[en] Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia (PCP), which is clinically characterized by acute hemorrhagic, necrotizing pneumonia, and chronic fibrinous pneumonia. Although many measures have been taken to prevent the disease, prevention and control of the disease are becoming increasingly difficult due to the abundance of APP sera, weak vaccine cross-protection, and increasing antibiotic resistance in APP. Therefore, there is an urgent need to develop novel drugs against APP infection to prevent the spread of APP. Naringin (NAR) has been reported to have an excellent therapeutic effect on pulmonary diseases, but its therapeutic effect on lung injury caused by APP is not apparent. Our research has shown that NAR was able to alleviate APP-induced weight loss and quantity of food taken and reduce the number of WBCs and NEs in peripheral blood in mice; pathological tissue sections showed that NAR was able to prevent and control APP-induced pathological lung injury effectively; based on the establishment of an in vivo/in vitro model of APP inflammation, it was found that NAR was able to play an anti-inflammatory role through inhibiting the MAPK/NF-κB signaling pathway and exerting anti-inflammatory effects; additionally, NAR activating the Nrf2 signalling pathway, increasing the secretion of antioxidant enzymes Nqo1, CAT, and SOD1, inhibiting the secretion of oxidative damage factors NOS2 and COX2, and enhancing the antioxidant stress ability, thus playing an antioxidant role. In summary, NAR can relieve severe lung injury caused by APP by reducing excessive inflammatory response and improving antioxidant capacity.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Huang, Qi-Lin; Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou Gansu, 730000, China ; Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Gansu, 730000, China ; Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R, Lanzhou Gansu, 730000, China
Huang, Li-Na; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou Gansu, 730000, China
Zhao, Guan-Yu; College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China
Liu, Chen; Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou Gansu, 730000, China ; Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Gansu, 730000, China ; Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R, Lanzhou Gansu, 730000, China
Pan, Xiang-Yi; Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou Gansu, 730000, China ; Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Gansu, 730000, China ; Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R, Lanzhou Gansu, 730000, China
Li, Zhao-Rong; Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou Gansu, 730000, China ; Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Gansu, 730000, China ; Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R, Lanzhou Gansu, 730000, China
Jing, Xiao-Han; Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou Gansu, 730000, China ; Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Gansu, 730000, China ; Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R, Lanzhou Gansu, 730000, China
Qiu, Zheng-Ying; Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou Gansu, 730000, China. qiumoying@163.com ; Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Gansu, 730000, China. qiumoying@163.com ; Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R, Lanzhou Gansu, 730000, China. qiumoying@163.com
Xin, Ruihua ; Université de Liège - ULiège > TERRA Research Centre ; Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou Gansu, 730000, China. xinruihua@caas.cn ; Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Gansu, 730000, China. xinruihua@caas.cn ; Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R, Lanzhou Gansu, 730000, China. xinruihua@caas.cn
Language :
English
Title :
Naringin attenuates Actinobacillus pleuropneumoniae-induced acute lung injury via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway.
NSCF - National Natural Science Foundation of China
Funding text :
We thank Prof. Yang Feng and Wang Weiwei from the Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences (CAAS), for providing the strain.This work was supported by the National Key Research and Development Program of China (2022YFD180110304), National Natural Science Foundation of China (32002328), Natural Science Foundation of Gansu Province (22JR5RA038), Key Research and Development fund of Gansu Province, China (21YF5FA166, 23YFNA0010, 23YFFA0014), Central government guides local science and technology development fund projects in Gansu province (22ZY1QA012). Lanzhou Science and Technology Project, China (2021-1-159, 2022-RC-21).
N. Nahar C. Turni G. Tram P.J. Blackall Atack JMActinobacillus pleuropneumoniae: the molecular determinants of virulence and pathogenesis Adv Microb Physiol 2021 78 179 216 1:CAS:528:DC%2BB38XhsFChtrfJ 10.1016/bs.ampbs.2020.12.001 34147185
L.M. Cohen C.A. Grøntvedt T.B. Klem S.M. Gulliksen B. Ranheim J.P. Nielsen M. Valheim C. Kielland A descriptive study of acute outbreaks of respiratory disease in Norwegian fattening pig herds Acta Vet Scand 2020 62 1 35 1:CAS:528:DC%2BB3cXht1GjsbrP 10.1186/s13028-020-00529-z 32580726 7312110
T.J. Tobias A. Bouma A.J. Daemen J.A. Wagenaar A. Stegeman D. Klinkenberg Association between transmission rate and disease severity for Actinobacillus pleuropneumoniae infection in pigs Vet Res 2013 44 1 2 10.1186/1297-9716-44-2 23311865 3574036
S. Hathroubi A. Loera-Muro A.L. Guerrero-Barrera Y.D.N. Tremblay M. Jacques Actinobacillus pleuropneumoniae biofilms: role in pathogenicity and potential impact for vaccination development Anim Health Res Rev 2018 19 1 17 30 10.1017/S146625231700010X 29110751
V. Donà A. Ramette V. Perreten Comparative genomics of 26 complete circular genomes of 18 different serotypes of Actinobacillus pleuropneumoniae Microb Genom 2022 8 2 000776 35196217 8942016
X. Ma B. Zheng J. Wang G. Li S. Cao Y. Wen X. Huang Z. Zuo Z. Zhong Y. Gu Quinolone Resistance of Actinobacillus pleuropneumoniae revealed through genome and transcriptome analyses Int J Mol Sci 2021 22 18 10036 1:CAS:528:DC%2BB3MXitlGnt7fF 10.3390/ijms221810036 34576206 8472844
F. Guo J. Guo Y. Cui X. Cao H. Zhou X. Su B. Yang P.J. Blackall F. Xu Exposure to Sublethal Ciprofloxacin Induces Resistance to Ciprofloxacin and Cross-antibiotics, and reduction of Fitness, Biofilm formation, and Apx Toxin Secretion in Actinobacillus pleuropneumoniae Microb Drug Resist 2021 27 9 1290 300 1:CAS:528:DC%2BB3MXitVSht73J 10.1089/mdr.2020.0348 33739878
M.F. Pereira C.C. Rossi L.E. Seide S. Martins Filho C.M. Dolinski D.M.S. Bazzolli Antimicrobial resistance, biofilm formation and virulence reveal Actinobacillus pleuropneumoniae strains’ pathogenicity complexity Res Vet Sci 2018 118 498 501 1:CAS:528:DC%2BC1cXhtVylurzE 10.1016/j.rvsc.2018.05.003 29758533
C.P. Yang M.H. Liu W. Zou X.L. Guan L. Lai W.W. Su Toxicokinetics of naringin and its metabolite naringenin after 180-day repeated oral administration in beagle dogs assayed by a rapid resolution liquid chromatography/tandem mass spectrometric method J Asian Nat Prod Res 2012 14 1 68 75 1:CAS:528:DC%2BC38XhtlWisb4%3D 10.1080/10286020.2011.632369 22263596
V.S. Shilpa R. Shams K.K. Dash V.K. Pandey A.H. Dar S. Ayaz Mukarram E. Harsányi B. Kovács Phytochemical properties, extraction, and pharmacological benefits of Naringin: a review Molecules 2023 28 15 5623 1:CAS:528:DC%2BB3sXhslWlt73O 10.3390/molecules28155623 37570594 10419872
H.H. Zhang X.J. Zhou Y.S. Zhong L.T. Ji W.Y. Yu J. Fang H.Z. Ying C.Y. Li Naringin suppressed airway inflammation and ameliorated pulmonary endothelial hyperpermeability by upregulating Aquaporin1 in lipopolysaccharide/cigarette smoke-induced mice Biomed Pharmacother 2022 150 113035 1:CAS:528:DC%2BB38Xht1OmsL%2FL 10.1016/j.biopha.2022.113035 35658207
AmeliMojarad M, AmeliMojarad M. Interleukin-6 inhibitory effect of natural product naringenin compared to a synthesised monoclonal antibody against life-threatening COVID-19. Rev Med Virol (2023);33(4), e2445.
Y. Liu H. Wu Y.C. Nie J.L. Chen W.W. Su P.B. Li Naringin attenuates acute lung injury in LPS-treated mice by inhibiting NF-κB pathway Int Immunopharmacol 2011 11 10 1606 12 1:CAS:528:DC%2BC3MXht1anurzO 10.1016/j.intimp.2011.05.022 21640201
Q. Huang W. Li X. Jing C. Liu S. Ahmad L. Huang G. Zhao Z. Li Z. Qiu R. Xin Naringin’s alleviation of the inflammatory response caused by Actinobacillus pleuropneumoniae by downregulating the NF-κB/NLRP3 signalling pathway Int J Mol Sci 2024 25 2 1027 1:CAS:528:DC%2BB2cXis1Cnsb4%3D 10.3390/ijms25021027 38256101 10816821
Bissonnette EY, Lauzon-Joset JF, Debley JS, Ziegler SF. Cross-talk between Alveolar macrophages and Lung epithelial cells is essential to maintain Lung Homeostasis Front Immunol. 2020; 11, 583042.
S.C. Li Y.T. Cheng C.Y. Wang J.Y. Wu Z.W. Chen J.P. Wang J.H. Lin S.L. Hsuan Actinobacillus pleuropneumoniae exotoxin ApxI induces cell death via attenuation of FAK through LFA-1 Sci Rep 2021 11 1 1753 10.1038/s41598-021-81290-9 33462305 7813829
L. Wang W. Qin J. Zhang C. Bao H. Zhang Y. Che C. Sun J. Gu X. Feng C. Du W. Han P.L. Richard L. Lei Adh enhances Actinobacillus pleuropneumoniae pathogenicity by binding to OR5M11 and activating p38 which induces apoptosis of PAMs and IL-8 release Sci Rep 2016 6 24058 1:CAS:528:DC%2BC28XlsVagt7s%3D 10.1038/srep24058 27046446 4820727
Tang H, Zhang Q, Han W, Wang Z, Pang S, Zhu H, Tan K, Liu X, Langford PR, Huang Q, Zhou R, Li L. Identification of FtpA, a Dps-Like protein involved in Anti-oxidative Stress and virulence in Actinobacillus pleuropneumoniae. J Bacteriol. 2022; 204(2), e0032621.
Bao C, Jiang H, Zhu R, Liu B, Xiao J, Li Z, Chen P, Langford PR, Zhang F, Lei L. Differences in pig respiratory tract and peripheral blood immune responses to Actinobacillus pleuropneumoniae vet Microbiol. 2020; 247, 108755.
Y. Xi Z. Chi X. Tao X. Zhai Z. Zhao J. Ren S. Yang D. Dong Naringin against doxorubicin-induced hepatotoxicity in mice through reducing oxidative stress, inflammation, and apoptosis via the up-regulation of SIRT1 Environ Toxicol 2023 38 5 1153 61 1:CAS:528:DC%2BB3sXjslCqsb8%3D 10.1002/tox.23755 36811345
X. Zhai T. Dai Z. Chi Z. Zhao G. Wu S. Yang D. Dong Naringin alleviates acetaminophen-induced acute liver injury by activating Nrf2 via CHAC2 upregulation Environ Toxicol 2022 37 6 1332 42 1:CAS:528:DC%2BB38Xktlykurs%3D 10.1002/tox.23487 35179299
A.A. Syed M.I. Reza M. Shafiq S. Kumariya P. Singh A. Husain K. Hanif Gayen JR Naringin ameliorates type 2 diabetes mellitus-induced steatohepatitis by inhibiting RAGE/NF-κB mediated mitochondrial apoptosis Life Sci 2020 257 118118 1:CAS:528:DC%2BB3cXhsVyju7jK 10.1016/j.lfs.2020.118118 32702445
X. Zeng W. Su B. Liu L. Chai R. Shi H. Yao A review on the Pharmacokinetic properties of Naringin and its therapeutic efficacies in Respiratory diseases Mini Rev Med Chem 2020 20 4 286 93 1:CAS:528:DC%2BB3cXnsVCntb8%3D 10.2174/1389557519666191009162641 32134369
X. Guihua L. Shuyin G. Jinliang S. Wang Naringin protects Ovalbumin-Induced Airway inflammation in a mouse model of Asthma Inflammation 2016 39 2 891 9 1:CAS:528:DC%2BC28Xjtleqs78%3D 10.1007/s10753-016-0321-7 26920847
F.P. Martin C. Jacqueline J. Poschmann A. Roquilly Alveolar macrophages: adaptation to their anatomic niche during and after inflammation Cells 2021 10 10 2720 1:CAS:528:DC%2BB3MXislyks7bK 10.3390/cells10102720 34685700 8534884
E.L. Sassu J.T. Bossé T.J. Tobias M. Gottschalk P.R. Langford I. Hennig-Pauka Update on Actinobacillus pleuropneumoniae-knowledge, gaps and challenges Transbound Emerg Dis 2018 65 72 90 10.1111/tbed.12739 29083117
F. Zhang Q. Zhao J. Tian Y.F. Chang X. Wen X. Huang R. Wu Y. Wen Q. Yan Y. Huang X. Ma X. Han C. Miao S. Cao Effective pro-inflammatory Induced activity of GALT, a conserved Antigen in A. Pleuropneumoniae, improves the cytokines Secretion of Macrophage via p38, ERK1/2 and JNK MAPKs Signal Pathway Front Cell Infect Microbiol 2018 8 337 10.3389/fcimb.2018.00337 30319993 6167544
W. Sipos V. Cvjetković B. Dobrokes S. Sipos Evaluation of the efficacy of a vaccination program against Actinobacillus pleuropneumoniae based on lung-scoring at Slaughter Anim (Basel) 2021 11 10 2778
C.M. Wu Z.W. Chen T.H. Chen J.W. Liao C.C. Lin M.S. Chien W.C. Lee S.L. Hsuan Mitogen-activated protein kinases p38 and JNK mediate Actinobacillus pleuropneumoniae exotoxin ApxI-induced apoptosis in porcine alveolar macrophages Vet Microbiol 2011 151 3–4 372 8 1:CAS:528:DC%2BC3MXptFahsLk%3D 10.1016/j.vetmic.2011.03.033 21550186