Biological sciences; Natural sciences; Neuroscience; Systems neuroscience; Multidisciplinary
Abstract :
[en] During the third trimester of gestation in humans, the auditory cortex displays spontaneous and auditory-evoked EEG patterns of intermittent local oscillatory activity nested in delta waves - delta brushes (DBs). To test whether the spatiotemporal dynamics of evoked DBs depends on stimulus type, we studied auditory evoked responses (AERs) to voice and "click" using 32-electrode EEG in 30 healthy neonates aged 30 to 38 post-menstrual weeks. Both stimuli elicited two peaks at approximately 250 ms and 600 ms, the second corresponding to the first principal components of the AER and the evoked DB. The DB showed stimulus-specific topography, temporal posterior and mid-temporal for "click", and mid-temporal and pre-central inferior for voice, and contained theta to gamma oscillations more widespread for the "click"response. Gamma oscillations increased with age. AERs predominated on the right but shifted toward the left with age for voice response. Auditory evoked DBs may therefore underlie specific auditory processing during fetal development.
Disciplines :
Pediatrics
Author, co-author :
Kaminska, Anna; Inserm, UMR 1141 NeuroDiderot, Paris, France ; CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France ; Université Paris Cité, Paris, France ; AP-HP, Necker-Enfants Malades Hospital, Department of Clinical Neurophysiology, Paris, France
Arzounian, Dorothée; Inserm, UMR 1141 NeuroDiderot, Paris, France ; CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France ; Université Paris Cité, Paris, France
Delattre, Victor; Inserm, UMR 1141 NeuroDiderot, Paris, France ; CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France ; Université Paris Cité, Paris, France
Laschet, Jacques; Inserm, UMR 1141 NeuroDiderot, Paris, France ; CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France ; Université Paris Cité, Paris, France
Magny, Jean-François; AP-HP, Necker-Enfants Malades Hospital, Neonatal Care Unit, Paris, France
Hovhannisyan, Shushanik; AP-HP, Necker-Enfants Malades Hospital, Neonatal Care Unit, Paris, France
Mokhtari, Mostafa; Bicêtre Hospital, Neonatal Intensive Care Unit, Le Kremlin-Bicêtre, France ; AP-HP, Espace Ethique-Ile de France, CHU Saint-Louis, Paris X, France
Manresa, Antoine; Laboratory CRFDP, University of Rouen, Normandy, France
Boissel, Anne; Laboratory CRFDP, University of Rouen, Normandy, France
Ouss, Lisa ; Université de Liège - ULiège > Département des sciences cliniques > Psychiatrie infanto-juvénile ; AP-HP, Necker-Enfants Malades Hospital, Child and Adolescent Psychiatry Unit, Paris, France
Hertz-Pannier, Lucie; Inserm, UMR 1141 NeuroDiderot, Paris, France ; CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France ; Université Paris Cité, Paris, France
Chiron, Catherine; Inserm, UMR 1141 NeuroDiderot, Paris, France ; CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France ; Université Paris Cité, Paris, France
Wendling, Fabrice; INSERM, LTSI - U1099, University of Rennes, 35000 Rennes, France
Denoyer, Yves; INSERM, LTSI - U1099, University of Rennes, 35000 Rennes, France ; GHBS, Lorient, France
Kuchenbuch, Mathieu; Department of Pediatrics, Reference Center for Rare Epilepsies, University Hospital of Nancy, Member of ERN EpiCare, 54000 Nancy, France ; UMR 7039, CRAN, CNRS, University of Lorraine, 54000 Nancy, France
Dubois, Jessica; Inserm, UMR 1141 NeuroDiderot, Paris, France ; CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France ; Université Paris Cité, Paris, France
Khazipov, Roustem; INMED, INSERM, Aix-Marseille University, Marseille, France
This work was supported by the French Agency for Research ( https://anr.fr/Projet-ANR-09-MNPS-0006 ) and the Fondation de France ( https://www.fondationdefrance.org/fr ) ( FDF-2017-00079262 ) J.D. was supported by the M\u00E9disite Foundation ( FDF-2018-00092867 ) and the IdEx Universit\u00E9 de Paris ( ANR-18-IDEX-0001 ).
Clancy, B., Darlington, R.B., Finlay, B.L., Translating developmental time across mammalian species. Neuroscience 105 (2001), 7–17, 10.1016/s0306-4522(01)00171-3.
Hanganu-Opatz, I.L., Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities. Brain Res. Rev. 64 (2010), 160–176, 10.1016/j.brainresrev.2010.03.005.
Khazipov, R., Luhmann, H.J., Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci. 29 (2006), 414–418, 10.1016/j.tins.2006.05.007.
Luhmann, H.J., Sinning, A., Yang, J.W., Reyes-Puerta, V., Stüttgen, M.C., Kirischuk, S., Kilb, W., Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions. Front. Neural Circuits, 10, 2016, 40, 10.3389/fncir.2016.00040.
Luhmann, H.J., Kanold, P.O., Molnár, Z., Vanhatalo, S., Early brain activity: Translations between bedside and laboratory. Prog. Neurobiol., 213, 2022, 102268, 10.1016/j.pneurobio.2022.102268.
Milh, M., Kaminska, A., Huon, C., Lapillonne, A., Ben-Ari, Y., Khazipov, R., R apid cortical oscillations and early motor activity in premature human neonate. Cereb. Cortex 17 (2007), 1582–1594, 10.1093/cercor/bhl069.
Colonnese, M.T., Kaminska, A., Minlebaev, M., Milh, M., Bloem, B., Lescure, S., Moriette, G., Chiron, C., Ben-Ari, Y., Khazipov, R., A conserved switch in sensory processing prepares developing neocortex for vision. Neuron 67 (2010), 480–498, 10.1016/j.neuron.2010.07.015.
Kaminska, A., Delattre, V., Laschet, J., Dubois, J., Labidurie, M., Duval, A., Manresa, A., Magny, J.F., Hovhannisyan, S., Mokhtari, M., et al. Cortical Auditory-Evoked Responses in Preterm Neonates: Revisited by Spectral and Temporal Analyses. Cereb. Cortex 28 (2018), 3429–3444, 10.1093/cercor/bhx206.
Lippe, W.R., Rhythmic spontaneous activity in the developing avian auditory system. J. Neurosci. 14 (1994), 1486–1495, 10.1523/JNEUROSCI.14-03-01486.1994.
Tritsch, N.X., Bergles, D.E., Developmental regulation of spontaneous activity in the Mammalian cochlea. J. Neurosci. 30 (2010), 1539–1550, 10.1523/JNEUROSCI.3875-09.2010.
Babola, T.A., Li, S., Gribizis, A., Lee, B.J., Issa, J.B., Wang, H.C., Crair, M.C., Bergles, D.E., Homeostatic Control of Spontaneous Activity in the Developing Auditory System. Neuron 99 (2018), 511–524.e5, 10.1016/j.neuron.2018.07.004.
Wang, H.C., Bergles, D.E., Spontaneous activity in the developing auditory system. Cell Tissue Res. 361 (2015), 65–75, 10.1007/s00441-014-2007-5.
Minlebaev, M., Colonnese, M., Tsintsadze, T., Sirota, A., Khazipov, R., Early γ oscillations synchronize developing thalamus and cortex. Science (New York, N.Y.) 334 (2011), 226–229, 10.1126/science.1210574.
Yang, J.W., An, S., Sun, J.J., Reyes-Puerta, V., Kindler, J., Berger, T., Kilb, W., Luhmann, H.J., Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex. Cereb. Cortex 23 (2013), 1299–1316, 10.1093/cercor/bhs103.
An, S., Kilb, W., Luhmann, H.J., Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex. J. Neurosci. 34 (2014), 10870–10883, 10.1523/JNEUROSCI.4539-13.2014.
Luhmann, H.J., Khazipov, R., Neuronal activity patterns in the developing barrel cortex. Neuroscience 368 (2018), 256–267, 10.1016/j.neuroscience.2017.05.025.
Molnár, Z., Luhmann, H.J., Kanold, P.O., Transient cortical circuits match spontaneous and sensory-driven activity during development. Science (New York, N.Y.), 370, 2020, eabb2153, 10.1126/science.abb2153.
Chang, M., Kanold, P.O., Development of Auditory Cortex Circuits. J. Assoc. Res. Otolaryngol. 22 (2021), 237–259, 10.1007/s10162-021-00794-3.
Martini, F.J., Guillamón-Vivancos, T., Moreno-Juan, V., Valdeolmillos, M., López-Bendito, G., Spontaneous activity in developing thalamic and cortical sensory networks. Neuron 109 (2021), 2519–2534, 10.1016/j.neuron.2021.06.026.
Antón-Bolaños, N., Sempere-Ferràndez, A., Guillamón-Vivancos, T., Martini, F.J., Pérez-Saiz, L., Gezelius, H., Filipchuk, A., Valdeolmillos, M., López-Bendito, G., Prenatal activity from thalamic neurons governs the emergence of functional cortical maps in mice. Science (New York, N.Y.) 364 (2019), 987–990, 10.1126/science.aav7617.
Meng, X., Mukherjee, D., Kao, J.P.Y., Kanold, P.O., Early peripheral activity alters nascent subplate circuits in the auditory cortex. Sci. Adv., 7, 2021, eabc9155, 10.1126/sciadv.abc9155.
Chipaux, M., Colonnese, M.T., Mauguen, A., Fellous, L., Mokhtari, M., Lezcano, O., Milh, M., Dulac, O., Chiron, C., Khazipov, R., Kaminska, A., Auditory stimuli mimicking ambient sounds drive temporal “delta-brushes” in premature infants. PLoS One, 8, 2013, e79028, 10.1371/journal.pone.0079028.
Fabrizi, L., Worley, A., Patten, D., Holdridge, S., Cornelissen, L., Meek, J., Boyd, S., Slater, R., Electrophysiological measurements and analysis of nociception in human infants. J. Vis. Exp., 20, 2011, pii3118.
Makarov, R., Sintsov, M., Valeeva, G., Starikov, P., Negrov, D., Khazipov, R., Bone conducted responses in the neonatal rat auditory cortex. Sci. Rep., 11, 2021, 16777, 10.1038/s41598-021-96188-9.
Stjerna, S., Voipio, J., Metsäranta, M., Kaila, K., Vanhatalo, S., Preterm EEG: a multimodal neurophysiological protocol. J. Vis. Exp., 2012, 3774, 10.3791/3774.
Colonnese, M.T., Phillips, M.A., Thalamocortical function in developing sensory circuits. Curr. Opin. Neurobiol. 52 (2018), 72–79, 10.1016/j.conb.2018.04.019.
Turkewitz, G., Birch, H.G., Cooper, K.K., Responsiveness to simple and complex auditory stimuli in the human newborn. Dev. Psychobiol. 5 (1972), 7–19, 10.1002/dev.420050103.
DeCasper, A.J., Fifer, W.P., Of human bonding: newborns prefer their mothers' voices. Science (New York, N.Y.) 208 (1980), 1174–1176, 10.1126/science.7375928.
Shahidullah, S., Hepper, P.G., Frequency discrimination by the fetus. Early Hum. Dev. 36 (1994), 13–26, 10.1016/0378-3782(94)90029-9.
Granier-Deferre, C., Bassereau, S., Ribeiro, A., Jacquet, A.Y., Decasper, A.J., A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLoS One, 6, 2011, e17304, 10.1371/journal.pone.0017304.
Mahmoudzadeh, M., Dehaene-Lambertz, G., Fournier, M., Kongolo, G., Goudjil, S., Dubois, J., Grebe, R., Wallois, F., Syllabic discrimination in premature human infants prior to complete formation of cortical layers. Proc. Natl. Acad. Sci. USA 110 (2013), 4846–4851, 10.1073/pnas.1212220110.
Mahmoudzadeh, M., Wallois, F., Kongolo, G., Goudjil, S., Dehaene-Lambertz, G., Functional Maps at the Onset of Auditory Inputs in Very Early Preterm Human Neonates. Cereb. Cortex 27 (2017), 2500–2512, 10.1093/cercor/bhw103.
Wunderlich, J.L., Cone-Wesson, B.K., Maturation of CAEP in infants and children: a review. Hear. Res. 212 (2006), 212–223, 10.1016/j.heares.2005.11.008.
Näätänen, R., Picton, T., The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24 (1987), 375–425, 10.1111/j.1469-8986.1987.tb00311.x.
Shahin, A.J., Roberts, L.E., Miller, L.M., McDonald, K.L., Alain, C., Sensitivity of EEG and MEG to the N1 and P2 auditory evoked responses modulated by spectral complexity of sounds. Brain Topogr. 20 (2007), 55–61, 10.1007/s10548-007-0031-4.
Mento, G., Suppiej, A., Altoè, G., Bisiacchi, P.S., Functional hemispheric asymmetries in humans: electrophysiological evidence from preterm infants. Eur. J. Neurosci. 31 (2010), 565–574, 10.1111/j.1460-9568.2010.07076.x.
Rotteveel, J.J., de Graaf, R., Stegeman, D.F., Colon, E.J., Visco, Y.M., The maturation of the central auditory conduction in preterm infants until three months post term. V. The auditory cortical response (ACR). Hear. Res. 27 (1987), 95–110, 10.1016/0378-5955(87)90029-3.
Hrbek, A., Karlberg, P., Olsson, T., Development of visual and somatosensory evoked responses in pre-term newborn infants. Electroencephalogr. Clin. Neurophysiol. 34 (1973), 225–232, 10.1016/0013-4694(73)90249-6.
Mento, G., Bisiacchi, P.S., Neurocognitive development in preterm infants: insights from different approaches. Neurosci. Biobehav. Rev. 36 (2012), 536–555, 10.1016/j.neubiorev.2011.08.008.
Yu, L., Wang, S., Huang, D., Wu, X., Zhang, Y., Role of inter-trial phase coherence in atypical auditory evoked potentials to speech and nonspeech stimuli in children with autism. Clin. Neurophysiol. 129 (2018), 1374–1382, 10.1016/j.clinph.2018.04.599.
Cheour-Luhtanen, M., Alho, K., Sainio, K., Rinne, T., Reinikainen, K., Pohjavuori, M., Renlund, M., Aaltonen, O., Eerola, O., Näätänen, R., The ontogenetically earliest discriminative response of the human brain. Psychophysiology 33 (1996), 478–481, 10.1111/j.1469-8986.1996.tb01074.x.
Schleussner, E., Schneider, U., Arnscheidt, C., Kähler, C., Haueisen, J., Seewald, H.J., Prenatal evidence of left-right asymmetries in auditory evoked responses using fetal magnetoencephalography. Early Hum. Dev. 78 (2004), 133–136, 10.1016/j.earlhumdev.2004.03.005.
Dehaene-Lambertz, G., Dehaene, S., Hertz-Pannier, L., Functional neuroimaging of speech perception in infants. Science (New York, N.Y.) 298 (2002), 2013–2015, 10.1126/science.1077066.
Ghio, M., Cara, C., Tettamanti, M., The prenatal brain readiness for speech processing: A review on foetal development of auditory and primordial language networks. Neurosci. Biobehav. Rev. 128 (2021), 709–719, 10.1016/j.neubiorev.2021.07.009.
Thomason, M.E., Grove, L.E., Lozon, T.A. Jr., Vila, A.M., Ye, Y., Nye, M.J., Manning, J.H., Pappas, A., Hernandez-Andrade, E., Yeo, L., et al. Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero. Dev. Cogn. Neurosci. 11 (2015), 96–104.
Vannest, J.J., Karunanayaka, P.R., Altaye, M., Schmithorst, V.J., Plante, E.M., Eaton, K.J., Rasmussen, J.M., Holland, S.K., Comparison of fMRI data from passive listening and active-response story processing tasks in children. J. Magn. Reson. Imaging. 29 (2009), 971–976, 10.1002/jmri.21694.
Vouloumanos, A., Kiehl, K.A., Werker, J.F., Liddle, P.F., Detection of sounds in the auditory stream: event-related fMRI evidence for differential activation to speech and nonspeech. J. Cogn. Neurosci. 13 (2001), 994–1005, 10.1162/089892901753165890.
Saenz, M., Langers, D.R.M., Tonotopic mapping of human auditory cortex. Hear. Res. 307 (2014), 42–52, 10.1016/j.heares.2013.07.016.
Curzi-Dascalova, L., Figueroa, J.M., Eiselt, M., Christova, E., Virassamy, A., d'Allest, A.M., Guimarâes, H., Gaultier, C., Dehan, M., Sleep state organization in premature infants of less than 35 weeks' gestational age. Pediatr. Res. 34 (1993), 624–628, 10.1203/00006450-199311000-00013.
Ryan, M.A.J., Mathieson, S.R., Livingstone, V., O'Sullivan, M.P., Dempsey, E.M., Boylan, G.B., Sleep state organisation of moderate to late preterm infants in the neonatal unit. Pediatr. Res. 93 (2023), 595–603, 10.1038/s41390-022-02319-x.
Draganova, R., Eswaran, H., Murphy, P., Huotilainen, M., Lowery, C., Preissl, H., Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study. Neuroimage 28 (2005), 354–361, 10.1016/j.neuroimage.2005.06.011.
Cheour, M., Ceponiené, R., Leppänen, P., Alho, K., Kujala, T., Renlund, M., Fellman, V., Näätänen, R., The auditory sensory memory trace decays rapidly in newborns. Scand. J. Psychol. 43 (2002), 33–39, 10.1111/1467-9450.00266.
Muenssinger, J., Matuz, T., Schleger, F., Kiefer-Schmidt, I., Goelz, R., Wacker-Gussmann, A., Birbaumer, N., Preissl, H., Auditory habituation in the fetus and neonate: an fMEG study. Dev. Sci. 16 (2013 a), 287–295, 10.1111/desc.12025.
Muenssinger, J., Stingl, K.T., Matuz, T., Binder, G., Ehehalt, S., Preissl, H., Auditory habituation to simple tones: reduced evidence for habituation in children compared to adults. Front. Hum. Neurosci., 7, 2013 b, 377, 10.3389/fnhum.2013.00377.
Sheridan, C.J., Preissl, H., Siegel, E.R., Murphy, P., Ware, M., Lowery, C.L., Eswaran, H., Neonatal and fetal response decrement of evoked responses: a MEG study. Clin. Neurophysiol. 119 (2008), 796–804, 10.1016/j.clinph.2007.11.174.
Musacchia, G., Ortiz-Mantilla, S., Choudhury, N., Realpe-Bonilla, T., Roesler, C., Benasich, A.A., Active auditory experience in infancy promotes brain plasticity in Theta and Gamma oscillations. Dev. Cogn. Neurosci. 26 (2017), 9–19, 10.1016/j.dcn.2017.04.004.
Ortiz-Mantilla, S., Hämäläinen, J.A., Musacchia, G., Benasich, A.A., Enhancement of gamma oscillations indicates preferential processing of native over foreign phonemic contrasts in infants. J. Neurosci. 33 (2013), 18746–18754, 10.1523/JNEUROSCI.3260-13.2013.
Gilley, P.M., Sharma, M., Purdy, S.C., Oscillatory decoupling differentiates auditory encoding deficits in children with listening problems. Clin. Neurophysiol. 127 (2016), 1618–1628, 10.1016/j.clinph.2015.11.003.
Cantiani, C., Ortiz-Mantilla, S., Riva, V., Piazza, C., Bettoni, R., Musacchia, G., Molteni, M., Marino, C., Benasich, A.A., Reduced left-lateralized pattern of event-related EEG oscillations in infants at familial risk for language and learning impairment. Neuroimage. Clin., 22, 2019, 101778, 10.1016/j.nicl.2019.101778.
Ortiz-Mantilla, S., Cantiani, C., Shafer, V.L., Benasich, A.A., Minimally-verbal children with autism show deficits in theta and gamma oscillations during processing of semantically-related visual information. Sci. Rep., 9, 2019, 5072, 10.1038/s41598-019-41511-8.
Draganova, R., Eswaran, H., Murphy, P., Lowery, C., Preissl, H., Serial magnetoencephalographic study of fetal and newborn auditory discriminative evoked responses. Early Hum. Dev. 83 (2007), 199–207, 10.1016/j.earlhumdev.2006.05.018.
Contreras, D., Destexhe, A., Sejnowski, T.J., Steriade, M., Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science (New York, N.Y.) 274 (1996), 771–774, 10.1126/science.274.5288.771.
Minlebaev, M., Ben-Ari, Y., Khazipov, R., Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo. J. Neurophysiol. 97 (2007), 692–700, 10.1152/jn.00759.2006.
Yang, J.W., Hanganu-Opatz, I.L., Sun, J.J., Luhmann, H.J., Three patterns of oscillatory activity differentially synchronize developing neocortical networks in vivo. J. Neurosci. 29 (2009), 9011–9025, 10.1523/JNEUROSCI.5646-08.2009.
Ray, S., Crone, N.E., Niebur, E., Franaszczuk, P.J., Hsiao, S.S., Neural correlates of high-gamma oscillations (60-200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J. Neurosci. 28 (2008), 11526–11536, 10.1523/JNEUROSCI.2848-08.2008.
Whittingstall, K., Logothetis, N.K., Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron 64 (2009), 281–289, 10.1016/j.neuron.2009.08.016.
Cheyne, D.O., MEG studies of sensorimotor rhythms: a review. Exp. Neurol. 245 (2013), 27–39, 10.1016/j.expneurol.2012.08.030.
Hagiwara, K., Okamoto, T., Shigeto, H., Ogata, K., Somehara, Y., Matsushita, T., Kira, J.i., Tobimatsu, S., Oscillatory gamma synchronization binds the primary and secondary somatosensory areas in humans. Neuroimage 51 (2010), 412–420, 10.1016/j.neuroimage.2010.02.001.
Song, W., Francis, J.T., Gating of tactile information through gamma band during passive arm movement in awake primates. Front. Neural Circuits, 9, 2015, 64, 10.3389/fncir.2015.00064.
Ray, S., Maunsell, J.H.R., Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron 67 (2010), 885–896, 10.1016/j.neuron.2010.08.004.
Cardin, J.A., Snapshots of the Brain in Action: Local Circuit Operations through the Lens of γ Oscillations. J. Neurosci. 36 (2016), 10496–10504, 10.1523/JNEUROSCI.1021-16.2016.
Cardin, J.A., Inhibitory Interneurons Regulate Temporal Precision and Correlations in Cortical Circuits. Trends Neurosci. 41 (2018), 689–700, 10.1016/j.tins.2018.07.015.
Roach, B.J., Mathalon, D.H., Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophr. Bull. 34 (2008), 907–926, 10.1093/schbul/sbn093.
Javitt, D.C., Sweet, R.A., Auditory dysfunction in schizophrenia: integrating clinical and basic features. Nat. Rev. Neurosci. 16 (2015), 535–550, 10.1038/nrn4002.
Roach, B.J., D'Souza, D.C., Ford, J.M., Mathalon, D.H., Test-retest reliability of time-frequency measures of auditory steady-state responses in patients with schizophrenia and healthy controls. Neuroimage. Clin., 23, 2019, 101878, 10.1016/j.nicl.2019.101878.
Welle, C.G., Contreras, D., Sensory-driven and spontaneous gamma oscillations engage distinct cortical circuitry. J. Neurophysiol. 115 (2016), 1821–1835, 10.1152/jn.00137.2015.
Adesnik, H., Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex. J. Physiol. 596 (2018), 1639–1657, 10.1113/JP274986.
Neuenschwander, S., Castelo-Branco, M., Baron, J., Singer, W., Feed-forward synchronization: propagation of temporal patterns along the retinothalamocortical pathway. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357 (2002), 1869–1876, 10.1098/rstb.2002.1172.
Saleem, A.B., Lien, A.D., Krumin, M., Haider, B., Rosón, M.R., Ayaz, A., Reinhold, K., Busse, L., Carandini, M., Harris, K.D., Subcortical Source and Modulation of the Narrowband Gamma Oscillation in Mouse Visual Cortex. Neuron 93 (2017), 315–322, 10.1016/j.neuron.2016.12.028.
Sirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M., Buzsáki, G., Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60 (2008), 683–697, 10.1016/j.neuron.2008.09.014.
Valiullina, F., Akhmetshina, D., Nasretdinov, A., Mukhtarov, M., Valeeva, G., Khazipov, R., Rozov, A., Developmental Changes in Electrophysiological Properties and a Transition from Electrical to Chemical Coupling between Excitatory Layer 4 Neurons in the Rat Barrel Cortex. Front. Neural Circuits, 10, 2016, 1, 10.3389/fncir.2016.00001.
Daw, M.I., Ashby, M.C., Isaac, J.T.R., Coordinated developmental recruitment of latent fast spiking interneurons in layer IV barrel cortex. Nat. Neurosci. 10 (2007), 453–461, 10.1038/nn1866.
Kirmse, K., Kummer, M., Kovalchuk, Y., Witte, O.W., Garaschuk, O., Holthoff, K., GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo. Nat. Commun., 6, 2015, 7750, 10.1038/ncomms8750.
Dobbing, J., Sands, J., Comparative aspects of the brain growth spurt. Early Hum. Dev. 3 (1979), 79–83, 10.1016/0378-3782(79)90022-7.
Huttenlocher, P.R., Dabholkar, A.S., Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387 (1997), 167–178, 10.1002/(sici)1096-9861(19971020)387:2<167::aid-cne1>3.0.co;2-z.
Khazipov, R., Esclapez, M., Caillard, O., Bernard, C., Khalilov, I., Tyzio, R., Hirsch, J., Dzhala, V., Berger, B., Ben-Ari, Y., Early development of neuronal activity in the primate hippocampus in utero. J. Neurosci. 21 (2001), 9770–9781, 10.1523/JNEUROSCI.21-24-09770.2001.
Xu, G., Broadbelt, K.G., Haynes, R.L., Folkerth, R.D., Borenstein, N.S., Belliveau, R.A., Trachtenberg, F.L., Volpe, J.J., Kinney, H.C., Late development of the GABAergic system in the human cerebral cortex and white matter. J. Neuropathol. Exp. Neurol. 70 (2011), 841–858, 10.1097/NEN.0b013e31822f471c.
Arshad, A., Vose, L.R., Vinukonda, G., Hu, F., Yoshikawa, K., Csiszar, A., Brumberg, J.C., Ballabh, P., Extended Production of Cortical Interneurons into the Third Trimester of Human Gestation. Cereb. Cortex 26 (2016), 2242–2256, 10.1093/cercor/bhv074.
Luhmann, H.J., Kirischuk, S., Sinning, A., Kilb, W., Early GABAergic circuitry in the cerebral cortex. Curr. Opin. Neurobiol. 26 (2014), 72–78, 10.1016/j.conb.2013.12.014.
Whitehead, K., Pressler, R., Fabrizi, L., Characteristics and clinical significance of delta brushes in the EEG of premature infants. Clin. Neurophysiol. Pract. 2 (2017), 12–18, 10.1016/j.cnp.2016.11.002.
Bourel-Ponchel, E., Gueden, S., Hasaerts, D., Héberlé, C., Malfilâtre, G., Mony, L., Vignolo-Diard, P., Lamblin, M.D., Normal EEG during the neonatal period: maturational aspects from premature to full-term newborns. Neurophysiologie clinique = Clinical neurophysiology 51 (2021), 61–88, 10.1016/j.neucli.2020.10.004.
Romagnoni, A., Colonnese, M.T., Touboul, J.D., Gutkin, B.S., Progressive alignment of inhibitory and excitatory delay may drive a rapid developmental switch in cortical network dynamics. J. Neurophysiol. 123 (2020), 1583–1599, 10.1152/jn.00402.2019.
Ray, S., Maunsell, J.H.R., Do gamma oscillations play a role in cerebral cortex?. Trends Cogn. Sci. 19 (2015), 78–85, 10.1016/j.tics.2014.12.002.
de Villers-Sidani, E., Chang, E.F., Bao, S., Merzenich, M.M., Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. J. Neurosci. 27 (2007), 180–189, 10.1523/JNEUROSCI.3227-06.2007.
Woolf, N.K., Ryan, A.F., Contributions of the middle ear to the development of function in the cochlea. Hear. Res. 35 (1988), 131–142, 10.1016/0378-5955(88)90112-8.
Wess, J.M., Isaiah, A., Watkins, P.V., Kanold, P.O., Subplate neurons are the first cortical neurons to respond to sensory stimuli. Proc. Natl. Acad. Sci. USA 114 (2017), 12602–12607, 10.1073/pnas.1710793114.
Wang, H.C., Lin, C.C., Chong, R., Zhang-Hooks, Y., Agarwal, A., Ellis-Davies, G., Rock, J., Bergles, D.E., Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells. Cell 163 (2015), 1348–1359, 10.1016/j.cell.2015.10.070.
Tritsch, N.X., Yi, E., Gale, J.E., Glowatzki, E., Bergles, D.E., The origin of spontaneous activity in the developing auditory system. Nature 450 (2007), 50–55, 10.1038/nature06233.
Khazipov, R., Sirota, A., Leinekugel, X., Holmes, G.L., Ben-Ari, Y., Buzsáki, G., Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432 (2004), 758–761, 10.1038/nature03132.
Akhmetshina, D., Nasretdinov, A., Zakharov, A., Valeeva, G., Khazipov, R., The Nature of the Sensory Input to the Neonatal Rat Barrel Cortex. J. Neurosci. 36 (2016), 9922–9932, 10.1523/JNEUROSCI.1781-16.2016.
André, M., Lamblin, M.D., d'Allest, A.M., Curzi-Dascalova, L., Moussalli-Salefranque, F., S Nguyen The, T., Vecchierini-Blineau, M.F., Wallois, F., Walls-Esquivel, E., Plouin, P., Electroencephalography in premature and full-term infants. Developmental features and glossary. Neurophysiologie clinique = Clinical neurophysiology 40 (2010), 59–124, 10.1016/j.neucli.2010.02.002.
(GNU Octave software); J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring (2024). https://www.gnu.org/software/octave/doc/v9.3.0/.
Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M., Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci., 2011, 2011, 879716, 10.1155/2011/879716.
Qin, Y., Xu, P., Yao, D., A comparative study of different references for EEG default mode network: the use of the infinity reference. Clin. Neurophysiol. 121 (2010), 1981–1991, 10.1016/j.clinph.2010.03.056.
Acunzo, D.J., Mackenzie, G., van Rossum, M.C.W., Systematic biases in early ERP and ERF components as a result of high-pass filtering. J. Neurosci. Methods 209 (2012), 212–218, 10.1016/j.jneumeth.2012.06.011.
Tanner, D., Morgan-Short, K., Luck, S.J., How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition. Psychophysiology 52 (2015), 997–1009, 10.1111/psyp.12437.
Maris, E., Oostenveld, R., Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164 (2007), 177–190, 10.1016/j.jneumeth.2007.03.024.
The MathWorks Inc. Statistics Toolbox Version: 9.1 (R2014b). 2022, The MathWorks Inc https://www.mathworks.com.
Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., Parkkonen, L., Hämäläinen, M.S., MNE software for processing MEG and EEG data. Neuroimage 86 (2014), 446–460, 10.1016/j.neuroimage.2013.10.027.
Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Varoquaux, G., API design for machine learning software: experiences from the scikit-learn project. Preprint at: arXiv, 2013, 10.48550/arXiv.1309.0238.
Maaten, L.V., Hinton, G.E., Visualizing Data using t-SNE. J. Mach. Learn. Res. 9 (2008), 2579–2605.
Noorlag, L., van Klink, N.E.C., Kobayashi, K., Gotman, J., Braun, K.P.J., Zijlmans, M., High-frequency oscillations in scalp EEG: A systematic review of methodological choices and clinical findings. Clin. Neurophysiol. 137 (2022), 46–58.
SAS Institute Inc. JMP® 16 Documentation Library (Chap. 16). 2020–2021, SAS Institute Inc. JMP®, 1989–2023 Version 2020-2021.
Uusitalo, M.A., Ilmoniemi, R.J., Signal-space projection method for separating MEG or EEG into components. Med. Biol. Eng. Comput. 35 (1997), 135–140, 10.1007/BF02534144.
de Cheveigné, A., ZapLine: A simple and effective method to remove power line artifacts. Neuroimage, 207, 2020, 116356, 10.1016/j.neuroimage.2019.116356.
Delorme, A., Makeig, S., EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134 (2004), 9–21, 10.1016/j.jneumeth.2003.10.009.