva, R. C. D., et al., 2013. Large-Scale hydrologic and hydrodynamic modeling of the Amazon river basin. Water Resources Research, 49 (3), 1226–43. doi:10.1002/wrcr.20067.
De smedt, F., and Van der beken, A., 1982. Het transport van conservatieve stoffen in het Albertkanaal en de Kempische kanalen. Available from: https://www.vliz.be/imisdocs/publications/ocrd/33/241133.pdf.
de Wit, M.J.M., et al., 2001. Effect of Climate Change on the Hydrology of the River Meuse. Dutch National Research Programme on Global Air Pollution and Climate Change. NRP. Available at: https://research.wur.nl/en/publications/effect-of-climate-change-on-the-hydrology-of-the-river-meuse [Accessed: 28 March 2023].
Draoui, I., et al., 2020. Discontinuous Galerkin method for 1D river flows. In: Proceedings of the 10th Conference on Fluvial Hydraulics, 7-10 July 2020 Delft, 1114–1121. doi:10.1201/b22619-156.
Echeverribar, I., et al., 2019. Use of internal boundary conditions for levees representation: application to river flood management. Environmental Fluid Mechanics, 19 (5), 1253–1271. doi:10.1007/s10652-018-09658-6.
Erpicum, S., et al., 2010. Detailed inundation modelling using high resolution DEMs. Engineering Applications of Computational Fluid Mechanics, 4 (2), 196–208. doi:10.1080/19942060.2010.11015310.
FHR, 2005. Watersysteem van het albertkanaal en de kempense kanalen. MOD 720/4. Flander Hydraulic Research. Available from: https://www.vliz.be/imisdocs/publications/35/140435.pdf. [Accessed 10 February 2023].
Fleischmann, A. S., et al., 2021. Regional scale hydrodynamic modeling of the river-floodplain-reservoir continuum. Journal of Hydrology, 596, 126114. doi:10.1016/j.jhydrol.2021.126114.
Flood Modeller, 2023. Flood Modeller Technical Reference. Flood Modeller (Reference Manual). Available from: https://help.floodmodeller.com/docs/1d-modelling-theory-overview.
García-Alén, G., et al., 2021. Modelling weirs in Two-dimensional shallow water models. Water, 13 (16), 2152. doi:10.3390/w13162152.
García, R., 2005. Analysis of manning coefficient for small-depth flows on vegetated beds. Hydrological Processes, 19, 3221–3233. doi:10.1002/hyp.5820.
‘Geopunt Flanders’, 2022. Available at: www.geopunt.be.
Hanert, E., et al., 2023. A multiscale ocean modelling system for the central Arabian/Persian Gulf: from regional to structure scale circulation patterns. Estuarine, Coastal and Shelf Science, 282, 108230. doi:10.1016/j.ecss.2023.108230.
HEC-RAS, 2017. HEC-RAS River Analysis System. US army Corps of Engineers (Reference Manual). Available from: https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%205.0%20Reference%20Manual.pdf.
Iserles, A., 2008. A first course in the numerical analysis of differential equations (2nd edn). Cambridge: Cambridge University Press (Cambridge Texts in Applied Mathematics). doi:10.1017/CBO9780511995569.
Ishimwe, A. P., et al., 2023. A split-explicit second order Runge–Kutta method for solving 3D hydrodynamic equations. Ocean Modelling, 186, 102273. doi:10.1016/j.ocemod.2023.102273.
Kesserwani, G., et al., 2008. Application of a second-order Runge–Kutta discontinuous Galerkin scheme for the shallow water equations with source terms. International Journal for Numerical Methods in Fluids, 56 (7), 805–821. doi:10.1002/fld.1550.
Kesserwani, G., and Liang, Q., 2011. A conservative high-order discontinuous Galerkin method for the shallow water equations with arbitrary topography. International Journal for Numerical Methods in Engineering, 86 (1), 47–69. doi:10.1002/nme.3044.
Kitsikoudis, V., et al., 2020. Discrepancies in flood modelling approaches in transboundary river systems: legacy of the past or well-grounded choices?Water Resources Management, 34 (11), 3465–3478. doi:10.1007/s11269-020-02621-5.
Lai, X., et al., 2013. Large-Scale hydrodynamic modeling of the middle Yangtze river basin with complex river–lake interactions. Journal of Hydrology, 492, 228–43. doi:10.1016/j.jhydrol.2013.03.049.
Lai, W., and Khan, A.A., 2012. Discontinuous Galerkin Method for 1D shallow water flows in natural rivers. Engineering Applications of Computational Fluid Mechanics, 6 (1), 74–86. doi:10.1080/19942060.2012.11015404.
Lambert, T., et al., 2017. Effects of human land use on the terrestrial and aquatic sources of fluvial organic matter in a temperate river basin (The Meuse River, Belgium). Biogeochemistry, 136 (2), 191–211. doi:10.1007/s10533-017-0387-9.
Leander, R., et al., 2005. Estimation of extreme floods of the River Meuse using a stochastic weather generator and a rainfall–runoff model / Estimation des crues extrêmes de la Meuse à l’aide d’un générateur stochastique de variables météorologiques et d’un modèle pluie–débit. Hydrological Sciences Journal, 50(6), 1103. doi:10.1623/hysj.2005.50.6.1089.
MIKE 11, 2021. A Modelling System for Rivers and Channels. Mike 11 (Reference Manual). Available from: https://manuals.mikepoweredbydhi.help/2021/Water_Resources/Mike_11_ref.pdf.
Morales-Hernández, M., Murillo, J., and García-Navarro, P., 2013. The formulation of internal boundary conditions in unsteady 2-D shallow water flows: application to flood regulation. Water Resources Research, 49 (1), 471–487. doi:10.1002/wrcr.20062.
Moriasi, D., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885–900. doi:10.13031/2013.23153.
Neupane, P., and Dawson, C., 2015. A discontinuous Galerkin method for modeling flow in networks of channels. Advances in Water Resources, 79, 61–79. doi:10.1016/j.advwatres.2015.02.012.
Paz, A. R., et al., 2010. Large-Scale hydrodynamic modeling of a complex river network and floodplains. Journal of Hydrologic Engineering, 15 (2), 152–65. doi:10.1061/(ASCE)HE.1943-5584.0000162.
Pereira, F., et al., 2016. Verlaging van de waterstanden in het Albertkanaal juli 2011. WL2016A14_074_1. Antwerp: Hydraulic Engineering Laboratory. Available from: http://www.vliz.be/imisdocs/publications/ocrd/26/290826.pdf.
Perret, E., Lang, M., and Le Coz, J., 2022. A framework for detecting stage-discharge hysteresis due to flow unsteadiness: application to France’s national hydrometry network. Journal of Hydrology, 608, 127567. doi:10.1016/j.jhydrol.2022.127567.
Quarteroni, A., Sacco, R., and Saleri, F., 2007. Principles of numerical mathematics. Berlin, Heidelberg: Springer, 33–56. doi:10.1007/978-3-540-49809-4_2
Reed, W.H., and Hill, T.R., 1973. Triangular mesh methods for the neutron transport equation. LA-UR-73-479; CONF-730414-2. Los Alamos Scientific Lab., N.Mex. (USA). Available from: https://www.osti.gov/biblio/4491151 [Accessed: 13 October 2023].
Saint-Amand, A., et al., 2023. How fine is fine enough? Effect of mesh resolution on hydrodynamic simulations in coral reef environments. Ocean Modelling, 186, 102254. doi:10.1016/j.ocemod.2023.102254.
Sobek, 2018. 1D/2D modelling suite for integral water solutions. Deltares (Reference Manual), Available from: https://www.deltares.nl/en/software/sobek/.
Toro, E.F., 2009. Riemann solvers and numerical methods for fluid dynamics: A practical introduction. Berlin, Heidelberg: Springer.
Tu, M., et al., 2005. Extreme floods in the Meuse River over the past century: aggravated by land-use changes?Physics and Chemistry of the Earth, 30 (4), 267–276. doi:10.1016/j.pce.2004.10.001.
Van Liew, M., Arnold, J., and Garbrecht, J.D., 2003. Hydrologic simulation on agricultural watersheds: choosing between Two models. Transactions of the American Society of Agricultural Engineers, 46, 1539–1551. doi:10.13031/2013.15643.
Van Steenbergen, N., 2017. Low water in the Albert Canal: You’ve got to pump it up!, Available from: https://publicwiki.deltares.nl/display/HydrologyMeuse/4th+symposium+on+the+hydrological+modelling+of+the+Meuse+basin?preview=/130387019/130387164/vanSteenbergen_Youvegottopumpitup.pdf[Accessed: 28 March 2023].
Ward, P. J., et al., 2008. Strong increases in flood frequency and discharge of the River Meuse over the Late Holocene: impacts of long-term anthropogenic land use change and climate variability. Hydrology and Earth System Sciences, 12 (1), 159–75. doi:10.5194/hess-12-159-2008.
Zerihun, Y.T., and Fenton, J.D., 2007. A Boussinesq-type model for flow over trapezoidal profile weirs. Journal of Hydraulic Research, 45 (4), 519–528. doi:10.1080/00221686.2007.9521787.
Zhao, D. H., et al., 1994. Finite-volume two-dimensional unsteady-flow model for river Basins. Journal of Hydraulic Engineering, 120 (7), 863–883. doi:10.1061/(ASCE)0733-9429(1994)120:7(863).