Poster (Scientific congresses and symposiums)
Modeling absolute and relative familiarity through Hebbian and anti-Hebbian learning rules
Warnier, William; Read, John; Delhaye, Emma et al.
2025RFN Conference 2025
Editorial reviewed
 

Files


Full Text
Poster_RFN_2025.pdf
Author preprint (828.13 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
familiarity; artificial neural network; model
Abstract :
[en] This project aims at modeling different type of familiarity through different learning rules in an artificial neural network.
Disciplines :
Theoretical & cognitive psychology
Author, co-author :
Warnier, William ;  Université de Liège - ULiège > Faculté de Psychologie, Logopédie et Sciences de l'Education > Master sc. psycho., fin. spéc.
Read, John  ;  Université de Liège - ULiège > GIGA
Delhaye, Emma  ;  Université de Liège - ULiège > GIGA > GIGA Neurosciences - Aging & Memory ; University of Lisbon > Faculty of Psychology > CICPSI
Sougné, Jacques ;  Université de Liège - ULiège > UDI FPLSE
Language :
English
Title :
Modeling absolute and relative familiarity through Hebbian and anti-Hebbian learning rules
Publication date :
15 April 2025
Event name :
RFN Conference 2025
Event organizer :
Christine Bastin, Uliège
Olivier Luminet, UCLouvain
Event date :
15th and 16th of April 2025
Audience :
International
Peer review/Selection committee :
Editorial reviewed
Available on ORBi :
since 23 May 2025

Statistics


Number of views
66 (13 by ULiège)
Number of downloads
16 (4 by ULiège)

Bibliography


Similar publications



Contact ORBi