Ecology, Evolution, Behavior and Systematics; Earth-Surface Processes
Abstract :
[en] Mapping in situ eddy covariance measurements of terrestrial land–atmosphere fluxes to the globe is a key method for diagnosing the Earth system from a data-driven perspective. We describe the first global products (called X-BASE) from a newly implemented upscaling framework, FLUXCOM-X, representing an advancement from the previous generation of FLUXCOM products in terms of flexibility and technical capabilities. The X-BASE products are comprised of estimates of CO2 net ecosystem exchange (NEE), gross primary productivity (GPP), evapotranspiration (ET), and for the first time a novel, fully data-driven global transpiration product (ETT), at high spatial (0.05°) and temporal (hourly) resolution. X-BASE estimates the global NEE at −5.75 ± 0.33 Pg C yr−1 for the period 2001–2020, showing a much higher consistency with independent atmospheric carbon cycle constraints compared to the previous versions of FLUXCOM. The improvement of global NEE was likely only possible thanks to the international effort to increase the precision and consistency of eddy covariance collection and processing pipelines, as well as to the extension of the measurements to more site years resulting in a wider coverage of bioclimatic conditions. However, X-BASE global net ecosystem exchange shows a very low interannual variability, which is common to state-of-the-art data-driven flux products and remains a scientific challenge. With 125 ± 2.1 Pg C yr−1 for the same period, X-BASE GPP is slightly higher than previous FLUXCOM estimates, mostly in temperate and boreal areas. X-BASE evapotranspiration amounts to 74.7 × 103 ± 0.9×103 km3 globally for the years 2001–2020 but exceeds precipitation in many dry areas, likely indicating overestimation in these regions. On average 57 % of evapotranspiration is estimated to be transpiration, in good agreement with isotope-based approaches, but higher than estimates from many land surface models. Despite considerable improvements to the previous upscaling products, many further opportunities for development exist. Pathways of exploration include methodological choices in the selection and processing of eddy covariance and satellite observations, their ingestion into the framework, and the configuration of machine learning methods. For this, the new FLUXCOM-X framework was specifically designed to have the necessary flexibility to experiment, diagnose, and converge to more accurate global flux estimates.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Nelson, Jacob A. ; Max Planck Institute for Biogeochemistry, Jena, Germany
Walther, Sophia ; Max Planck Institute for Biogeochemistry, Jena, Germany
Gans, Fabian; Max Planck Institute for Biogeochemistry, Jena, Germany
Kraft, Basil; Max Planck Institute for Biogeochemistry, Jena, Germany
Weber, Ulrich ; Max Planck Institute for Biogeochemistry, Jena, Germany
Novick, Kimberly; O’Neill School of Public and Environmental Affairs, Indiana University – Bloomington, Bloomington, United States
Buchmann, Nina ; Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Migliavacca, Mirco ; European Commission, Joint Research Centre, Ispra, Varese, Italy
Wohlfahrt, Georg ; Institut für Ökologie, Universität Innsbruck, Innsbruck, Austria
Šigut, Ladislav ; Department of Matters and Energy Fluxes, Global Change Research Institute CAS, Brno, Czech Republic
Ibrom, Andreas ; Department of Environment and Resource Engineering, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
Papale, Dario ; Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Rome, Italy ; CMCC Foundation, Euro-Mediterranean Center on Climate Change, Viterbo, Italy
Göckede, Mathias ; Max Planck Institute for Biogeochemistry, Jena, Germany
Duveiller, Gregory ; Max Planck Institute for Biogeochemistry, Jena, Germany
Knohl, Alexander ; Faculty of Forest Sciences, University of Göttingen, Göttingen, Germany ; Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
Hörtnagl, Lukas ; Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Scott, Russell L. ; Southwest Watershed Research Center, USDA-ARS, Tucson, United States
Zhang, Weijie ; Max Planck Institute for Biogeochemistry, Jena, Germany
Hamdi, Zayd Mahmoud; Max Planck Institute for Biogeochemistry, Jena, Germany
Reichstein, Markus ; Max Planck Institute for Biogeochemistry, Jena, Germany ; German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, Germany
Aranda-Barranco, Sergio ; Department of Ecology, University of Granada, Granada, Spain ; Andalusian Institute for Earth System Research (CEAMA-IISTA), University of Granada, Granada, Spain
Ardö, Jonas ; Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
de Beeck, Maarten Op; Research Group Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, Belgium ; ICOS, Ecosystem Thematic Centre, Belgium
Billesbach, Dave; Department of Biological Systems Engineering, School of Natural Resources, University of Nebraska, Lincoln, United States
Bowling, David ; School of Biological Sciences, University of Utah, Salt Lake City, United States
Bracho, Rosvel ; School of Forest, Fisheries, Geomatics Sciences University of Florida, Gainesville, United States
Brümmer, Christian ; Institute of Climate-Smart Agriculture, Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany
Chen, Shiping; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
Cleverly, Jamie Rose; College of Science and Engineering, James Cook University, Cairns, Australia
Desai, Ankur ; Department of Atmospheric and Oceanic Sciences, University of Wisconsin – Madison, Madison, United States
Dong, Gang; School of Life Science, Shanxi University, Taiyuan, China
El-Madany, Tarek S. ; Max Planck Institute for Biogeochemistry, Jena, Germany
Euskirchen, Eugenie Susanne ; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, United States
Feigenwinter, Iris ; Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Galvagno, Marta ; Environmental Protection Agency of Aosta Valley, Climate Change Unit, ARPA Valle d’Aosta, Italy
Gerosa, Giacomo A. ; Department of Mathematics and Physics, Catholic University of the Sacred Heart, Brescia, Italy
Gielen, Bert; Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
Goded, Ignacio ; European Commission, Joint Research Centre, Ispra, Varese, Italy
Goslee, Sarah ; Pasture Systems and Watershed Management Research Unit, USDA-ARS, University Park, United States
Gough, Christopher Michael; Department of Biology, Virginia Commonwealth University, Richmond, United States
Heinesch, Bernard ; Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges (BIODYNE)
Ichii, Kazuhito; Center for Environmental Remote Sensing (CEReS), Chiba University, Chiba, Japan
Jackowicz-Korczynski, Marcin Antoni ; Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden ; Department of Ecoscience, Aarhus University, Roskilde, Denmark
Klosterhalfen, Anne ; University of Göttingen, Göttingen, Germany
Knox, Sara; Department of Geography, McGill University, Montréal, Canada ; Department of Geography, The University of British Columbia, Vancouver, Canada
Kobayashi, Hideki ; Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
Kohonen, Kukka-Maaria ; Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Korkiakoski, Mika ; Finnish Meteorological Institute, Climate System Research Unit, Helsinki, Finland
Mammarella, Ivan ; Institute of Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
Gharun, Mana ; Institute of Landscape Ecology, University of Münster, Münster, Germany
Marzuoli, Riccardo ; Department of Mathematics and Physics, Catholic University of the Sacred Heart, Brescia, Italy
Matamala, Roser; Environmental Science Division, Argonne National Laboratory, Lemont, United States ; University of Chicago Consortium for Advanced Science and Engineering (CASE), Chicago, United States ; Northwestern Argonne Institute of Science and Engineering, Evanston, United States
Metzger, Stefan ; National Ecological Observatory Network, Battelle, Boulder, United States ; Department of Atmospheric and Oceanic Sciences, University of Wisconsin – Madison, Madison, United States
Montagnani, Leonardo ; Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Universitätsplatz 1, Piazza Università 1, Bozen, Italy
Nicolini, Giacomo; CMCC Foundation, Euro-Mediterranean Center on Climate Change, Viterbo, Italy ; Department for Innovation in Biological, University of Tuscia, Agro-food and Forest Systems (DIBAF), Viterbo, Italy
O’Halloran, Thomas ; Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, United States ; Forestry and Environmental Conservation Department, Clemson University, Clemson, United States
Ourcival, Jean-Marc; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
Peichl, Matthias ; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
Pendall, Elise ; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
Reverter, Borja Ruiz; Departamento de Química e Física, Universidade Federal da Paraíba – Campus II, Areia, Brazil
Roland, Marilyn ; Plants and Ecosystems, Department of Biology, University of Antwerp, Wilrijk, Belgium
Sabbatini, Simone ; CMCC Foundation, Euro-Mediterranean Center on Climate Change, Viterbo, Italy ; Department for Innovation in Biological, University of Tuscia, Agro-food and Forest Systems (DIBAF), Viterbo, Italy
Sachs, Torsten ; GFZ German Research Centre for Geosciences, Potsdam, Germany
Schmidt, Marius ; Forschungszentrum Jülich, Institute of Bio-and Geosciences: Agrosphere (IBG-3), Jülich, Germany
Schwalm, Christopher R.; Woodwell Climate Research Center: FALMOUTH, United States
Shekhar, Ankit ; Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Silberstein, Richard ; School of Science, Edith Cowan University, Australia
Silveira, Maria Lucia ; University of Florida, Range Cattle Research and Education Center, Ona, United States
Spano, Donatella ; CMCC Foundation, Euro-Mediterranean Center on Climate Change, Viterbo, Italy ; Department of Agriculture Sciences, University of Sassari, Sassari, Italy
Tagesson, Torbern; Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden ; Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
Tramontana, Gianluca ; TERRASYSTEM Srl Spin-Off Company of the University of Tuscia, Viterbo, Italy
Trotta, Carlo ; CMCC Foundation, Euro-Mediterranean Center on Climate Change, Viterbo, Italy
Turco, Fabio; Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Vesala, Timo; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland ; Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
Vincke, Caroline; UCLouvain – Earth and Life Institute (ELI) Croix du Sud, Louvain-la-Neuve, Belgium
Vitale, Domenico; Department of Methods and Models for Economics, Territory and Finance (MEMOTEF), Sapienza University of Rome, Rome, Italy
Vivoni, Enrique R. ; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, United States ; Center for Hydrologic Innovations, Arizona State University, Tempe, United States
Wang, Yi ; Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Woodgate, William; School of the Environment, The University of Queensland, St Lucia, Australia ; CSIRO, Space and Astronomy, Kensington, Australia
Yepez, Enrico A.; Instituto Tecnológico de Sonora, Sonora, Mexico
Zhang, Junhui; School of Life Sciences, Qufu Normal University, Qufu, China ; Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
Zona, Donatella ; Department Biology, San Diego State University, San Diego, United States
Jung, Martin; Max Planck Institute for Biogeochemistry, Jena, Germany
NSF - National Science Foundation DFG - Deutsche Forschungsgemeinschaft MWK - Niedersächsisches Ministerium für Wissenschaft und Kultur EU - European Union SNF - Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung ETH Zürich - Eidgenössische Technische Hochschule Zürich AEI - Agencia Estatal de Investigación MICINN - Ministerio de Ciencia, Innovación y Universidades SNSA - Swedish National Space Agency ARC - Australian Research Council MSMT - Ministerstvo školství, mládeže a tělovýchovy České republiky MEXT - Ministry of Education, Culture, Sports, Science and Technology HGF - Helmholtz Association of German Research Centres NSERC - Natural Sciences and Engineering Research Council ESA - European Space Agency Sverige Vetenskapsrådet
Funding text :
The work of Sophia Walther, Jacob A. Nelson, and Martin Jung was funded in part by the European Union's Horizon 2020 research and innovation program (grant nos. 776186 CHE, 776810 VERIFY, 958927 CoCO2, 820852 E-SHAPE). Sophia Walther acknowledges funding from a European Space Agency Living Planet Fellowship in the project Vad3e mecum as well as the CCI LST project (4000123553/18/I-NB). Gregory Duveiller and Zayd Mahmoud Hamdi acknowledge funding from the European Space Agency in the Sen4GPP project (4000134598/21/I-NB). Simone Sabbatini and Gregory Duveiller acknowledge Horizon Europe funding (Open-Earth-Monitor Cyberinfrastructure project, 101059548). Donatella Zona acknowledges NSF award numbers 2149988 and 1932900. Anne Klosterhalfen and Alexander Knohl acknowledge funding by the German Federal Ministry of Education and Research (BMBF) as part of the European Integrated Carbon Observation System (ICOS), by the Deutsche Forschungsgemeinschaft (INST 186/1118-1 FUGG) and by the Ministry of Lower Saxony for Science and Culture (DigitalForst: Nieders\u00E4chsisches Vorab (ZN 3679)). Leonardo Montagnani acknowledges funding provided by Forest Services, Autonomous Province of Bolzano. Enrico A. Yepez acknowledges that MX-Tes is part of the MexFlux regional network. Funding for the Swiss sites is greatly acknowledged from various sources: from the EU project SUPER-G (contract no. 774124), the SNF projects M4P (40FA40_154245), DiRad (146373), InnoFARM (407340_172433), CoCo (200021_197357), ICOS-CH (20FI21_148992, 20FI20_173691, 20FI20_198227), and InsuranceGrass (100018L_200918); from NESTLE via the ETH foundation (DONA); and from the ETH Board and from ETH Zurich (project FEVER ETH-27 19-1). Funding for US-BZB, US-BZF, US-BZo, and US-BZB was provided by National Science Foundation grant nos. DEB LTREB 1354370 and 2011257, DEB-0425328, DEB-0724514, and DEB-0830997, as well as funding by the US Geological Survey Climate R&D program. Bonanza Creek Long Term Experimental Research station provided lab space and equipment. US-ICs and US-ICt were supported by grants from the Arctic Observatory Program of the National Science Foundation (grant nos. 1936752, 1503912, 1107892). Sergio Aranda-Barranco acknowledges projects PID2020-117825GB-C21 and PID2020-117825GB-C22 funded by MCIN/AEI/10.13039/501100011033, as well as support by the FPU grant by the Ministry of Universities of Spain (REF: FPU19/01647). SE-Deg, SE-Svb, and SE-Ros acknowledge funding from the Swedish Research Council and contributions from research institutes to the Swedish Integrated Carbon Observation System (ICOS-Sweden) Research Infrastructure and the Swedish Infrastructure for Ecosystem Science (SITES). Torbern Tagesson was funded by the Swedish National Space Agency (SNSA Dnr 2021-00144) and FORMAS (Dnr. 2021-00644). William Woodgate is supported by an Australian Research Council DECRA Fellowship (DE190101182). Ivan Mammarella acknowledges funding from Academy of Finland (N-PERM 341349), ICOS-Finland UH, and EU projects (GreenFeedBack 101056921, LiWeFor). Domenico Vitale acknowledges the Integrated Carbon Observation System \u2013 Research Infrastructure (ICOS ERIC, https://www.icos-cp.eu/ , last access: 3 October 2024) and the ICOS ETC funding from the Italian Ministry of Research. Mathias G\u00F6ckede was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 951288, Q-Arctic). The DE-Geb site received funds within the ICOS Germany preparatory and implementation phase by the Federal Ministry of Education and Research and is supported by the Ministry of Digital and Traffic through ICOS station contributions as well as by the Ministry of Food and Agriculture covering operational costs. Giacomo A. Gerosa thanks the Catholic University of Brescia for continuous supporting the research station of Bosco Fontana (ICOS station IT-Bft). Ladislav \u0160igut acknowledges support by the Ministry of Education, Youth and Sports of CR within the CzeCOS program (grant number LM2023048) and the AdAgriF project (CZ.02.01.01/00/22_008/0004635). Gustau Camps-Valls, Markus Reichstein, Basil Kraft, and Gregory Duveiller acknowledge funding by the European Research Council (ERC) Synergy Grant \u201CUnderstanding and modeling the Earth System with Machine Learning (USMILE)\u201D under the European Union's Horizon 2020 research and innovation program (grant agreement no. 855187). Ankur Desai acknowledges the US Department of Energy American Network Management Project award to the ChEAS core site cluster (US-PFa, US-WCr, US-Syv, US-Los), Wisconsin Potato and Vegetable Growers Association, and WI Department of Natural Resources (US-CS), and NSF grant nos. 1822420, 2313772 (US-PFa). Marilyn Roland and Bert Gielen acknowledge the Research Foundation Flanders (FWO) for the support of ICOS research infrastructure in Flanders, Belgium. Dario Papale thanks the support of the ITINERIS \u2013 Italian Integrated Environmental Research Infrastructures System project (IR0000032) funded by NextGenerationEU Mission 4.2.3.1. Timo Vesala acknowledges ICOS-Finland (University of Helsinki) and Flagship funding (grant no. 337549). Torsten Sachs acknowledges that the DE-Zrk site relies on infrastructure of the Terrestrial Environmental Observatories Network (TERENO) supported by a Helmholtz Young Investigators Grant (VH-NG-821). Elise Pendall acknowledges Australian Terrestrial Ecosystem Research Network, as part of the National Cooperative Research Infrastructure System. Sara Knox was also supported by an NSERC Discovery Grant (RGPIN-2019-04199) and an Alliance Grant (ALLRP 555468-20). Hideki Kobayashi acknowledges ArCSII no. JPMXD1420318865 (US-Prr). Stefan Metzger acknowledges the National Ecological Observatory Network, which is a program sponsored by the National Science Foundation and operated under cooperative agreement by Battelle. This material is based in part on work supported by the National Science Foundation through the NEON Program. Bernard Heinesch and Caroline Vincke acknowledge the Service Public de Wallonie (SPW-DGO6) for the support of ICOS research infrastructure in Wallonia, Belgium.This research has been supported by the National Science Foundation (grant nos. 2149988, 1932900, DEB LTREB 1354370, 2011257, DEB-0425328, DEB-0724514, DEB-0830997, 1936752, 1503912, 1107892, 1822420, and 2313772), the Deutsche Forschungsgemeinschaft (grant no. INST 186/1118-1 FUGG), the Nieders\u00E4chsische Ministerium f\u00FCr Wissenschaft und Kultur (grant no. ZN 3679), the Horizon 2020 (grant nos. 774124, 951288, 855187, 958927, 776810, 820852, and 776186), the Schweizerischer Nationalfonds zur F\u00F6rderung der Wissenschaftlichen Forschung (grant nos. 40FA40_154245, 146373, 407340_172433, 200021_197357, 100018L_200918, 20FI21_148992, 20FI20_173691, and 20FI20_198227), the ETH Z\u00FCrich Foundation (grant no. DONA), the Eidgen\u00F6ssische Technische Hochschule Z\u00FCrich (grant no. FEVER ETH-27 19-1), the Agencia Estatal de Investigaci\u00F3n (grant nos. PID2020-117825GB-C21 and PID2020-117825GB-C22), the Ministerio de Universidades (grant no. FPU19/01647), the Swedish National Space Agency (grant no. 2021-00144), the Australian Research Council (grant no. DE190101182), the Research Council of Finland (grant nos. N-PERM 341349 and 337549), the Ministerstvo \u0160kolstv\u00ED, Ml\u00E1de\u017Ee a T\u011Blov\u00FDchovy (grant no. LM2023048), the Ministry of Education, Culture, Sports, Science and Technology (grant no. JPMXD1420318865), the Helmholtz Association (grant no. VH-NG-821), the Natural Sciences and Engineering Research Council of Canada (grant nos. RGPIN-2019-04199 and ALLRP 555468-20), the European Space Agency (grant nos. Vad3e mecum, 4000134598/21/I-NB, and 4000123553/18/I-NB), the Horizon Europe Framework Programme, Horizon Europe Excellent Science (grant nos. 101059548, 20FI20_173691, 101079192, and 101056921), and the Vetenskapsr\u00E5det (grant no. 2021-00644).We would like to thank the broader eddy covariance community, including FLUXNET and the associated regional networks, particularly the European Integrated Carbon Observation System (ICOS) and AmeriFlux. We also acknowledge the contributions of Andrej Varlagin and colleagues to these efforts. We thank the team at the ICOS Carbon Portal for their support in publishing the FLUXCOM-X data sets, with great thanks in particular to Ute Karstens and Zois Zogopoulos. We also thank Brendan Byrne and colleagues of Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, for use of the OCO-2 data. The work of Sophia Walther, Jacob A. Nelson, and Martin Jung was funded in part by the European Union\u2019s Horizon 2020 research and innovation program (grant nos. 776186 CHE, 776810 VERIFY, 958927 CoCO2, 820852 E-SHAPE). Sophia Walther acknowledges funding from a European Space Agency Living Planet Fellowship in the project Vad3e mecum as well as the CCI LST project (4000123553/18/I-NB). Gregory Duveiller and Zayd Mahmoud Hamdi acknowledge funding from the European Space Agency in the Sen4GPP project (4000134598/21/I-NB). Simone Sabbatini and Gregory Duveiller acknowledge Horizon Europe funding (Open-Earth-Monitor Cyberinfrastructure project, 101059548). Donatella Zona acknowledges NSF award numbers 2149988 and 1932900. Anne Klosterhalfen and Alexander Knohl acknowledge funding by the German Federal Ministry of Education and Research (BMBF) as part of the European Integrated Carbon Observation System (ICOS), by the Deutsche Forschungsgemeinschaft (INST 186/1118-1 FUGG) and by the Ministry of Lower Saxony for Science and Culture (DigitalForst: Nieders\u00E4chsisches Vorab (ZN 3679)). Leonardo Montagnani acknowledges funding provided by Forest Services, Autonomous Province of Bolzano. Enrico A. Yepez acknowledges that MX-Tes is part of the MexFlux regional network. Funding for the Swiss sites is greatly acknowledged from various sources: from the EU project SUPER-G (contract no. 774124), the SNF projects M4P (40FA40_154245), DiRad (146373), InnoFARM (407340_172433), CoCo (200021_197357), ICOS-CH (20FI21_148992, 20FI20_173691, 20FI20_198227), and InsuranceGrass (100018L_200918); from NESTLE via the ETH foundation (DONA); and from the ETH Board and from ETH Zurich (project FEVER ETH-27 19-1). Funding for US-BZB, US-BZF, US-BZo, and US-BZB was provided by National Science Foundation grant nos. DEB LTREB 1354370 and 2011257, DEB-0425328, DEB-0724514, and DEB-0830997, as well as funding by the US Geological Survey Climate R&D program. Bonanza Creek Long Term Experimental Research station provided lab space and equipment. US-ICs and US-ICt were supported by grants from the Arctic Observatory Program of the National Science Foundation (grant nos. 1936752, 1503912, 1107892). Sergio Aranda-Barranco acknowledges projects PID2020-117825GB-C21 and PID2020-117825GB-C22 funded by MCIN/AEI/10.13039/501100011033, as well as support by the FPU grant by the Ministry of Universities of Spain (REF: FPU19/01647). SE-Deg, SE-Svb, and SE-Ros acknowledge funding from the Swedish Research Council and contributions from research institutes to the Swedish Integrated Carbon Observation System (ICOS-Sweden) Research Infrastructure and the Swedish Infrastructure for Ecosystem Science (SITES). Torbern Tagesson was funded by the Swedish National Space Agency (SNSA Dnr 2021-00144) and FORMAS (Dnr. 2021-00644). William Woodgate is supported by an Australian Research Council DECRA Fellowship (DE190101182). Ivan Mammarella acknowledges funding from Academy of Finland (N-PERM 341349), ICOS-Finland UH, and EU projects (GreenFeedBack 101056921, LiWeFor). Domenico Vitale acknowledges the Integrated Carbon Observation System \u2013 Research Infrastructure (ICOS ERIC, https://www.icos-cp.eu/, last access: 3 October 2024) and the ICOS ETC funding from the Italian Ministry of Research. Mathias G\u00F6ckede was supported by the European Research Council (ERC) under the European Union\u2019s Horizon 2020 research and innovation program (grant agreement no. 951288, Q-Arctic). The DE-Geb site received funds within the ICOS Germany preparatory and implementation phase by the Federal Ministry of Education and Research and is supported by the Ministry of Digital and Traffic through ICOS station contributions as well as by the Ministry of Food and Agriculture covering operational costs. Giacomo A. Gerosa thanks the Catholic University of Brescia for continuous supporting the research station of Bosco Fontana (ICOS station IT-Bft). Ladislav \u0160igut acknowledges support by the Ministry of Education, Youth and Sports of CR within the CzeCOS program (grant number LM2023048) and the AdAgriF project (CZ.02.01.01/00/22_008/0004635). Gustau Camps-Valls, Markus Reichstein, Basil Kraft, and Gregory Duveiller acknowledge funding by the European Research Council (ERC) Synergy Grant \u201CUnderstanding and modeling the Earth System with Machine Learning (USMILE)\u201D under the European Union\u2019s Horizon 2020 research and innovation program (grant agreement no. 855187). Ankur Desai acknowledges the US Department of Energy American Network Management Project award to the ChEAS core site cluster (US-PFa, US-WCr, US-Syv, US-Los), Wisconsin Potato and Vegetable Growers Association, and WI Department of Natural Resources (US-CS\u2217), and NSF grant nos. 1822420, 2313772 (US-PFa). Marilyn Roland and Bert Gielen acknowledge the Research Foundation Flanders (FWO) for the support of ICOS research infrastructure in Flanders, Belgium. Dario Papale thanks the support of the ITINERIS \u2013 Italian Integrated Environmental Research Infrastructures System project (IR0000032) funded by NextGenerationEU Mission 4.2.3.1. Timo Vesala acknowledges ICOS-Finland (University of Helsinki) and Flagship funding (grant no. 337549). Torsten Sachs acknowledges that the DE-Zrk site relies on infrastructure of the Terrestrial Environmental Observatories Network (TERENO) supported by a Helmholtz Young Investigators Grant (VH-NG-821). Elise Pendall acknowledges Australian Terrestrial Ecosystem Research Network, as part of the National Cooperative Research Infrastructure System. Sara Knox was also supported by an NSERC Discovery Grant (RGPIN-2019-04199) and an Alliance Grant (ALLRP 555468-20). Hideki Kobayashi acknowledges ArC-SII no. JPMXD1420318865 (US-Prr). Stefan Metzger acknowledges the National Ecological Observatory Network, which is a program sponsored by the National Science Foundation and operated under cooperative agreement by Battelle. This material is based in part on work supported by the National Science Foundation through the NEON Program. Bernard Heinesch and Caroline Vincke acknowledge the Service Public de Wallonie (SPW-DGO6) for the support of ICOS research infrastructure in Wallonia, Belgium. This research has been supported by the National Science Foundation (grant nos. 2149988, 1932900, DEB LTREB 1354370, 2011257, DEB-0425328, DEB-0724514, DEB-0830997, 1936752, 1503912, 1107892, 1822420, and 2313772), the Deutsche Forschungsgemeinschaft (grant no. INST 186/1118-1 FUGG), the Nieders\u00E4chsische Ministerium f\u00FCr Wissenschaft und Kultur (grant no. ZN 3679), the Horizon 2020 (grant nos. 774124, 951288, 855187, 958927, 776810, 820852, and 776186), the Schweizerischer Nationalfonds zur F\u00F6rderung der Wissenschaftlichen Forschung (grant nos. 40FA40_154245, 146373, 407340_172433, 200021_197357, 100018L_200918, 20FI21_148992, 20FI20_173691, and 20FI20_198227), the ETH Z\u00FCrich Foundation (grant no. DONA), the Eidgen\u00F6ssische Technische Hochschule Z\u00FCrich (grant no. FEVER ETH-27 19-1), the Agencia Estatal de Investigaci\u00F3n (grant nos. PID2020-117825GB-C21 and PID2020-117825GB-C22), the Ministerio de Universidades (grant no. FPU19/01647), the Swedish National Space Agency (grant no. 2021-00144), the Australian Research Council (grant no. DE190101182), the Research Council of Finland (grant nos. N-PERM 341349 and 337549), the Ministerstvo \u0160kolstv\u00ED, Ml\u00E1de\u017Ee a T\u011Blov\u00FDchovy (grant no. LM2023048), the Ministry of Education, Culture, Sports, Science and Technology (grant no. JPMXD1420318865), the Helmholtz Association (grant no. VH-NG-821), the Natural Sciences and Engineering Research Council of Canada (grant nos. RGPIN-2019-04199 and ALLRP 555468-20), the European Space Agency (grant nos. Vad3e mecum, 4000134598/21/I-NB, and 4000123553/18/I-NB), the Horizon Europe Framework Programme, Horizon Europe Excellent Science (grant nos. 101059548, 20FI20_173691, 101079192, and 101056921), and the Vetenskapsr\u00E5det (grant no. 2021-00644).
Aurela, M., Lohila, A., Tuovinen, J.-P., Hatakka, J., Rainne, J., Mäkelä, T., and Lauria, T.: FLUXNET2015 FI-Lom Lompolojankka, [data set], https://doi.org/10.18140/flx/1440228, 2016a.
Aurela, M., Tuovinen, J.-P., Hatakka, J., Lohila, A., Mäkelä, T., Rainne, J., and Lauria, T.: FLUXNET2015 FI-Sod Sodankyla, [data set], https://doi.org/10.18140/flx/1440160, 2016b.
Badgley, G., Field, C. B., and Berry, J. A.: Canopy Near-Infrared Reflectance and Terrestrial Photosynthesis, Sci. Adv., 3, e1602244, https://doi.org/10.1126/sciadv.1602244, 2017.
Baker, J. and Griffis, T.: AmeriFlux FLUXNET-1F US-Ro5 Rosemount I18_South, [data set], https://doi.org/10.17190/amf/1818371, 2021.
Baker, J. and Griffis, T.: AmeriFlux FLUXNET-1F US-Ro4 Rosemount Prairie, [data set], https://doi.org/10.17190/amf/1881589, 2022a.
Baker, J. and Griffis, T.: AmeriFlux FLUXNET-1F US-Ro6 Rosemount I18_North, [data set], https://doi.org/10.17190/amf/1881590, 2022b.
Baker, J., Griffis, T., and Griffis, T.: AmeriFlux FLUXNET-1F US-Ro1 Rosemount-G21, G21 [data set], https://doi.org/10.17190/amf/1881588, 2022.
Baldocchi, D.: FLUXNET2015 US-Twt Twitchell Island, [data set], https://doi.org/10.18140/flx/1440106, 2016.
Baldocchi, D. and Ma, S.: FLUXNET2015 US-Ton Tonzi Ranch, [data set], https://doi.org/10.18140/flx/1440092, 2016.
Baldocchi, D. and Penuelas, J.: The Physics and Ecology of Mining Carbon Dioxide from the Atmosphere by Ecosystems, Glob. Change Biol., 25, 1191–1197, 2019.
Baldocchi, D., Ma, S., and Xu, L.: FLUXNET2015 US-Var Vaira Ranch-Ione, [data set], https://doi.org/10.18140/flx/1440094, 2016.
Baldocchi, D. D.: How Eddy Covariance Flux Measurements Have Contributed to Our Understanding of Global Change Biology, Glob. Change Biol., 26, 242–260, 2019.
Bao, S., Wutzler, T., Koirala, S., Cuntz, M., Ibrom, A., Besnard, S., Walther, S., Šigut, L., Moreno, A., Weber, U., Wohlfahrt, G., Cleverly, J., Migliavacca, M., Woodgate, W., Merbold, L., Veenendaal, E., and Carvalhais, N.: Environment-Sensitivity Functions for Gross Primary Productivity in Light Use Efficiency Models, Agr. Forest Meteorol., 312, 108708, https://doi.org/10.1016/j.agrformet.2021.108708, 2022.
Belelli, L., Papale, D., and Valentini, R.: FLUXNET2015 RU-Ha1 Hakasia Steppe, [data set], https://doi.org/10.18140/flx/1440184, 2016.
Berbigier, P. and Loustau, D.: FLUXNET2015 FR-LBr Le Bray, [data set], https://doi.org/10.18140/flx/1440163, 2016.
Berg, A. and Sheffield, J.: Evapotranspiration Partitioning in CMIP5 Models: Uncertainties and Future Projections, J. Clim., 32, 2653–2671, 2019.
Beringer, J. and Hutley, L.: FLUXNET2015 AU-Fog Fogg Dam, [data set], https://doi.org/10.18140/flx/1440124, 2016a.
Beringer, J. and Hutley, L.: FLUXNET2015 AU-DaP Daly River Savanna, [data set], https://doi.org/10.18140/flx/1440123, 2016b.
Beringer, J. and Hutley, L.: FLUXNET2015 AU-Ade Adelaide River, [data set], https://doi.org/10.18140/flx/1440193, 2016c.
Beringer, J. and Hutley, L.: FLUXNET2015 AU-RDF Red Dirt Melon Farm, Northern Territory, [data set], https://doi.org/10.18140/flx/1440201, 2016d.
Beringer, J. and Hutley, L.: FLUXNET2015 AU-Dry Dry River, [data set], https://doi.org/10.18140/flx/1440197, 2016e.
Beringer, J. and Hutley, P. L.: FLUXNET2015 AU-DaS Daly River Cleared, [data set], https://doi.org/10.18140/flx/1440122, 2016f.
Beringer, J. and Walker, J.: FLUXNET2015 AU-Ync Jaxa, [data set], https://doi.org/10.18140/flx/1440208, 2016.
Beringer, J., Cunningham, S., Baker, P., Cavagnaro, T., MacNally, R., Thompson, R., and McHugh, I.: FLUXNET2015 AU-Whr Whroo, [data set], https://doi.org/10.18140/flx/1440206, 2016a.
Beringer, J., Hutley, L., McGuire, D., and U, P.: FLUXNET2015 AU-Wac Wallaby Creek, [data set], https://doi.org/10.18140/flx/1440127, 2016b.
Bernhofer, C., Grünwald, T., Moderow, U., Hehn, M., Eichelmann, U., and Prasse, H.: FLUXNET2015 DE-Spw Spreewald, [data set], https://doi.org/10.18140/flx/1440220, 2016.
Billesbach, D., Bradford, J., and Torn, M.: FLUXNET2015 USAR2 ARM USDA UNL OSU Woodward Switchgrass 2, 2 [data set], https://doi.org/10.18140/flx/1440104, 2016a.
Billesbach, D., Bradford, J., and Torn, M.: FLUXNET2015 USAR1 ARM USDA UNL OSU Woodward Switchgrass 1, [data set], https://doi.org/10.18140/flx/1440103, 2016b.
Billesbach, D., Kueppers, L., Torn, M., and Biraud, S.: AmeriFlux FLUXNET-1F US-A32 ARM-SGP Medford Hay Pasture, [data set], https://doi.org/10.17190/amf/1881568, 2022.
Biraud, S., Fischer, M., Chan, S., and Torn, M.: AmeriFlux FLUXNET-1F US-ARM ARM Southern Great Plains Site-Lamont, [data set], https://doi.org/10.17190/amf/1854366, 2022.
Black, T.: AmeriFlux FLUXNET-1F CA-LP1 British Columbia – Mountain Pine Beetle-Attacked Lodgepole Pine Stand, [data set], https://doi.org/10.17190/amf/1832155, 2021.
Black, T. A.: FLUXNET2015 CA-Obs Saskatchewan – Western Boreal, Mature Black Spruce, [data set], https://doi.org/10.18140/flx/1440044, 2016a.
Black, T. A.: FLUXNET2015 CA-Oas Saskatchewan – Western Boreal, Mature Aspen, [data set], https://doi.org/10.18140/flx/1440043, 2016b.
Blanken, P., Monson, R., Burns, S., Bowling, D., and Turnipseed, A.: AmeriFlux FLUXNET-1F USNR1 Niwot Ridge Forest (LTER NWT1), [data set], https://doi.org/10.17190/amf/1832155, 2022.
Bodesheim, P., Jung, M., Gans, F., Mahecha, M. D., and Reichstein, M.: Upscaled diurnal cycles of land–atmosphere fluxes: a new global half-hourly data product, Earth Syst. Sci. Data, 10, 1327–1365, https://doi.org/10.5194/essd-10-1327-2018, 2018.
Bohrer, G.: AmeriFlux FLUXNET-1F US-ORv Olen-tangy River Wetland Research Park, [data set], https://doi.org/10.17190/amf/1832164, 2021.
Bohrer, G.: AmeriFlux FLUXNET-1F US-UM3 Douglas Lake, [data set], https://doi.org/10.17190/amf/1881596, 2022.
Bohrer, G. and Kerns, J.: AmeriFlux FLUXNET-1F US-OWC Old Woman Creek, [data set], https://doi.org/10.17190/amf/1871142, 2022.
Boike, J., Westermann, S., Lüers, J., Langer, M., and Piel, K.: FLUXNET2015 SJ-Blv Bayelva, Spitsbergen, [data set], https://doi.org/10.18140/flx/1440242, 2016.
Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M., Reichstein, M., Lawrence, D. M., and Swenson, S. C.: Improving Canopy Processes in the Community Land Model Version 4 (CLM4) Using Global Flux Fields Empirically Inferred from FLUXNET Data, J. Geophys. Res., 116, G02014, https://doi.org/10.1029/2010JG001593, 2011.
Brunsell, N.: AmeriFlux FLUXNET-1F US-KLS Kansas Land Institute, [data set], https://doi.org/10.17190/amf/1854367, 2022b.
Burton, C. A., Renzullo, L. J., Rifai, S. W., and Van Dijk, A. I. J. M.: Empirical Upscaling of OzFlux Eddy Covariance for High-Resolution Monitoring of Terrestrial Carbon Uptake in Australia, 2023.
Byrne, B., Baker, D. F., Basu, S., Bertolacci, M., Bowman, K. W., Carroll, D., Chatterjee, A., Chevallier, F., Ciais, P., Cressie, N., Crisp, D., Crowell, S., Deng, F., Deng, Z., Deutscher, N. M., Dubey, M. K., Feng, S., García, O. E., Griffith, D. W. T., Herkommer, B., Hu, L., Jacobson, A. R., Janardanan, R., Jeong, S., Johnson, M. S., Jones, D. B. A., Kivi, R., Liu, J., Liu, Z., Maksyutov, S., Miller, J. B., Miller, S. M., Morino, I., Notholt, J., Oda, T., O’Dell, C. W., Oh, Y.-S., Ohyama, H., Patra, P. K., Peiro, H., Petri, C., Philip, S., Pollard, D. F., Poulter, B., Remaud, M., Schuh, A., Sha, M. K., Shiomi, K., Strong, K., Sweeney, C., Té, Y., Tian, H., Velazco, V. A., Vrekoussis, M., Warneke, T., Worden, J. R., Wunch, D., Yao, Y., Yun, J., Zammit-Mangion, A., and Zeng, N.: National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake, Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, 2023.
Camps-Valls, G., Tuia, D., Zhu, X. X., and Reichstein, M.: Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science, and Geosciences, Wiley, 1 Edn., 2021.
Cescatti, A., Marcolla, B., Zorer, R., and Gianelle, D.: FLUXNET2015 IT-La2 Lavarone2, [data set], https://doi.org/10.18140/flx/1440235, 2016.
Chen, T. and Guestrin, C.: XGBoost, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2016.
Christen, A. and Knox, S.: AmeriFlux FLUXNET-1F CA-DBB Delta Burns Bog, [data set], https://doi.org/10.17190/amf/1881565, 2022.
Christensen, T.: FLUXNET2015 SJ-Adv Adventdalen, [data set], https://doi.org/10.18140/flx/1440241, 2016.
Cleverly, J. and Eamus, D.: FLUXNET2015 AU-TTE Ti Tree East, [data set], https://doi.org/10.18140/flx/1440205, 2016a.
Cleverly, J. and Eamus, D.: FLUXNET2015 AU-ASM Alice Springs, [data set], https://doi.org/10.18140/flx/1440194, 2016b.
Coenders-Gerrits, A. M. J., van der Ent, R. J., Bogaard, T. A., Wang-Erlandsson, L., Hrachowitz, M., and Savenije, H. H. G.: Uncertainties in Transpiration Estimates, Nature, 506, E1–E2, 2014.
Dannenberg, M. P., Barnes, M. L., Smith, W. K., Johnston, M. R., Meerdink, S. K., Wang, X., Scott, R. L., and Biederman, J. A.: Upscaling dryland carbon and water fluxes with artificial neural networks of optical, thermal, and microwave satellite remote sensing, Biogeosciences, 20, 383–404, https://doi.org/10.5194/bg-20-383-2023, 2023.
Desai, A.: FLUXNET2015 US-WCr Willow Creek, [data set], https://doi.org/10.18140/flx/1440091, 2016a.
Dolman, H., Hendriks, D., Parmentier, F.-J., Marchesini, L. B., Dean, J., and Van Huissteden, K.: FLUXNET2015 NL-Hor Horstermeer, [data set], https://doi.org/10.18140/flx/1440091, 2016a.
Dolman, H., Van Der Molen, M., Parmentier, F.-J., Marchesini, L. B., Dean, J., Van Huissteden, K., and Maximov, T.: FLUXNET2015 RU-Cok Chokurdakh, [data set], https://doi.org/10.18140/flx/1440182, 2016b.
Flerchinger, G. and Reba, M.: AmeriFlux FLUXNET-1F US-Rwe RCEW Reynolds Mountain East, [data set], https://doi.org/10.17190/amf/1871143, 2022.
Forsythe, J., Kline, M., and O’Halloran, T.: AmeriFlux FLUXNET-1F US-HB1 North Inlet Crab Haul Creek, [data set], https://doi.org/10.17190/amf/1832160, 2021.
Franssen, H. H., Stöckli, R., Lehner, I., Rotenberg, E., and Seneviratne, S.: Energy balance closure of eddy-covariance data: A multisite analysis for European FLUXNET stations, Agr. Forest Meteorol., 150, 1553–1567, https://doi.org/10.1016/j.agrformet.2010.08.005, 2010.
Fratini, G., McDermitt, D. K., and Papale, D.: Eddy-covariance flux errors due to biases in gas concentration measurements: origins, quantification and correction, Biogeosciences, 11, 1037–1051, https://doi.org/10.5194/bg-11-1037-2014, 2014.
Friedl, M. and Sulla-Menashe, D.: MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006, https://doi.org/10.5067/MODIS/MCD12C1.006, 2015.
Fu, Z., Gerken, T., Bromley, G., Araújo, A., Bonal, D., Burban, B., Ficklin, D., Fuentes, J. D., Goulden, M., Hirano, T., Kosugi, Y., Liddell, M., Nicolini, G., Niu, S., Roupsard, O., Stefani, P., Mi, C., Tofte, Z., Xiao, J., Valentini, R., Wolf, S., and Stoy, P. C.: The Surface-Atmosphere Exchange of Carbon Dioxide in Tropical Rainforests: Sensitivity to Environmental Drivers and Flux Measurement Methodology, Agr. Forest Meteorol., 263, 292–307, 2018.
Gao, B.-C.: NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space, Remote Sens. Environ., 58, 257–266, 1996.
Garcia, A., Di Bella, C., Houspanossian, J., Magliano, P., Jobbágy, E., Posse, G., Fernández, R., and Nosetto, M.: FLUXNET2015 AR-SLu San Luis, [data set],https://doi.org/10.18140/flx/1440191, 2016.
Gash, J. H. C.: An Analytical Model of Rainfall Interception by Forests, Q. J. Roy. Meteorol. Soc., 105, 43–55, 1979.
Good, S. P., Noone, D., and Bowen, G.: Hydrologic Connectivity Constrains Partitioning of Global Terrestrial Water Fluxes, Science, 349, 175–177, 2015.
Goslee, S.: AmeriFlux FLUXNET-1F US-HWB USDA ARS Pasture Sytems and Watershed Management Research Unit- Hawbecker Site, [data set], https://doi.org/10.17190/amf/1881582, 2022.
Gough, C., Bohrer, G., and Curtis, P.: FLUXNET2015 US-UMB Univ. Of Mich. Biological Station, [data set], https://doi.org/10.18140/flx/1440093, 2016.
Griffis, T. and Roman, T.: AmeriFlux FLUXNET-1F PE-QFR Quistococha Forest Reserve, [data set], https://doi.org/10.17190/amf/1832157, 2021.
Gruening, C., Goded, I., Cescatti, A., Manca, G., and Seufert, G.: FLUXNET2015 IT-SRo San Rossore, [data set], https://doi.org/10.17190/amf/1832157, 2016a.
Gruening, C., Goded, I., Cescatti, A., and Pokorska, O.: FLUXNET2015 IT-Isp Ispra ABC-IS, [data set], https://doi.org/10.18140/flx/1440234, 2016b.
Heinsch, F., Zhao, M., Running, S., Kimball, J., Nemani, R., Davis, K., Bolstad, P., Cook, B., Desai, A., Ricciuto, D., Law, B., Oechel, W., Kwon, H., Luo, H., Wofsy, S., Dunn, A., Munger, J., Baldocchi, D., Xu, L., Hollinger, D., Richardson, A., Stoy, P., Siqueira, M., Monson, R., Burns, S., and Flanagan, L.: Evaluation of Remote Sensing Based Terrestrial Productivity from MODIS Using Regional Tower Eddy Flux Network Observations, IEEE Trans. Geosci. Remote Sens., 44, 1908–1925, 2006.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 Global Reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, 2020.
Hinkle, R.: AmeriFlux FLUXNET-1F US-KS3 Kennedy Space Center (Salt Marsh), [data set], https://doi.org/10.17190/amf/1881586, 2022.
Huang, X., Xiao, J., Wang, X., and Ma, M.: Improving the Global MODIS GPP Model by Optimizing Parameters with FLUXNET Data, Agr. Forest Meteorol., 300, 108314, https://doi.org/10.1016/j.agrformet.2020.108314, 2021.
Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., and Ferreira, L.: Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices, Remote Sens. Environ., 83, 195–213, 2002.
Ichii, K., Ueyama, M., Kondo, M., Saigusa, N., Kim, J., Alberto, M. C., Ardö, J., Euskirchen, E. S., Kang, M., Hirano, T., Joiner, J., Kobayashi, H., Marchesini, L. B., Merbold, L., Miyata, A., Saitoh, T. M., Takagi, K., Varlagin, A., Bret-Harte, M. S., Kitamura, K., Kosugi, Y., Kotani, A., Kumar, K., Li, S., Machimura, T., Matsuura, Y., Mizoguchi, Y., Ohta, T., Mukherjee, S., Yanagi, Y., Yasuda, Y., Zhang, Y., and Zhao, F.: New Data-driven Estimation of Terrestrial CO2 fluxes in Asia Using a Standardized Database of Eddy Covariance Measurements, Remote Sensing Data, and Support Vector Regression, J. Geophys. Res.-Biogeo., 122, 767–795, 2017.
Joiner, J. and Yoshida, Y.: Satellite-Based Reflectances Capture Large Fraction of Variability in Global Gross Primary Production (GPP) at Weekly Time Scales, Agr. Forest Meteorol., 291, 108092, https://doi.org/10.1016/j.agrformet.2020.108092, 2020.
Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model, Biogeosciences, 6, 2001–2013, https://doi.org/10.5194/bg-6-2001-2009, 2009.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M., Vaccari, F., and Williams, C.: Global Patterns of Land-Atmosphere Fluxes of Carbon Dioxide, Latent Heat, and Sensible Heat Derived from Eddy Covariance, Satellite, and Meteorological Observations, J. Geophys. Res., 116, G00J07, https://doi.org/10.1029/2010JG001566, 2011.
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., Ahlström, A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein, P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, B., Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y.-P., Weber, U., Zaehle, S., and Zeng, N.: Compensatory Water Effects Link Yearly Global Land CO2 Sink Changes to Temperature, Nature, 541, 516–520, 2017.
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM Ensemble of Global Land-Atmosphere Energy Fluxes, Sci. Data, 6, 74, https://doi.org/10.1038/s41597-019-0076-8, 2019.
Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J. A., O’Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, 2020.
Jung, M., Nelson, J., Migliavacca, M., El-Madany, T., Papale, D., Reichstein, M., Walther, S., and Wutzler, T.: Technical note: Flagging inconsistencies in flux tower data, Biogeosciences, 21, 1827–1846, https://doi.org/10.5194/bg-21-1827-2024, 2024.
Klatt, J., Schmid, H. P., Mauder, M., and Steinbrecher, R.: FLUXNET2015 DE-SfN Schechenfilz Nord, [data set], https://doi.org/10.18140/flx/1440219, 2016.
Knohl, A., Tiedemann, F., Kolle, O., Schulze, E.-D., Anthoni, P., Kutsch, W., Herbst, M., and Siebicke, L.: FLUXNET2015 DE-Lnf Leinefelde, [data set], https://doi.org/10.18140/flx/1440150, 2016.
Kobayashi, H. and Suzuki, R.: FLUXNET2015 US-Prr Poker Flat Research Range Black Spruce Forest, [data set], https://doi.org/10.18140/flx/1440113, 2016.
Kosugi, Y. and Takanashi, S.: FLUXNET2015 MY-PSO Pasoh Forest Reserve (PSO), [data set], https://doi.org/10.18140/flx/1440240, 2016.
Kumar, J., Hoffman, F. M., Hargrove, W. W., and Collier, N.: Understanding the Representativeness of FLUXNET for Upscaling carbon Flux from Eddy Covariance Measurements, 2016.
Köhler, P., Frankenberg, C., Magney, T. S., Guanter, L., Joiner, J., and Landgraf, J.: Global Retrievals of Solar-Induced Chlorophyll Fluorescence With TROPOMI: First Results and In-tersensor Comparison to OCO-2, Geophys. Res. Lett., 45, e2020GL087541, https://doi.org/10.1029/2020GL087541, 2018.
Leuning, R., van Gorsel, E., Massman, W. J., and Isaac, P. R.: Reflections on the surface energy imbalance problem, Agr. Forest Meteorol., 156, 65–74, https://doi.org/10.1016/j.agrformet.2011.12.002, 2012.
Liddell, M. J.: FLUXNET2015 AU-Rob Robson Creek, Queensland, Australia, [data set], https://doi.org/10.18140/flx/1440203, 2016.
Lindauer, M., Steinbrecher, R., Wolpert, B., Mauder, M., and Schmid, H. P.: FLUXNET2015 DE-Lkb Lackenberg, [data set], https://doi.org/10.18140/flx/1440214 2016.
Liu, H., Huang, M., and Chen, X.: AmeriFlux FLUXNET-1F US-Hn3 Hanford 100H Sagebrush, [data set], https://doi.org/10.17190/amf/1881580, 2022.
Lohila, A., Aurela, M., Tuovinen, J.-P., Hatakka, J., and Laurila, T.: FLUXNET2015 FI-Jok Jokioinen, [data set], https://doi.org/10.18140/flx/1440159, 2016.
Lund, M., Jackowicz-Korczyński, M., and Abermann, J.: FLUXNET2015 GL-ZaH Zackenberg Heath, [data set], https://doi.org/10.18140/flx/1440224, 2016a.
Lund, M., Jackowicz-Korczyński, M., and Abermann, J.: FLUXNET2015 GL-ZaF Zackenberg Fen, [data set], https://doi.org/10.18140/flx/1440223, 2016b.
Manca, G. and Goded, I.: FLUXNET2015 IT-PT1 Parco Ticino Forest, [data set], https://doi.org/10.18140/flx/1440172, 2016.
Margolis, H. A.: FLUXNET2015 CA-Qfo Quebec – Eastern Boreal, Mature Black Spruce, [data set], https://doi.org/10.18140/flx/14400452016.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Mauder, M., Foken, T., and Cuxart, J.: Surface-Energy-Balance Closure over Land: A Review, Bound.-Lay. Meteorol., 177, 395–426, https://doi.org/10.1007/s10546-020-00529-6, 2020.
McGloin, R., Šigut, L., Havránková, K., Dušek, J., Pavelka, M., and Sedlák, P.: Energy balance closure at a variety of ecosystems in Central Europe with contrasting topographies, Agr. Forest Meteorol., 248, 418–431, https://doi.org/10.1016/j.agrformet.2017.10.003, 2018.
Meyer, W., Cale, P., Koerber, G., Ewenz, C., and Sun, Q.: FLUXNET2015 AU-Cpr Calperum, [data set], https://doi.org/10.18140/flx/1440195, 2016.
Meyers, T.: FLUXNET2015 US-LWW Little Washita Watershed, [data set], https://doi.org/10.18140/flx/1440070, 2016a.
Meyers, T.: FLUXNET2015 US-Goo Goodwin Creek, [data set], https://doi.org/10.18140/flx/1440070, 2016b.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mc-Cabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F., and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016, 2016.
Moncrieff, J., Malhi, Y., and Leuning, R.: The Propagation of Errors in Long-Term Measurements of Land-Atmosphere Fluxes of Carbon and Water, Glob. Change Biol., 2, 231–240, 1996.
Munassar, S., Rödenbeck, C., Koch, F.-T., Totsche, K. U., Gałkowski, M., Walther, S., and Gerbig, C.: Net ecosystem exchange (NEE) estimates 2006–2019 over Europe from a preoperational ensemble-inversion system, Atmos. Chem. Phys., 22, 7875–7892, https://doi.org/10.5194/acp-22-7875-2022, 2022.
Musavi, T., Migliavacca, M., Reichstein, M., Kattge, J., Wirth, C., Black, T. A., Janssens, I., Knohl, A., Loustau, D., Roupsard, O., Varlagin, A., Rambal, S., Cescatti, A., Gianelle, D., Kondo, H., Tamrakar, R., and Mahecha, M. D.: Stand Age and Species Richness Dampen Interannual Variation of Ecosystem-Level Photosynthetic Capacity, Nat. Ecol. Evol., 1, 0048, https://doi.org/10.1038/s41559-016-0048, 2017.
Nash, J. and Sutcliffe, J.: River Flow Forecasting Through Conceptual Models Part I – A Discussion of Principles, J. Hydrol., 10, 282–290, 1970.
Nelson, J. A.: Jnelson18/TranspirationEstimationAlgorithm: Small Bug Fixes with Compatability, Zenodo, https://doi.org/10.5281/zenodo.5638851, 2021.
Nelson, J. A.: FLUXCOM-X-BASE Data Access, Gitlab [data set], https://gitlab.gwdg.de/fluxcom/fluxcomxdata (last access: 3 October 2024), 2023.
Nelson, J. A., Carvalhais, N., Cuntz, M., Delpierre, N., Knauer, J., Ogée, J., Migliavacca, M., Reichstein, M., and Jung, M.: Coupling Water and Carbon Fluxes to Constrain Estimates of Transpiration: The TEA Algorithm, J. Geophys. Res.-Biogeo., 123, 3617–3632, 2018.
Nelson, J. A., Pérez-Priego, O., Zhou, S., Poyatos, R., Zhang, Y., Blanken, P. D., Gimeno, T. E., Wohlfahrt, G., Desai, A. R., Gioli, B., Limousin, J., Bonal, D., Paul-Limoges, E., Scott, R. L., Varlagin, A., Fuchs, K., Montagnani, L., Wolf, S., Delpierre, N., Berveiller, D., Gharun, M., Belelli Marchesini, L., Gianelle, D., Šigut, L., Mammarella, I., Siebicke, L., Andrew Black, T., Knohl, A., Hörtnagl, L., Magliulo, V., Besnard, S., Weber, U., Carvalhais, N., Migliavacca, M., Reichstein, M., and Jung, M.: Ecosystem Transpiration and Evaporation: Insights from Three Water Flux Partitioning Methods Across FLUXNET Sites, Glob. Change Biol., 26, 6916–6930, 2020.
Nelson, J. A., Walther, S., Jung, M., Gans, F., Kraft, B., Weber, U., Hamdi, Z., Duveiller, G., and Zhang, W.: FLUXCOM-X-BASE, ICOS [data set], https://doi.org/10.18160/5NZG-JMJE, 2023.
Novick, K. and Phillips, R.: AmeriFlux FLUXNET-1F US-MMS Morgan Monroe State Forest, [data set], https://doi.org/10.17190/amf/1854369, 2022.
Novick, K. A., Metzger, S., Anderegg, W. R. L., Barnes, M., Cala, D. S., Guan, K., Hemes, K. S., Hollinger, D. Y., Kumar, J., Litvak, M., Lombardozzi, D., Normile, C. P., Oikawa, P., Runkle, B. R. K., Torn, M., and Wiesner, S.: Informing Nature-based Climate Solutions for the United States with the Best-available Science, Glob. Change Biol., 28, 3778–3794, 2022.
Papale, D. and Valentini, R.: A New Assessment of European Forests Carbon Exchanges by Eddy Fluxes and Artificial Neural Network Spatialization, Glob. Change Biol., 9, 525–535, 2003.
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571–583, https://doi.org/10.5194/bg-3-571-2006, 2006.
Papale, D., Black, T. A., Carvalhais, N., Cescatti, A., Chen, J., Jung, M., Kiely, G., Lasslop, G., Mahecha, M. D., Margolis, H., Merbold, L., Montagnani, L., Moors, E., Olesen, J. E., Reichstein, M., Tramontana, G., Gorsel, E., Wohlfahrt, G., and Ráduly, B.: Effect of Spatial Sampling from European Flux Towers for Estimating Carbon and Water Fluxes with Artificial Neural Networks, J. Geophys. Res.-Biogeo., 120, 1941–1957, 2015.
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann, C., Arain, M. A., Ardö, J., Arkebauer, T., Arndt, S. K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, A., Beamesderfer, E., Marchesini, L. B., Bergeron, O., Beringer, J., Bernhofer, C., Berveiller, D., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Boike, J., Bolstad, P. V., Bonal, D., Bonnefond, J.M., Bowling, D. R., Bracho, R., Brodeur, J., Brümmer, C., Buchmann, N., Burban, B., Burns, S. P., Buysse, P., Cale, P., Cavagna, M., Cellier, P., Chen, S., Chini, I., Christensen, T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D., Cook, D., Coursolle, C., Cremonese, E., Curtis, P. S., D’Andrea, E., da Rocha, H., Dai, X., Davis, K. J., Cinti, B. D., Grandcourt, A. d., Ligne, A. D., De Oliveira, R. C., Delpierre, N., Desai, A. R., Di Bella, C. M., Tommasi, P. d., Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P., Dufrêne, E., Dunn, A., Dušek, J., Eamus, D., Eichelmann, U., ElKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers, B., Famulari, D., Fares, S., Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., Galvagno, M., Gharun, M., Gianelle, D., Gielen, B., Gioli, B., Gitelson, A., Goded, I., Goeckede, M., Goldstein, A. H., Gough, C. M., Goulden, M. L., Graf, A., Griebel, A., Gruening, C., Grünwald, T., Hammerle, A., Han, S., Han, X., Hansen, B. U., Hanson, C., Hatakka, J., He, Y., Hehn, M., Heinesch, B., Hinko-Najera, N., Hörtnagl, L., Hutley, L., Ibrom, A., Ikawa, H., Jackowicz-Korczynski, M., Janouš, D., Jans, W., Jassal, R., Jiang, S., Kato, T., Khomik, M., Klatt, J., Knohl, A., Knox, S., Kobayashi, H., Koerber, G., Kolle, O., Kosugi, Y., Kotani, A., Kowalski, A., Kruijt, B., Kurbatova, J., Kutsch, W. L., Kwon, H., Launiainen, S., Laurila, T., Law, B., Leuning, R., Li, Y., Liddell, M., Limousin, J.-M., Lion, M., Liska, A. J., Lohila, A., López-Ballesteros, A., López-Blanco, E., Lou-bet, B., Loustau, D., Lucas-Moffat, A., Lüers, J., Ma, S., Macfarlane, C., Magliulo, V., Maier, R., Mammarella, I., Manca, G., Marcolla, B., Margolis, H. A., Marras, S., Massman, W., Mastepanov, M., Matamala, R., Matthes, J. H., Mazzenga, F., McCaughey, H., McHugh, I., McMillan, A. M. S., Merbold, L., Meyer, W., Meyers, T., Miller, S. D., Minerbi, S., Moderow, U., Monson, R. K., Montagnani, L., Moore, C. E., Moors, E., More-aux, V., Moureaux, C., Munger, J. W., Nakai, T., Neirynck, J., Nesic, Z., Nicolini, G., Noormets, A., Northwood, M., Nosetto, M., Nouvellon, Y., Novick, K., Oechel, W., Olesen, J. E., Ourcival, J.-M., Papuga, S. A., Parmentier, F.-J., Paul-Limoges, E., Pavelka, M., Peichl, M., Pendall, E., Phillips, R. P., Pilegaard, K., Pirk, N., Posse, G., Powell, T., Prasse, H., Prober, S. M., Rambal, S., Rannik, U., Raz-Yaseef, N., Rebmann, C., Reed, D., Dios, V. R. d., Restrepo-Coupe, N., Reverter, B. R., Roland, M., Sabbatini, S., Sachs, T., Saleska, S. R., Sánchez-Cañete, E. P., Sanchez-Mejia, Z. M., Schmid, H. P., Schmidt, M., Schneider, K., Schrader, F., Schroder, I., Scott, R. L., Sedlák, P., Serrano-Ortíz, P., Shao, C., Shi, P., Shironya, I., Siebicke, L., Šigut, L., Silberstein, R., Sirca, C., Spano, D., Steinbrecher, R., Stevens, R. M., Sturtevant, C., Suyker, A., Tagesson, T., Takanashi, S., Tang, Y., Tapper, N., Thom, J., Tomassucci, M., Tuovinen, J.P., Urbanski, S., Valentini, R., van der Molen, M., van Gorsel, E., van Huissteden, K., Varlagin, A., Verfaillie, J., Vesala, T., Vincke, C., Vitale, D., Vygodskaya, N., Walker, J. P., Walter-Shea, E., Wang, H., Weber, R., Westermann, S., Wille, C., Wofsy, S., Wohlfahrt, G., Wolf, S., Woodgate, W., Li, Y., Zampedri, R., Zhang, J., Zhou, G., Zona, D., Agarwal, D., Biraud, S., Torn, M., and Papale, D.: The FLUXNET2015 Dataset and the ONEFlux Processing Pipeline for Eddy Covariance Data, Sci. Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, 2020.
Pendall, E. and Griebel, A.: FLUXNET2015 AU-Cum Cumberland Plains, [data set], https://doi.org/10.18140/flx/1440196, 2016.
Pilegaard, K. and Ibrom, A.: FLUXNET2015 DK-Eng Enghave, [data set], https://doi.org/10.18140/flx/1440153, 2016.
Posse, G., Lewczuk, N., Richter, K., and Cristiano, P.: FLUXNET2015 AR-Vir Virasoro, [data set], https://doi.org/10.18140/flx/1440192, 2016.
Poveda, F. D., Ballesteros, A. L., Cañete, E. P. S., Ortiz, P. S., Jiménez, M. R. M., Priego, O. P., and Kowalski, A. S.: FLUXNET2015 ES-Amo Amoladeras, [data set], https://doi.org/10.18140/flx/1440156, 2016.
Priestley, C. H. B. and Taylor, R. J.: On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters, Mon. Weather Rev., 100, 81–92, 1972.
Randerson, J., Van der werf, G., Giglio, L., Collatz, G., and Kasibhatla, P.: Global Fire Emissions Database, Version 4.1 (GFEDv4), [data set], https://doi.org/10.3334/ornldaac/1293, 2017.
Rannik, U., Peltola, O., and Mammarella, I.: Random uncertainties of flux measurements by the eddy covariance technique, Atmos. Meas. Tech., 9, 5163–5181, https://doi.org/10.5194/amt-9-5163-2016, 2016.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the Separation of Net Ecosystem Exchange into Assimilation and Ecosystem Respiration: Review and Improved Algorithm, Glob. Change Biol., 11, 1424–1439, 2005.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep Learning and Process Understanding for Data-Driven Earth System Science, Nature, 566, 195–204, 2019.
Reverter, B. R., Perez-Cañete, E. S., and Kowalski, A. S.: FLUXNET2015 ES-Ln2 Lanjaron-Salvage Logging, [data set], https://doi.org/10.18140/flx/1440225, 2016a.
Reverter, B. R., Perez-Cañete, E. S., and Kowalski, A. S.: FLUXNET2015 ES-LgS Laguna Seca, [data set], https://doi.org/10.18140/flx/1440225, 2016b.
Rey-Sanchez, C., Wang, C., Szutu, D., Hemes, K., Verfaillie, J., and Baldocchi, D.: AmeriFlux FLUXNET-1F US-Bi2 Bouldin Island Corn, [data set], https://doi.org/10.18140/flx/1440225, 2022a.
Rey-Sanchez, C., Wang, C., Szutu, D., Shortt, R., Chamberlain, S., Verfaillie, J., and Baldocchi, D.: AmeriFlux FLUXNET-1F US-Bi1 Bouldin Island Alfalfa, [data set], https://doi.org/10.17190/amf/1871134, 2022b.
RI, I.: Ecosystem Final Quality (L2) Product in ETC-Archive Format – Release 2021-1, [data set], https://doi.org/10.18160/fzmypg92, 2021.
RI, I.: Ecosystem Final Quality (L2) Product in ETC-Archive Format – Release 2022-1, [data set], https://doi.org/10.18160/pad9-hqhu, 2022.
Roedenbeck, C. and Heimann, M.: Jena CarboScope: Atmospheric CO2 Inversion, [data set], https://doi.org/10.17871/carboscopesextocneet_v2022, 2022.
Rödenbeck, C., Zaehle, S., Keeling, R., and Heimann, M.: How does the terrestrial carbon exchange respond to interannual climatic variations? A quantification based on atmospheric CO2 data, Biogeosciences, 15, 2481–2498, https://doi.org/10.5194/bg-15-2481-2018, 2018.
Sabbatini, S., Arriga, N., Gioli, B., and Papale, D.: FLUXNET2015 IT-CA2 Castel d’Asso2, [data set], https://doi.org/10.18140/flx/1440231, 2016a.
Sabbatini, S., Arriga, N., Matteucci, G., and Papale, D.: FLUXNET2015 IT-CA3 Castel d’Asso 3, [data set], https://doi.org/10.18140/flx/1440232, 2016b.
Sabbatini, S., Arriga, N., and Papale, D.: FLUXNET2015 IT-CA1 Castel d’Asso1, [data set], https://doi.org/10.18140/flx/1440230, 2016c.
Sachs, T., Wille, C., Larmanou, E., and Franz, D.: FLUXNET2015 DE-Zrk Zarnekow, [data set], https://doi.org/10.18140/flx/1440221, 2016.
Sanchez, C. R., Sturtevant, C., Szutu, D., Baldocchi, D., Eichelmann, E., and Knox, S.: FLUXNET2015 US-Tw4 Twitchell East End Wetland, [data set], https://doi.org/10.18140/flx/1440111, 2016.
Schaaf, C. and Wang, Z.: MCD43A2 MODIS/Terra+Aqua BRDF/Albedo Quality Daily L3 Global – 500m V006, [data set], https://doi.org/10.5067/modis/mcd43a2.006, 2015a.
Schaaf, C. and Wang, Z.: MCD43A4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF Adjusted Ref Daily L3 Global – 500m V006, [data set], https://doi.org/10.5067/modis/mcd43a4.006, 2015b.
Schlesinger, W. H. and Jasechko, S.: Transpiration in the Global Water Cycle, Agr. Forest Meteorol., 189-190, 115–117, 2014.
Schneider, K. and Schmidt, M.: FLUXNET2015 DE-Seh Selhausen, [data set], https://doi.org/10.18140/flx/1440217, 2016.
Schneider, U., Hänsel, S., Finger, P., Rustemeier, E., and Ziese, M.: GPCC Full Data Monthly Version 2022 at 0.25°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-based and Historic Data, [data set], https://doi.org/10.5676/dwd_gpcc/fd_m_v2022_025, 2022.
Schroder, I., Zegelin, S., Palu, T., and Feitz, A.: FLUXNET2015 AU-Emr Emerald, [data set], https://doi.org/10.18140/flx/1440198, 2016.
Scott, R.: FLUXNET2015 US-SRG Santa Rita Grassland, [data set], https://doi.org/10.18140/flx/1440114, 2016a.
Scott, R.: FLUXNET2015 US-SRM Santa Rita Mesquite, [data set], https://doi.org/10.18140/flx/1440090, 2016b.
Shortt, R., Hemes, K., Szutu, D., Verfaillie, J., and Baldocchi, D.: AmeriFlux FLUXNET-1F US-Sne Sherman Island Restored Wetland, [data set], https://doi.org/10.17190/amf/1871144, 2022.
Sigut, L., Havrankova, K., Jocher, G., Pavelka, M., and Janouš, D.: FLUXNET2015 CZ-BK2 Bily Kriz Grassland, [data set], https://doi.org/10.18140/flx/1440144, 2016.
Soloway, A. D., Amiro, B. D., Dunn, A. L., and Wofsy, S. C.: Carbon neutral or a sink? Uncertainty caused by gap-filling long-term flux measurements for an old-growth boreal black spruce forest, Agr. Forest Meteorol., 233, 110–121, https://doi.org/10.1016/j.agrformet.2016.11.005, 2017.
Spano, D., Duce, P., Marras, S., Sirca, C., Arca, A., Zara, P., and Ventura, A.: FLUXNET2015 IT-Noe Arca Di Noe – Le Prigionette, [data set], https://doi.org/10.18140/flx/1440171, 2016.
Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain, M. A., Arneth, A., Aurela, M., Bernhofer, C., Cescatti, A., Dellwik, E., Duce, P., Gianelle, D., van Gorsel, E., Kiely, G., Knohl, A., Margolis, H., McCaughey, H., Merbold, L., Montagnani, L., Papale, D., Reichstein, M., Saunders, M., Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari, F., and Varlagin, A.: A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity, Agr. Forest Meteorol., 171/172, 137–152, https://doi.org/10.1016/j.agrformet.2012.11.004, 2013.
Sturtevant, C., Szutu, D., Baldocchi, D., Matthes, J. H., Oikawa, P., and Chamberlain, S. D.: FLUXNET2015 US-Myb Mayberry Wetland, [data set], https://doi.org/10.18140/flx/1440105, 2016.
Tagesson, T., Ardö, J., and Fensholt, R.: FLUXNET2015 SN-Dhr Dahra, [data set], https://doi.org/10.18140/flx/1440246, 2016.
Tang, Y., Kato, T., and Du, M.: FLUXNET2015 CN-HaM Haibei Alpine Tibet Site, [data set], https://doi.org/10.18140/flx/1440190, 2016.
Team, D. . and Centre, I. E. T.: Drought-2018 Ecosystem Eddy Covariance Flux Product for 52 Stations in FLUXNET-Archive Format, [data set], https://doi.org/10.18160/yvr0-4898, 2020.
Team, W. W. . and Centre, I. E. T.: Warm Winter 2020 Ecosystem Eddy Covariance Flux Product for 73 Stations in FLUXNET-Archive Format, [data set], https://doi.org/10.18160/2g60-zhak, 2022.
Torn, M.: FLUXNET2015 US-ARc ARM Southern Great Plains Control Site- Lamont, [data set], https://doi.org/10.18140/flx/1440065, 2016a.
Torn, M.: FLUXNET2015 US-ARb ARM Southern Great Plains Burn Site- Lamont, [data set], https://doi.org/10.18140/flx/1440064, 2016b.
Torn, M. and Dengel, S.: AmeriFlux FLUXNET-1F US-NGB NGEE Arctic Barrow, [data set], https://doi.org/10.17190/amf/1832162, 2021.
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016.
Turner, D. P., Ritts, W. D., Cohen, W. B., Gower, S. T., Running, S. W., Zhao, M., Costa, M. H., Kirschbaum, A. A., Ham, J. M., Saleska, S. R., and Ahl, D. E.: Evaluation of MODIS NPP and GPP Products Across Multiple Biomes, Remote Sens. Environ., 102, 282–292, 2006.
Ukkola, A. M., Abramowitz, G., and De Kauwe, M. G.: A flux tower dataset tailored for land model evaluation, Earth Syst. Sci. Data, 14, 449–461, https://doi.org/10.5194/essd-14-449-2022, 2022.
Upton, S., Reichstein, M., Gans, F., Peters, W., Kraft, B., and Bastos, A.: Constraining Biospheric Carbon Dioxide Fluxes by Combined Top-down and Bottom-up Approaches, 2023.
Valach, A., Shortt, R., Szutu, D., Eichelmann, E., Knox, S., Hemes, K., Verfaillie, J., and Baldocchi, D.: AmeriFlux FLUXNET-1F US-Tw1 Twitchell Wetland West Pond, [data set], https://doi.org/10.17190/amf/1832165, 2021.
Valach, A., Kasak, K., Szutu, D., Verfaillie, J., and Baldocchi, D.: AmeriFlux FLUXNET-1F US-Tw5 East Pond Wetland, [data set], https://doi.org/10.17190/amf/1832162 2022.
Valentini, R., Nicolini, G., Stefani, P., De Grandcourt, A., and Stivanello, S.: FLUXNET2015 GH-Ank Ankasa, [data set], https://doi.org/10.18140/flx/1440229, 2016b.
Valentini, R., Tirone, G., Vitale, D., Papale, D., Arriga, N., Belelli, L., Dore, S., Manca, G., Mazzenga, F., Pegoraro, E., Sabbatini, S., and Stefani, P.: FLUXNET2015 IT-Ro1 Roccarespampani 1, [data set], https://doi.org/10.18140/flx/1440174, 2016c.
Vekuri, H., Tuovinen, J.-P., Kulmala, L., Papale, D., Kolari, P., Aurela, M., Laurila, T., Liski, J., and Lohila, A.: A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates, Sci. Rep., 13, 1720, https://doi.org/10.1038/s41598-023-28827-2, 2023.
Virkkala, A., Aalto, J., Rogers, B. M., Tagesson, T., Treat, C. C., Natali, S. M., Watts, J. D., Potter, S., Lehtonen, A., Mauritz, M., Schuur, E. A. G., Kochendorfer, J., Zona, D., Oechel, W., Kobayashi, H., Humphreys, E., Goeckede, M., Iwata, H., Lafleur, P. M., Euskirchen, E. S., Bokhorst, S., Marushchak, M., Martikainen, P. J., Elberling, B., Voigt, C., Biasi, C., Sonnentag, O., Parmentier, F. W., Ueyama, M., Celis, G., St.Louis, V. L., Emmerton, C. A., Peichl, M., Chi, J., Järveoja, J., Nilsson, M. B., Oberbauer, S. F., Torn, M. S., Park, S., Dolman, H., Mammarella, I., Chae, N., Poyatos, R., López-Blanco, E., Christensen, T. R., Kwon, M. J., Sachs, T., Holl, D., and Luoto, M.: Statistical Upscaling of Ecosystem CO2 fluxes Across the Terrestrial Tundra and Boreal Domain: Regional Patterns and Uncertainties, Glob. Change Biol., 27, 4040–4059, 2021.
Vitale, D., Fratini, G., Bilancia, M., Nicolini, G., Sabbatini, S., and Papale, D.: A robust data cleaning procedure for eddy covariance flux measurements, Biogeosciences, 17, 1367–1391, https://doi.org/10.5194/bg-17-1367-2020, 2020.
Vivoni, E. and Perez-Ruiz, E.: AmeriFlux FLUXNET-1F USJo2 Jornada Experimental Range Mixed Shrubland, [data set], https://doi.org/10.17190/amf/1881584 2022.
Vourlitis, G., Dalmagro, H., De S. Nogueira, J., Johnson, M., and Arruda, P.: AmeriFlux FLUXNET-1F BR-Npw Northern Pantanal Wetland, [data set], https://doi.org/10.17190/amf/1881584, 2022.
Walther, S., Besnard, S., Nelson, J. A., El-Madany, T. S., Migliavacca, M., Weber, U., Carvalhais, N., Ermida, S. L., Brümmer, C., Schrader, F., Prokushkin, A. S., Panov, A. V., and Jung, M.: Technical note: A view from space on global flux towers by MODIS and Landsat: the FluxnetEO data set, Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, 2022.
Wan, Z., Hook, S., and Hulley, G.: MOD11C1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 0.05Deg CMG V006, [data set], https://doi.org/10.5067/modis/mod11c1.006, 2015.
Wang, H. and Fu, X.: FLUXNET2015 CN-Qia Qianyanzhou, [data set], https://doi.org/10.18140/flx/1440141, 2016.
Wei, Z., Yoshimura, K., Wang, L., Miralles, D. G., Jasechko, S., and Lee, X.: Revisiting the Contribution of Transpiration to Global Terrestrial Evapotranspiration, Geophys. Res. Lett., 44, 2792–2801, 2017.
Wohlfahrt, G., Hammerle, A., and Hörtnagl, L.: FLUXNET2015 AT-Neu Neustift, [data set], https://doi.org/10.18140/flx/1440121, 2016.
Wolf, S., Eugster, W., and Buchmann, N.: FLUXNET2015 PA-SPs Sardinilla-Pasture, [data set], https://doi.org/10.18140/flx/1440179, 2016a.
Wolf, S., Eugster, W., and Buchmann, N.: FLUXNET2015 PA-SPn Sardinilla Plantation, [data set], https://doi.org/10.18140/flx/1440180, 2016b.
Wood, J. and Gu, L.: AmeriFlux FLUXNET-1F US-MOz Missouri Ozark Site, [data set], https://doi.org/10.17190/amf/1854370, 2022.
Woodgate, W., Van Gorsel, E., and Leuning, R.: FLUXNET2015 AU-Tum Tumbarumba, [data set], https://doi.org/10.18140/flx/1440126, 2016.
Xiao, J., Zhuang, Q., Baldocchi, D. D., Law, B. E., Richardson, A. D., Chen, J., Oren, R., Starr, G., Noormets, A., Ma, S., Verma, S. B., Wharton, S., Wofsy, S. C., Bolstad, P. V., Burns, S. P., Cook, D. R., Curtis, P. S., Drake, B. G., Falk, M., Fischer, M. L., Foster, D. R., Gu, L., Hadley, J. L., Hollinger, D. Y., Katul, G. G., Litvak, M., Martin, T. A., Matamala, R., McNulty, S., Meyers, T. P., Monson, R. K., Munger, J. W., Oechel, W. C., Paw U, K. T., Schmid, H. P., Scott, R. L., Sun, G., Suyker, A. E., and Torn, M. S.: Estimation of Net Ecosystem Carbon Exchange for the Conterminous United States by Combining MODIS and AmeriFlux Data, Agr. Forest Meteorol., 148, 1827–1847, 2008.
Yao, Y., Li, Z., Wang, T., Chen, A., Wang, X., Du, M., Jia, G., Li, Y., Li, H., Luo, W., Ma, Y., Tang, Y., Wang, H., Wu, Z., Yan, J., Zhang, X., Zhang, Y., Zhang, Y., Zhou, G., and Piao, S.: A New Estimation of China’s Net Ecosystem Productivity Based on Eddy Covariance Measurements and a Model Tree Ensemble Approach, Agr. Forest Meteorol., 253-254, 84–93, 2018.
Yepez, E. and Garatuza, J.: AmeriFlux FLUXNET-1F MX-Tes Tesopaco, Secondary Tropical Dry Forest, [data set], https://doi.org/10.17190/amf/1832156, 2021.
Zhang, J. and Han, S.: FLUXNET2015 CN-Cha Changbaishan, [data set], https://doi.org/10.18140/flx/1440137, 2016.
Zhang, W., Jung, M., Migliavacca, M., Poyatos, R., Miralles, D. G., El-Madany, T. S., Galvagno, M., Carrara, A., Arriga, N., Ibrom, A., Mammarella, I., Papale, D., Cleverly, J. R., Liddell, M., Wohlfahrt, G., Markwitz, C., Mauder, M., Paul-Limoges, E., Schmidt, M., Wolf, S., Brümmer, C., Arain, M. A., Fares, S., Kato, T., Ardö, J., Oechel, W., Hanson, C., Korkiakoski, M., Biraud, S., Steinbrecher, R., Billesbach, D., Montagnani, L., Woodgate, W., Shao, C., Carvalhais, N., Reichstein, M., and Nelson, J. A.: The effect of relative humidity on eddy covariance latent heat flux measurements and its implication for partitioning into transpiration and evaporation, Agr. Forest Meteorol., 330, 109305, https://doi.org/10.1016/j.agrformet.2022.109305, 2023.
Zhang, Y., Xiao, X., Zhang, Y., Wolf, S., Zhou, S., Joiner, J., Guanter, L., Verma, M., Sun, Y., Yang, X., Paul-Limoges, E., Gough, C. M., Wohlfahrt, G., Gioli, B., van der Tol, C., Yann, N., Lund, M., and de Grandcourt, A.: On the Relationship Between Sub-Daily Instantaneous and Daily Total Gross Primary Production: Implications for Interpreting Satellite-Based SIF Retrievals, Remote Sens. Environ., 205, 276–289, 2018.
Zhao, M. and Running, S. W.: Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009, Science, 329, 940–943, 2010.
Zhou, G. and Yan, J.: FLUXNET2015 CN-Din Dinghushan, [data set], https://doi.org/10.18140/flx/1440139, 2016.
Zhu, S., Quaife, T., and Hill, T.: Uniform upscaling techniques for eddy covariance FLUXes (UFLUX), Int. J. Remote Sens., 45, 1450–1476, https://doi.org/10.1080/01431161.2024.2312266, 2024.
Zona, D. and Oechel, W.: FLUXNET2015 US-Atq Atqasuk, [data set], https://doi.org/10.18140/flx/1440067, 2016a.
Zona, D. and Oechel, W.: FLUXNET2015 US-Ivo Ivotuk, [data set], https://doi.org/10.18140/flx/1440073, 2016b.
Zscheischler, J., Mahecha, M. D., Avitabile, V., Calle, L., Carvalhais, N., Ciais, P., Gans, F., Gruber, N., Hartmann, J., Herold, M., Ichii, K., Jung, M., Landschützer, P., Laruelle, G. G., Lauerwald, R., Papale, D., Peylin, P., Poulter, B., Ray, D., Regnier, P., Rödenbeck, C., Roman-Cuesta, R. M., Schwalm, C., Tramontana, G., Tyukavina, A., Valentini, R., van der Werf, G., West, T. O., Wolf, J. E., and Reichstein, M.: Reviews and syntheses: An empirical spatiotemporal description of the global surface–atmosphere carbon fluxes: opportunities and data limitations, Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, 2017.