Paper published in a journal (Scientific congresses and symposiums)
Adaptation of a Convolutional Neural Network-based Pipeline to Detect Short GravitationalWave Bursts
Pracchia, Matteo
2024In Bulletin de la Société Royale des Sciences de Liège, 93 (3), p. 374 - 378
Editorial Reviewed verified by ORBi
 

Files


Full Text
bsrsl_12416_93_3_374_pracchiam.pdf
Publisher postprint (272.33 kB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
data analysis; gravitational waves; machine learning; Background noise; Convolutional neural network; Core collapse supernovae; Gravitational wave interferometers; Gravitational-waves; Machine-learning; NET architecture; Network-based; Spectrograms; Wave transients; Multidisciplinary
Abstract :
[en] We present a machine learning based pipeline to analyze unmodeled gravitational wave (GW) transients of less than 10 s. The convolutional neural network (CNN) is based on a U-NET architecture and takes as input data from GW interferometers represented as time-frequency maps, returning a spectrogram without the background noise. The CNN has been trained on simulated data, using a generated Gaussian background noise and injecting GW signals from core-collapse supernovae (CCSNe) simulations. The pipeline is able to successfully denoise spectrograms and recognize as signals also CCSNe waveforms for which it has not been trained on.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Pracchia, Matteo  ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Language :
English
Title :
Adaptation of a Convolutional Neural Network-based Pipeline to Detect Short GravitationalWave Bursts
Publication date :
December 2024
Event name :
41st Liège International Astrophysical Colloquium
Event place :
Liège, Belgium
Event date :
15-19 July 2024
By request :
Yes
Audience :
International
Journal title :
Bulletin de la Société Royale des Sciences de Liège
ISSN :
0037-9565
eISSN :
1783-5720
Publisher :
Societe Royale des Sciences de Liege
Volume :
93
Issue :
3
Pages :
374 - 378
Peer review/Selection committee :
Editorial Reviewed verified by ORBi
Funding text :
I would like to thank Prof. Maxime Fays for the idea of the project and Prof. Jean-Rene Cudell for the discussions and suggestions on the topic. This work was supported by the Fonds de la Recherche Scientifique-FNRS, Belgium, under grant No. 4.4501. The author is grateful for computational resources provided by the LIGO Laboratory and supported by National Science Foundation Grants PHY-0757058 and PHY-0823459.
Available on ORBi :
since 27 May 2025

Statistics


Number of views
31 (1 by ULiège)
Number of downloads
17 (1 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi