[en] Milk oligosaccharides (MOs), complex carbohydrates prevalent in human breast milk, play a vital role in infant nutrition. Serving as prebiotics, they inhibit pathogen adherence, modulate the immune system, and support newborn brain development. Notably, MOs demonstrate significant variations in concentration and composition, both across different species and within the same species. These characteristics of MOs lead to several compelling questions: (i) What distinct beneficial functions do MOs offer and how do the functions vary along with their structural differences? (ii) In what ways do MOs in human milk differ from those in other mammals, and what factors drive these unique profiles? (iii) What are the emerging applications of MOs, particularly in the context of their incorporation into infant formula? This review delves into the structural characteristics, quantification methods, and species-specific concentration differences of MOs. It highlights the critical role of human MOs in infant growth and their potential applications, providing substantial evidence to enhance infant health and development.
Disciplines :
Microbiology
Author, co-author :
Yao, Qianqian; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China, Department of Food Science, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
Gao, Yanan; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
Zheng, Nan; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
Delcenserie, Véronique ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Gestion de la qualité dans la chaîne alimentaire
Wang, Jiaqi; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China. Electronic address: jiaqiwang@vip.163.com
Language :
English
Title :
Unlocking the mysteries of milk oligosaccharides: Structure, metabolism, and function.
This study was supported by grants from the National Key R&D Program of China ( 2022YFD1600104 ), National Key R&D Program of China ( 2022YFD1600103 ), the Ministry of Modern Agro-Industry Technology Research System of China ( CARS-36 ).
Adkins, B., Development of neonatal Th1/Th2 function. International Reviews of Immunology 19:2–3 (2000), 157–171.
Akazawa, H., Tsujikawa, Y., Fukuda, I., Suzuki, Y., Choi, M., Katayama, T., Mukai, T., Osawa, R., Isolation and identification of milk oligosaccharide-degrading bacteria from the intestinal contents of suckling rats. Bioscience of Microbiota, Food, and Health 40:1 (2021), 27–32.
Akbari, O., Stock, P., DeKruyff, R.H., Umetsu, D.T., Role of regulatory T cells in allergy and asthma. Current Opinion in Immunology 15:6 (2003), 627–633.
Albrecht, S., Lane, J.A., Marino, K., Al Busadah, K.A., Carrington, S.D., Hickey, R.M., Rudd, P.M., A comparative study of free oligosaccharides in the milk of domestic animals. British Journal of Nutrition 111:7 (2014), 1313–1328.
Alderete, T.L., Autran, C., Brekke, B.E., Knight, R., Bode, L., Goran, M.I., Fields, D.A., Associations between human milk oligosaccharides and infant body composition in the first 6 mo of life. The American Journal of Clinical Nutrition 102:6 (2015), 1381–1388.
Angeloni, S., Ridet, J.L., Kusy, N., Gao, H., Crevoisier, F., Guinchard, S., Sprenger, N., Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 15:1 (2005), 31–41.
Asakuma, S., Akahori, M., Kimura, K., Watanabe, Y., Nakamura, T., Tsunemi, M., Urashima, T., Sialyl oligosaccharides of human colostrum: Changes in concentration during the first three days of lactation. Bioscience, Biotechnology, and Biochemistry 71:6 (2007), 1447–1451.
Azad, M.B., Robertson, B., Atakora, F., Becker, A.B., Subbarao, P., Moraes, T.J., Bode, L., Human milk oligosaccharide concentrations are associated with multiple fixed and modifiable maternal characteristics, environmental factors, and feeding practices. The Journal of Nutrition 148:11 (2018), 1733–1742.
Balogh, R., Jankovics, P., Béni, S., Qualitative and quantitative analysis of N-acetyllactosamine and lacto-N-biose, the two major building blocks of human milk oligosaccharides in human milk samples by high-performance liquid chromatography-tandem mass spectrometry using a porous graphitic carbon column. Journal of Chromatography A 1422 (2015), 140–146.
Bansil, R., Turner, B.S., Mucin structure, aggregation, physiological functions and biomedical applications. Current Opinion in Colloid & Interface Science 11 (2006), 164–170.
Bao, Y., Chen, C., Newburg, D.S., Quantification of neutral human milk oligosaccharides by graphitic carbon high-performance liquid chromatography with tandem mass spectrometry. Analytical Biochemistry 433:1 (2013), 28–35.
Bao, Y., Zhu, L., Newburg, D.S., Simultaneous quantification of sialyloligosaccharides from human milk by capillary electrophoresis. Analytical Biochemistry 370:2 (2007), 206–214.
Barnett, A.M., Roy, N.C., McNabb, W.C., Cookson, A.L., Effect of a semi-purified oligosaccharide-enriched fraction from caprine milk on barrier integrity and mucin production of co-culture models of the small and large intestinal epithelium. Nutrients, 8(5), 2016, 267.
Becker, C.G., Artola, A., Gerardy-Schahn, R., Becker, T., Welzl, H., Schachner, M., The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation. Journal of Neuroscience Research 45:2 (1996), 143–152.
Bode, L., Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22 (2012), 1147–1162.
Bode, L., The functional biology of human milk oligosaccharides. Early Human Development 91:11 (2015), 619–622.
Bode, L., Human milk oligosaccharides: Structure and functions. Nestle Nutrition Institute Workshop Series 94 (2020), 115–123.
Bode, L., Contractor, N., Barile, D., Pohl, N., Prudden, A.R., Boons, G.J., Jennewein, S., Overcoming the limited availability of human milk oligosaccharides: Challenges and opportunities for research and application. Nutrition Reviews 74:10 (2016), 635–644.
Borewicz, K., Gu, F., Saccenti, E., Arts, I.C.W., Penders, J., Thijs, C., Smidt, H., Correlating infant fecal microbiota composition and human milk oligosaccharide consumption by microbiota of 1-month-old breastfed infants. Molecular Nutrition & Food Research, 63(13), 2019, e1801214.
Bosheva, M., Tokodi, I., Krasnow, A., Pedersen, H.K., Lukjancenko, O., Eklund, A.C., 5 HMO Study Investigator Consortium, Infant formula with a specific blend of five human milk oligosaccharides drives the gut microbiota development and improves gut maturation markers: A randomized controlled trial. Frontiers in Nutrition, 9, 2022, 920362.
Calvano, C.D., Monopoli, A., Cataldi, T.R.I., Palmisano, F., MALDI matrices for low molecular weight compounds: An endless story?. Analytical and Bioanalytical Chemistry 410:17 (2018), 4015–4038.
Cataldi, T.R., Campa, C., De Benedetto, G.E., Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: The potential is still growing. Fresenius’ Journal of Analytical Chemistry 368:8 (2000), 739–758.
Chaturvedi, P., Warren, C.D., Buescher, C.R., Pickering, L.K., Newburg, D.S., Survival of human milk oligosaccharides in the intestine of infants. Newburg, D.S., (eds.) Bioactive components of human milk, 2001, 315–324.
Chatziioannou, A.C., Benjamins, E., Pellis, L., Haandrikman, A., Dijkhuizen, L., van Leeuwen, S.S., Extraction and quantitative analysis of goat milk oligosaccharides: Composition, variation, associations, and 2′-FL variability. Journal of Agricultural and Food Chemistry 69:28 (2021), 7851–7862.
Corona, L., Lussu, A., Bosco, A., Pintus, R., Cesare Marincola, F., Fanos, V., Dessì, A., Human milk oligosaccharides: A comprehensive review towards metabolomics. Children, 8(9), 2021, 804.
Craft, K.M., Townsend, S.D., Mother knows best: Deciphering the antibacterial properties of human milk oligosaccharides. Accounts of Chemical Research 52:3 (2019), 760–768.
Daddaoua, A., Puerta, V., Requena, P., Martínez-Férez, A., Guadix, E., de Medina, F.S., Martínez-Augustin, O., Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. The Journal of Nutrition 136:3 (2006), 672–676.
Difilippo, E., Pan, F., Logtenberg, M., Willems, R.H., Braber, S., Fink-Gremmels, J., Gruppen, H., Milk oligosaccharide variation in sow milk and milk oligosaccharide fermentation in piglet intestine. Journal of Agricultural and Food Chemistry 64:10 (2016), 2087–2093.
Difilippo, E., Willems, H.A., Vendrig, J.C., Fink-Gremmels, J., Gruppen, H., Schols, H.A., Comparison of milk oligosaccharides pattern in colostrum of different horse breeds. Journal of Agricultural and Food Chemistry 63:19 (2015), 4805–4814.
Dumon, C., Priem, B., Martin, S.L., Heyraud, A., Bosso, C., Samain, E., In vivo fucosylation of lacto-N-neotetraose and lacto-N-neohexaose by heterologous expression of Helicobacter pylori alpha-1,3 fucosyltransferase in engineered Escherichia coli. Glycoconjugate Journal 18:6 (2001), 465–474.
Dumon, C., Samain, E., Priem, B., Assessment of the two Helicobacter pylori alpha-1,3-fucosyltransferase ortholog genes for the large-scale synthesis of LewisX human milk oligosaccharides by metabolically engineered Escherichia coli. Biotechnology Progress 20:2 (2004), 412–419.
Durham, S.D., Wei, Z., Lemay, D.G., Lange, M.C., Barile, D., Creation of a milk oligosaccharide database, MilkOligoDB, reveals common structural motifs and extensive diversity across mammals. Scientific Reports, 13(1), 2023, 10345.
Eiwegger, T., Stahl, B., Haidl, P., Schmitt, J., Boehm, G., Dehlink, E., Szépfalusi, Z., Prebiotic oligosaccharides: In vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties. Pediatric Allergy and Immunology 21:8 (2010), 1179–1188.
Eiwegger, T., Stahl, B., Schmitt, J., Boehm, G., Gerstmayr, M., Pichler, J., Dehlink, E., Loibichler, C., Urbanek, R., Szépfalusi, Z., Human milk-derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatric Research 56:4 (2004), 536–540.
Erney, R., Hilty, M., Pickering, L., Ruiz-Palacios, G., Prieto, P., Human milk oligosaccharides: A novel method provides insight into human genetics. Advances in Experimental Medicine and Biology 501 (2001), 285–297.
Esko, J.D., Selleck, S.B., Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Annual Review of Biochemistry 71 (2002), 435–471.
Faijes, M., Castejon-Vilatersana, M., Val-Cid, C., Planas, A., Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnology Advances 37:5 (2019), 667–697.
Fischer-Tlustos, A.J., Hertogs, K., van Niekerk, J.K., Nagorske, M., Haines, D.M., Steele, M.A., Oligosaccharide concentrations in colostrum, transition milk, and mature milk of primi- and multiparous Holstein cows during the first week of lactation. Journal of Dairy Science 103:4 (2020), 3683–3695.
Freeze, H.H., Chong, J.X., Bamshad, M.J., Ng, B.G., Solving glycosylation disorders: Fundamental approaches reveal complicated pathways. American Journal of Human Genetics 94:2 (2014), 161–175.
Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Ohno, H., Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:7331 (2011), 543–547.
Gabrielli, O., Zampini, L., Galeazzi, T., Padella, L., Santoro, L., Peila, C., Coppa, G.V., Preterm milk oligosaccharides during the first month of lactation. Pediatrics 128:6 (2011), 1520–1531.
Goehring, K.C., Kennedy, A.D., Prieto, P.A., Buck, R.H., Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS One, 9, 2014, e101692.
Görgy, P., Kuhn, R., Rose, C.S., Zilliken, F., Bifidus factor. II. Its occurrence in milk from different species and in other natural products. Archives of Biochemistry and Biophysics 48 (1954), 202–208.
Grabarics, M., Csernák, O., Balogh, R., Béni, S., Analytical characterization of human milk oligosaccharides — potential applications in pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis 146 (2017), 168–178.
Gunjan Kumar, K., Deepak, D., Structural characterization of novel milk oligosaccharide Aurose from cow colostrum. Journal of Molecular Structure 1176 (2018), 394–401.
Guo, S., Gillingham, T., Guo, Y., Meng, D., Zhu, W., Walker, W.A., Ganguli, K., Secretions of Bifidobacterium infantis and Lactobacillus acidophilus protect intestinal epithelial barrier function. Journal of Pediatric Gastroenterology and Nutrition 64:3 (2017), 404–412.
Hamagami, H., Yamaguchi, Y., Tanaka, H., Chemical synthesis of residue-selectively 13C and 2H double-isotope-labeled oligosaccharides as chemical probes for the NMR-based conformational analysis of oligosaccharides. Journal of Organic Chemistry 85 (2020), 16115–16127.
Hansson, G.C., Mucins and the microbiome. Annual Review of Biochemistry 89 (2020), 769–793.
He, Y., Liu, S., Kling, D.E., Leone, S., Lawlor, N.T., Huang, Y., Newburg, D.S., The human milk oligosaccharide 2′-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut 65 (2016), 33–46.
He, Y., Liu, S., Leone, S., Human colostrum oligosaccharides modulate major immunologic pathways of immature human intestine. Mucosal Immunology 7 (2014), 1326–1339.
Iribarren, C., Magnusson, M.K., Vigsnæs, L.K., Aziz, I., Amundsen, I.D., Šuligoj, T., Öhman, L., The effects of human milk oligosaccharides on gut microbiota, metabolite profiles and host mucosal response in patients with irritable bowel syndrome. Nutrients, 13(11), 2021, 3836.
Iribarren, C., Törnblom, H., Aziz, I., Magnusson, M.K., Sundin, J., Vigsnaes, L.K., Simrén, M., Human milk oligosaccharide supplementation in irritable bowel syndrome patients: A parallel, randomized, double-blind, placebo-controlled study. Neurogastroenterology and Motility, 32(10), 2020, e13920.
Jorgensen, J.M., Arnold, C., Ashorn, P., Ashorn, U., Chaima, D., Cheung, Y.B., Dewey, K.G., Lipid-based nutrient supplements during pregnancy and lactation did not affect human milk oligosaccharides and bioactive proteins in a randomized trial. The Journal of Nutrition 147:10 (2017), 1867–1874.
Karav, S., Salcedo, J., Frese, S.A., Barile, D., Thoroughbred mare's milk exhibits a unique and diverse free oligosaccharide profile. FEBS Open Biology 8:8 (2018), 1219–1229.
Katayama, T., Sakuma, A., Kimura, T., Makimura, Y., Hiratake, J., Sakata, K., Yamanoi, T., Kumagai, H., Yamamoto, K., Molecular cloning and characterization of Bifidobacterium bifidum 1,2-alpha-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). Journal of Bacteriology 186:15 (2004), 4885–4893.
Kellman, B.P., Richelle, A., Yang, J.Y., Chapla, D., Chiang, A.W.T., Najera, J.A., Lewis, N.E., Elucidating human milk oligosaccharide biosynthetic genes through network-based multi-omics integration. Nature Communications, 13(1), 2022, 2455.
Korgan, A.C., Foxx, C.L., Hashmi, H., Sago, S.A., Stamper, C.E., Heinze, J.D., Weaver, I.C.G., Effects of paternal high-fat diet and maternal rearing environment on the gut microbiota and behavior. Scientific Reports, 12(1), 2022, 10179.
Kuntz, S., Rudloff, S., Kunz, C., Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells. The British Journal of Nutrition 99:3 (2008), 462–471.
Kunz, C., Rudloff, S., Schad, W., Braun, D., Lactose-derived oligosaccharides in the milk of elephants: Comparison with human milk. The British Journal of Nutrition 82:5 (1999), 391–399.
Kurz, S., Sheikh, M.O., Lu, S., Wells, L., Tiemeyer, M., Separation and identification of permethylated glycan isomers by reversed phase nanoLC-NSI-MSn. Molecular & Cellular Proteomics, 20, 2021, 100045.
Lasekan, J., Choe, Y., Dvoretskiy, S., Devitt, A., Zhang, S., Mackey, A., Wulf, K., Buck, R., Steele, C., Johnson, M., Baggs, G., Growth and gastrointestinal tolerance in healthy term infants fed milk-based infant formula supplemented with five human milk oligosaccharides (HMOs): A randomized multicenter trial. Nutrients, 14(13), 2022, 2625.
van Leeuwen, S.S., Stoutjesdijk, E., Ten Kate, G.A., Schaafsma, A., Dijck-Brouwer, J., Muskiet, F.A.J., Dijkhuizen, L., Regional variations in human milk oligosaccharides in Vietnam suggest FucTx activity besides FucT2 and FucT3. Scientific Reports, 8(1), 2018, 16790.
van Leeuwen, S.S., Te Poele, E.M., Chatziioannou, A.C., Benjamins, E., Haandrikman, A., Dijkhuizen, L., Goat milk oligosaccharides: Their diversity, quantity, and functional properties in comparison to human milk oligosaccharides. Journal of Agricultural and Food Chemistry 68:47 (2020), 13469–13485.
Leo, F., Asakuma, S., Fukuda, K., Senda, A., Urashima, T., Determination of sialyl and neutral oligosaccharide levels in transition and mature milks of Samoan women, using anthranilic derivatization followed by reverse phase high performance liquid chromatography. Bioscience, Biotechnology, and Biochemistry 74:2 (2010), 298–303.
Leo, F., Asakuma, S., Nakamura, T., Fukuda, K., Senda, A., Urashima, T., Improved determination of milk oligosaccharides using a single derivatization with anthranilic acid and separation by reversed-phase high-performance liquid chromatography. Journal of Chromatography A 1216:9 (2009), 1520–1523.
Lewis, E.D., Richard, C., Larsen, B.M., Field, C.J., The importance of human milk for immunity in preterm infants. Clinical Perinatology 44:1 (2017), 23–47.
Ley, K., The role of selectins in inflammation and disease. Trends in Molecular Medicine 9 (2003), 263–268.
Li, J., Jiang, M., Zhou, J., Ding, J., Guo, Z., Li, M., Ding, F., Chai, W., Yan, J., Liang, X., Characterization of rat and mouse acidic milk oligosaccharides based on hydrophilic interaction chromatography coupled with electrospray tandem mass spectrometry. Carbohydrate Polymers, 259, 2021, 117734.
Li, M., Monaco, M.H., Wang, M., Comstock, S.S., Kuhlenschmidt, T.B., Fahey, G.C. Jr., Donovan, S.M., Human milk oligosaccharides shorten rotavirus-induced diarrhea and modulate piglet mucosal immunity and colonic microbiota. The ISME Journal 8:8 (2014), 1609–1620.
Licitra, R., Li, J., Liang, X., Altomonte, I., Salari, F., Yan, J.Y., Martini, M., Profile and content of sialylated oligosaccharides in donkey milk at early lactation. LWT, 115, 2019, 108437.
Liu, Z., Moate, P., Cocks, B., Rochfort, S., Simple liquid chromatography-mass spectrometry method for quantification of major free oligosaccharides in bovine milk. Journal of Agricultural and Food Chemistry 62:47 (2014), 11568–11574.
LoCascio, R.G., Ninonuevo, M.R., Freeman, S.L., Sela, D.A., Grimm, R., Lebrilla, C.B., German, J.B., Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. Journal of Agricultural and Food Chemistry 55:22 (2007), 8914–8919.
Lu, M., Mosleh, I., Abbaspourrad, A., Engineered microbial routes for human milk oligosaccharides synthesis. ACS Synthetic Biology 10:5 (2021), 923–938.
Lyons, J.J., Milner, J.D., Rosenzweig, S.D., Glycans instructing immunity: The emerging role of altered glycosylation in clinical immunology. Frontiers in Pediatrics, 3, 2015, 54.
Ma, L., McJarrow, P., Mohamed, B.J., Liu, X., Welman, A., Fong, B.Y., Lactational changes in the human milk oligosaccharide concentration in Chinese and Malaysian mothers’ milk. International Dairy Journal 87 (2018), 1–10.
Mantovani, V., Galeotti, F., Maccari, F., Volpi, N., Recent advances in capillary electrophoresis separation of monosaccharides, oligosaccharides, and polysaccharides. Electrophoresis 39:1 (2018), 179–189.
McJarrow, P., van Amelsfort-Schoonbeek, J., Bovine sialyl oligosaccharides: Seasonal variations in their concentrations in milk, and a comparison of the colostrums of Jersey and Friesian cows. International Dairy Journal 14:7 (2004), 571–579.
Mohammad, M.A., Sunehag, A.L., Haymond, M.W., Effect of dietary macronutrient composition under moderate hypocaloric intake on maternal adaptation during lactation. American Journal of Clinical Nutrition 89 (2009), 1821–1827.
Moro, E., Morphologie und bakteriologische Untersuchungen uber die Darmbakterien des Säuglings: Die Bakterien-flora des normalen Frauenmilchstuhls. Jahrbuch Kinderheilkunde 61 (1900), 686–734.
Morrow, A.L., Ruiz-Palacios, G.M., Altaye, M., Jiang, X., Guerrero, M.L., Meinzen-Derr, J.K., Newburg, D.S., Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. The Journal of Pediatrics 145:3 (2004), 297–303.
Morrow, A.L., Ruiz-Palacios, G.M., Jiang, X., Newburg, D.S., Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. The Journal of Nutrition 135:5 (2005), 1304–1307.
Mudd, A.T., Salcedo, J., Alexander, L.S., Johnson, S.K., Getty, C.M., Chichlowski, M., Dilger, R.N., Porcine milk oligosaccharides and sialic acid concentrations vary throughout lactation. Frontiers in Nutrition, 3, 2016, 39.
Muschiol, J., Meyer, A.S., A chemo-enzymatic approach for the synthesis of human milk oligosaccharide backbone structures. Zeitschrift für Naturforschung C 74:3–4 (2019), 85–89.
Nakayama, T., Hirahara, K., Onodera, A., Endo, Y., Hosokawa, H., Shinoda, K., Okamoto, Y., Th2 cells in health and disease. Annual Review of Immunology 35 (2017), 53–84.
Newburg, D.S., Ruiz-Palacios, G.M., Morrow, A.L., Human milk glycans protect infants against enteric pathogens. Annual Review of Nutrition 25 (2005), 37–58.
Ninonuevo, M.R., Park, Y., Yin, H., Zhang, J., Ward, R.E., Clowers, B.H., Lebrilla, C.B., A strategy for annotating the human milk glycome. Journal of Agricultural and Food Chemistry 54:20 (2006), 7471–7480.
Nohle, U., Schauer, R., Uptake, metabolism and excretion of orally and intravenously administered, 14C-and 3H-labeled N-acetylneuraminic acid mixture in the mouse and rat. Hoppe-Seyler's Zeitschrift fur Physiologische Chemie 362 (1981), 1495–1506.
Obelitz-Ryom, K., Bering, S.B., Overgaard, S.H., Eskildsen, S.F., Ringgaard, S., Olesen, J.L., Thymann, T., Bovine milk oligosaccharides with sialyllactose improves cognition in preterm pigs. Nutrients, 11(6), 2019, 1335.
Oliveros, E., Vázquez, E., Barranco, A., Ramírez, M., Gruart, A., Delgado-García, J.M., Martín, M.J., Sialic acid and sialylated oligosaccharide supplementation during lactation improves learning and memory in rats. Nutrients, 10(10), 2018, 1519.
Oursel, S., Cholet, S., Junot, C., Fenaille, F., Comparative analysis of native and permethylated human milk oligosaccharides by liquid chromatography coupled to high-resolution mass spectrometry. Journal of Chromatography 1071 (2017), 49–57.
Pabst, M., Altmann, F., Glycan analysis by modern instrumental methods. Proteomics 11:4 (2011), 631–643.
Parschat, K., Melsaether, C., Japelt, K.R., Jennewein, S., Clinical evaluation of 16-week supplementation with 5HMO-mix in healthy-term human infants to determine tolerability, safety, and effect on growth. Nutrients, 13, 2021, 2871.
Pérez-Escalante, E., Alatorre-Santamaría, S., Castañeda-Ovando, A., Salazar-Pereda, V., Bautista-Ávila, M., Cruz-Guerrero, A.E., González-Olivares, L.G., Human milk oligosaccharides as bioactive compounds in infant formula: Recent advances and trends in synthetic methods. Critical Reviews in Food Science and Nutrition 62:1 (2022), 181–214.
Porfirio, S., Archer-Hartmann, S., Moreau, G.B., Ramakrishnan, G., Haque, R., Kirkpatrick, B.D., Azadi, P., New strategies for profiling and characterization of human milk oligosaccharides. Glycobiology 30:10 (2020), 774–786.
Rabinovich, G.A., van Kooyk, Y., Cobb, B.A., Glycobiology of immune responses. Annals of the New York Academy of Sciences 1253 (2012), 1–15.
Ramakrishnan, B., Boeggeman, E., Qasba, P.K., Beta-1,4-galactosyltransferase and lactose synthase: Molecular mechanical devices. Biochemical and Biophysical Research Communications 291:5 (2002), 1113–1118.
Rana, N.A., Haltiwanger, R.S., Fringe benefits: Functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors. Current Opinion in Structural Biology 21:5 (2011), 583–589.
Rasmussen, S.O., Martin, L., Østergaard, M.V., Rudloff, S., Roggenbuck, M., Nguyen, D.N., Bering, S.B., Human milk oligosaccharide effects on intestinal function and inflammation after preterm birth in pigs. The Journal of Nutritional Biochemistry 40 (2017), 141–154.
Remoroza, C.A., Mak, T.D., De Leoz, M.L.A., Mirokhin, Y.A., Stein, S.E., Creating a mass spectral reference library for oligosaccharides in human milk. Analytical Chemistry 90:15 (2018), 8977–8988.
Román, E., Moreno Villares, J.M., Domínguez Ortega, F., Carmona Martínez, A., Picó Sirvent, L., Santana Sandoval, L., Vidal Guevara, M.L., Real-world study in infants fed with an infant formula with two human milk oligosaccharides. Nutricion Hospitalaria 37:4 (2020), 698–706.
Ruhaak, L.R., Lebrilla, C.B., Advances in analysis of human milk oligosaccharides. Advances in Nutrition, 3(3), 2012, 406.
Salli, K., Hirvonen, J., Siitonen, J., Ahonen, I., Anglenius, H., Maukonen, J., Selective utilization of the human milk oligosaccharides 2′-fucosyllactose, 3-fucosyllactose, and difucosyllactose by various probiotic and pathogenic bacteria. Journal of Agricultural and Food Chemistry 69:1 (2021), 170–182.
Samuel, T.M., Binia, A., de Castro, C.A., Thakkar, S.K., Billeaud, C., Agosti, M., Sprenger, N., Impact of maternal characteristics on human milk oligosaccharide composition over the first 4 months of lactation in a cohort of healthy European mothers. Scientific Reports, 9(1), 2019, 11767.
Schmölzer, K., Czabany, T., Luley-Goedl, C., Pavkov-Keller, T., Ribitsch, D., Schwab, H., Gruber, K., Weber, H., Nidetzky, B., Complete switch from α-2,3- to α-2,6-regioselectivity in Pasteurella dagmatis β-D-galactoside sialyltransferase by active-site redesign. Chemical Communications 51:15 (2015), 3083–3086.
Schnaar, R.L., Glycans and glycan-binding proteins in immune regulation: A concise introduction to glycobiology for the allergist. The Journal of Allergy and Clinical Immunology 135:3 (2015), 609–615.
Schönknecht, Y.B., Moreno Tovar, M.V., Jensen, S.R., Parschat, K., Clinical studies on the supplementation of manufactured human milk oligosaccharides: A systematic review. Nutrients, 15(16), 2023, 3622.
Seferovic, M.D., Mohammad, M., Pace, R.M., Engevik, M., Versalovic, J., Bode, L., Aagaard, K.M., Maternal diet alters human milk oligosaccharide composition with implications for the milk metagenome. Scientific Reports, 10(1), 2020, 22092.
Shi, Y., Han, B., Zhang, L., Zhou, P., Comprehensive identification and absolute quantification of milk oligosaccharides in different species. Journal of Agricultural and Food Chemistry 69:51 (2021), 15585–15597.
Siziba, L.P., Mank, M., Stahl, B., Gonsalves, J., Blijenberg, B., Rothenbacher, D., Genuneit, J., Human milk oligosaccharide profiles over 12 months of lactation: The Ulm SPATZ health study. Nutrients, 13(6), 2021, 1973.
Smilowitz, J.T., Lemay, D.G., Kalanetra, K.M., Chin, E.L., Zivkovic, A.M., Breck, M.A., Barile, D., Tolerability and safety of the intake of bovine milk oligosaccharides extracted from cheese whey in healthy human adults. Journal of Nutritional Science, 6, 2017, e6.
Smilowitz, J.T., O'Sullivan, A., Barile, D., German, J.B., Lönnerdal, B., Slupsky, C.M., The human milk metabolome reveals diverse oligosaccharide profiles. The Journal of Nutrition 143:11 (2013), 1709–1718.
Sodhi, C.P., Wipf, P., Yamaguchi, Y., Fulton, W.B., Kovler, M., Niño, D.F., Hackam, D.J., The human milk oligosaccharides 2′-fucosyllactose and 6′-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling. Pediatric Research 89:1 (2021), 91–101.
Stahl, B., Thurl, S., Henker, J., Siegel, M., Finke, B., Sawatzki, G., Detection of four human milk groups with respect to Lewis-blood-group-dependent oligosaccharides by serologic and chromatographic analysis. Advances in Experimental Medicine and Biology 501 (2001), 299–306.
Šuligoj, T., Vigsnæs, L.K., Abbeele, P.V.D., Apostolou, A., Karalis, K., Savva, G.M., Juge, N., Effects of human milk oligosaccharides on the adult gut microbiota and barrier function. Nutrients, 12(9), 2020, 2808.
Suzuki, R., Wada, J., Katayama, T., Fushinobu, S., Wakagi, T., Shoun, H., Yamamoto, K., Structural and thermodynamic analyses of solute-binding protein from Bifidobacterium longum specific for core 1 disaccharide and lacto-N-biose I. The Journal of Biological Chemistry 283:19 (2008), 13165–13173.
Thurl, S., Munzert, M., Henker, J., Boehm, G., Müller-Werner, B., Jelinek, J., Stahl, B., Variation of human milk oligosaccharides in relation to milk groups and lactational periods. The British Journal of Nutrition 104:9 (2010), 1261–1271.
Tonon, K.M., Miranda, A., Abrão, A.C.F.V., de Morais, M.B., Morais, T.B., Validation and application of a method for the simultaneous absolute quantification of 16 neutral and acidic human milk oligosaccharides by graphitized carbon liquid chromatography — electrospray ionization-mass spectrometry. Food Chemistry 274 (2019), 691–697.
Toppazzini, M., Coslovi, A., Rossi, M., Flamigni, A., Baiutti, E., Campa, C., Capillary electrophoresis of mono- and oligosaccharides. Methods in Molecular Biology 1483 (2016), 301–338.
Totten, S.M., Zivkovic, A.M., Wu, S., Ngyuen, U., Freeman, S.L., Ruhaak, L.R., Lebrilla, C.B., Comprehensive profiles of human milk oligosaccharides yield highly sensitive and specific markers for determining secretor status in lactating mothers. Journal of Proteome Research 11:12 (2012), 6124–6133.
Urashima, T., Hirabayashi, J., Sato, S., Kobata, A., Human milk oligosaccharides as essential tools for basic and application studies on galectins. Trends in Glycoscience and Glycotechnology 30:172 (2018), 51–65.
Urashima, T., Katayama, T., Sakanaka, M., Fukuda, K., Messer, M., Evolution of milk oligosaccharides: Origin and selectivity of the ratio of milk oligosaccharides to lactose among mammals. Biochimica et Biophysica Acta, 1866(1), 2022, 130012.
Wada, J., Ando, T., Kiyohara, M., Ashida, H., Kitaoka, M., Yamaguchi, M., Kumagai, H., Katayama, T., Yamamoto, K., Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Applied and Environmental Microbiology 74:13 (2008), 3996–4004.
Walsh, C., Lane, J.A., van Sinderen, D., Hickey, R.M., Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. Journal of Functional Foods, 72, 2020, 104074.
Wang, B., Downing, J.A., Petocz, P., Brand-Miller, J., Bryden, W.L., Metabolic fate of intravenously administered N-acetylneuraminic acid-6-14C in newborn piglets. Asia Pacific Journal of Clinical Nutrition 16:1 (2007), 110–115.
Wang, B., Yu, B., Karim, M., Hu, H., Sun, Y., McGreevy, P., Petocz, P., Held, S., Brand-Miller, J., Dietary sialic acid supplementation improves learning and memory in piglets. The American Journal of Clinical Nutrition 85:2 (2007), 561–569.
Wang, X., Liu, J., Li, C., Xu, Y., Wang, X., Lu, Y., Zhang, T., Cao, H., Huang, L., Wang, Z., Pregnancy-related diseases and delivery mode can affect the content of human milk oligosaccharides: A preliminary study. Journal of Agricultural and Food Chemistry 70:16 (2022), 5207–5217.
Wang, Y., Zhou, X., Gong, P., Chen, Y., Feng, Z., Liu, P., Song, L., Comparative major oligosaccharides and lactose between Chinese human and animal milk. International Dairy Journal, 108, 2020, 104727.
Ward, R.E., Niñonuevo, M., Mills, D.A., Lebrilla, C.B., German, J.B., In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Molecular Nutrition & Food Research 51:11 (2007), 1398–1405.
Wei, J., Wang, Z.A., Wang, B., Jahan, M., Wang, Z., Wynn, P.C., Du, Y., Characterization of porcine milk oligosaccharides over lactation between primiparous and multiparous female pigs. Scientific Reports, 8(1), 2018, 4688.
Xu, Z., Vo, L., Macher, B.A., Structure-function analysis of human alpha1,3-fucosyltransferase. Amino acids involved in acceptor substrate specificity. The Journal of Biological Chemistry 271:15 (1996), 8818–8823.
Yan, A., Lennarz, W.J., Unraveling the mechanism of protein N-glycosylation. The Journal of Biological Chemistry 280:5 (2005), 3121–3124.
Yan, J., Ding, J., Jin, G., Duan, Z., Yang, F., Li, D., Zhou, H., Li, M., Guo, Z., Chai, W., Liang, X., Profiling of human milk oligosaccharides for Lewis epitopes and secretor status by electrostatic repulsion hydrophilic interaction chromatography coupled with negative-ion electrospray tandem mass spectrometry. Analytical Chemistry 91:13 (2019), 8199–8206.
Yan, J., Ding, J., Jin, G., Yu, D., Yu, L., Long, Z., Guo, Z., Chai, W., Liang, X., Profiling of sialylated oligosaccharides in mammalian milk using online solid phase extraction-hydrophilic interaction chromatography coupled with negative-ion electrospray mass spectrometry. Analytical Chemistry 90:5 (2018), 3174–3182.
Yang, H., Yu, Y., Song, F., Liu, S., Structural characterization of neutral oligosaccharides by laser-enhanced in-source decay of MALDI-FTICR MS. Journal of the American Society for Mass Spectrometry 22:5 (2011), 845–855.
Yu, Z.T., Chen, C., Newburg, D.S., Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23 (2013), 1281–1292.
Zeuner, B., Vuillemin, M., Holck, J., Muschiol, J., Meyer, A.S., Loop engineering of an α-1,3/4-L-fucosidase for improved synthesis of human milk oligosaccharides. Enzyme and Microbial Technology 115 (2018), 37–44.
Zhang, L., Lin, Q., Zhang, J., Shi, Y., Pan, L., Hou, Y., Peng, X., Li, W., Wang, J., Zhou, P., Qualitative and quantitative changes of oligosaccharides in human and animal milk over lactation. Journal of Agricultural and Food Chemistry 71:42 (2023), 15553–15568.
Zhang, W., Wang, T., Chen, X., Pang, X., Zhang, S., Obaroakpo, J.U., Lv, J., Absolute quantification of twelve oligosaccharides in human milk using a targeted mass spectrometry-based approach. Carbohydrate Polymers 219 (2019), 328–333.
Zhong, P., Yang, Y., Han, T., Huang, W., Liu, Y., Gong, G., Huang, L., Lu, Y., Wang, Z., Comparative analysis of free and glycoconjugates oligosaccharide content in milk from different species. Journal of Agricultural and Food Chemistry 72:1 (2024), 670–678.
Zhong, X., Zhang, Z., Jiang, S., Li, L., Recent advances in coupling capillary electrophoresis-based separation techniques to ESI and MALDI-MS. Electrophoresis 35:9 (2014), 1214–1225.
Zivkovic, A.M., German, J.B., Lebrilla, C.B., Mills, D.A., Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America 108:1 (2011), 4653–4658.