Login
EN
[EN] English
[FR] Français
Login
EN
[EN] English
[FR] Français
Give us feedback
Explore
Search
Special collections
Statistics
News
Help
Start on ORBi
Deposit
Profile
Publication List
Add your ORCID
FAQ: FWB Open Access Decree
Tutorials
Legal Information
Training sessions
About
What's ORBi ?
Impact and visibility
Around ORBi
About statistics
About metrics
OAI-PMH
ORBi team
Release Notes
Back
Home
Detailed Reference
Download
Poster (Scientific congresses and symposiums)
Modeling absolute and relative familiarity through Hebbian and anti-Hebbian learning rules
Warnier, William
;
Read, John
;
Delhaye, Emma
et al.
2025
•
RFN Conference 2025
Editorial reviewed
Permalink
https://hdl.handle.net/2268/332206
Files (1)
Send to
Details
Statistics
Bibliography
Similar publications
Files
Full Text
Poster_RFN_2025.pdf
Author preprint (828.13 kB)
Download
All documents in ORBi are protected by a
user license
.
Send to
RIS
BibTex
APA
Chicago
Permalink
X
Linkedin
copy to clipboard
copied
Details
Keywords :
familiarity; artificial neural network; model
Abstract :
[en]
This project aims at modeling different type of familiarity through different learning rules in an artificial neural network.
Disciplines :
Theoretical & cognitive psychology
Author, co-author :
Warnier, William
;
Université de Liège - ULiège > Faculté de Psychologie, Logopédie et Sciences de l'Education > Master sc. psycho., fin. spéc.
Read, John
;
Université de Liège - ULiège > GIGA
Delhaye, Emma
;
Université de Liège - ULiège > GIGA > GIGA Neurosciences - Aging & Memory ; University of Lisbon > Faculty of Psychology > CICPSI
Sougné, Jacques
;
Université de Liège - ULiège > UDI FPLSE
Language :
English
Title :
Modeling absolute and relative familiarity through Hebbian and anti-Hebbian learning rules
Publication date :
15 April 2025
Event name :
RFN Conference 2025
Event organizer :
Christine Bastin, Uliège
Olivier Luminet, UCLouvain
Event date :
15th and 16th of April 2025
Audience :
International
Peer review/Selection committee :
Editorial reviewed
Available on ORBi :
since 23 May 2025
Statistics
Number of views
66 (13 by ULiège)
Number of downloads
16 (4 by ULiège)
More statistics
Bibliography
Similar publications
Contact ORBi