[en] [en] INTRODUCTION: Disorders of consciousness (DoC) are characterized by impaired arousal and/or awareness, ranging from coma to unresponsive wakefulness syndrome, minimally conscious state, and cognitive motor dissociation. Pharmacological treatment options remain limited, complicated by the heterogeneity of etiologies, such as traumatic brain injury, stroke, and infections. The lack of rigorous clinical trials has led to off-label use of treatments, often without clear mechanistic understanding, posing challenges for effective patient care.
AREAS COVERED: In this perspective, the authors report on key studies concerning the effectiveness of pharmacological interventions, including dopaminergic and GABAergic agents, antidepressants, statins, and anticonvulsants, in promoting recovery of consciousness in DoC.
EXPERT OPINION: Robust longitudinal clinical trials are needed, with priority given to early subacute phase intervention. Outcomes should be better defined, considering immediate responses to medication while also increasing the emphasis on long-term quality of life. Unified functional and mechanistic frameworks are needed to guide research and foster collaboration. Furthermore, a shift toward personalized medicine would benefit this heterogeneous population. Moving forward, assessing the efficacy of more unconventional or 'paradoxical' pharmacological options in treatment plans will be essential. The authors also expect an increased use of AI tools to identify factors that best predict treatment responses.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Girard Pepin, Rosalie ; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Canada ; Integrated Traumatology Center, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montréal, Canada
Williamson, David ; Integrated Traumatology Center, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montréal, Canada ; Faculty of Pharmacy, Université de Montréal, Montréal, Canada
Gosseries, Olivia ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group
Duclos, Catherine ; Integrated Traumatology Center, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montréal, Canada ; Department of Anesthesiology and Pain Medicine, Université de Montréal, Montréal, Canada ; Department of Neuroscience, Université de Montréal, Montréal, Canada
Language :
English
Title :
Pharmacological therapies for early and long-term recovery in disorders of consciousness: current knowledge and promising avenues.
ULiège - University of Liège F.R.S.-FNRS - Fonds de la Recherche Scientifique MSF - Mind Science Foundation Fondation Léon Fredericq Bial Foundation NSERC - Natural Sciences and Engineering Research Council CIHR - Canadian Institutes of Health Research UdeM - Université de Montréal
Funding text :
This work was supported by the University and University Hospital of Liège
(Liège, Belgium), the Belgian National Fund for Scientific Research (FRSFNRS),
the FNRS MIS project [F.4521.23], the FNRS PDR project [T.0134.21],
the ERA-Net FLAG-ERA JTC2021 project ModelDXConsciousness (Human
Brain Project Partnering Project), the ERA-Net FLAG-ERA JTC2023 project,
the Mind Science Foundation, the Fondation Léon Fredericq, the fund
Generet, the King Baudouin Foundation, the BIAL Foundation, and the DoCBox project [HORIZON-MSCA-2022-SE-01-01-101131344]. This work was also
supported by a Discovery Grant and Launch Supplement from the Natural
Sciences and Engineering Research Council of Canada (NSERC) [RGPIN-
2022-04220], a Junior 1 Research Scholars Award and Establishment of
Young Researchers Supplement from the Fonds de Recherche du
Québec – Santé (FRQS), the Research Centre of the Centre Intégré
Universitaire de Santé et de Services Sociaux (CIUSSS) du Nord-de-l’île-de-
Montréal, and the CIFAR-Azrieli Global Scholars Program. R Girard Pepin is
supported by a Master’s Research Award from the Canadian Institutes of
Health Research (CIHR), the Bourse J.A. De Sève from the Centre Intégré
Universitaire de Santé et de Services Sociaux (CIUSSS) du Nord-de-l’île-de-
Montréal, the Fondation Desjardins, and a recruitment scholarship from
Université de Montréal. O Gosseries is research associate at the F.R.S.-FNRS.
Giacino JT, Ashwal S, Childs N, et al. The minimally conscious state: definition and diagnostic criteria. Neurology. 2002;58(3):349–353. doi: 10.1212/WNL.58.3.349
Bruno MA, Vanhaudenhuyse A, Thibaut A, et al. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness. J Neurol. 2011;258(7):1373–1384. doi: 10.1007/s00415-011-6114-x
Bodien YG, Allanson J, Cardone P, et al. Cognitive motor dissociation in disorders of consciousness. N Engl J Med. 2024;391(7):598–608. doi: 10.1056/NEJMoa2400645
Claassen J, Kondziella D, Alkhachroum A, et al. Cognitive motor dissociation: gap analysis and future directions. Neurocrit Care. 2024;40(1):81–98. doi: 10.1007/s12028-023-01769-3
Edlow BL, Menon DK., Covert consciousness in the ICU. Crit Care Med. 2024;52(9):1414–1426. doi: 10.1097/CCM.0000000000006372
Beljaars DE, Valckx WJ, Stepan C, et al. Prevalence differences of patients in vegetative state in the Netherlands and Vienna, Austria: a comparison of values and ethics. J Head Trauma Rehabil. 2015;30(3):E57–60. doi: 10.1097/HTR.0000000000000058
Edlow BL, Claassen J, Schiff ND, et al. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nat Rev Neurol. 2021;17(3):135–156. doi: 10.1038/s41582-020-00428-x
The Multi-Society Task Force on PVS. Medical aspects of the persistent vegetative state. N Engl J Med. 1994;330(21):1499–1508. doi: 10.1056/NEJM199405263302107
Thibaut A, Schiff N, Giacino J, et al. Therapeutic interventions in patients with prolonged disorders of consciousness. Lancet Neurol. 2019;18(6):600–614. doi: 10.1016/S1474-4422(19)30031-6
Karpenko A, Keegan J., Diagnosis of coma. Emerg Med Clin North Am. 2021;39(1):155–172. doi: 10.1016/j.emc.2020.09.009
Jang SH, Kwon YH. The relationship between consciousness and the ascending reticular activating system in patients with traumatic brain injury. BMC Neurol. 2020;20(1):375. doi: 10.1186/s12883-020-01942-7
Edlow BL, Takahashi E, Wu O, et al. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J Neuropathol Exp Neurol. 2012;71(6):531–546. doi: 10.1097/NEN.0b013e3182588293
Schiff ND. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci. 2010;33(1):1–9. doi: 10.1016/j.tins.2009.11.002
Annen J, Frasso G, Crone JS, et al. Regional brain volumetry and brain function in severely brain-injured patients. Ann Neurol. 2018;83(4):842–853. doi: 10.1002/ana.25214
Demertzi A, Antonopoulos G, Heine L, et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain. 2015;138(9):2619–2631. doi: 10.1093/brain/awv169
Panda R, Thibaut A, Lopez-Gonzalez A, et al. Disruption in structural–functional network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in disorders of consciousness. Elife. 2022;11:11. doi: 10.7554/eLife.77462
Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013;246:35–43. doi: 10.1016/j.expneurol.2012.01.013
Bartlett D. The coma cocktail: indications, contraindications, adverse effects, proper dose, and proper route. J Emerg Nurs. 2004;30(6):572–574. doi: 10.1016/j.jen.2004.09.002
Bledsoe BE. No more coma cocktails. Using science to dispel myths & improve patient care. Jems. 2002;27(11):54–60.
Schiff ND. Mesocircuit mechanisms in the diagnosis and treatment of disorders of consciousness. Presse Med. 2023;52(2):104161. doi: 10.1016/j.lpm.2022.104161
Fridman EA, Schiff ND. Organizing a rational approach to treatments of disorders of consciousness using the anterior forebrain mesocircuit model. J Clin Neurophysiol. 2022;39(1):40–48. doi: 10.1097/WNP.0000000000000729
Li C, Chen P, Deng Y, et al. Abnormalities of cortical and subcortical spontaneous brain activity unveil mechanisms of disorders of consciousness and prognosis in patients with severe traumatic brain injury. Int J Clin Health Phychol. 2024;24(4):100528. doi: 10.1016/j.ijchp.2024.100528
Ashby FG, Valentin VV, von Meer SS. Differential effects of dopamine-directed treatments on cognition. Neuropsychiatr Dis Treat. 2015;11:1859–1875. doi: 10.2147/NDT.S65875
Barra ME, Solt K, Yu X, et al. Restoring consciousness with pharmacologic therapy: mechanisms, targets, and future directions. Neurotherapeutics. 2024;21(4):e00374. doi: 10.1016/j.neurot.2024.e00374
Butzer JF, Silver DE, Sahs AL. Amantadine in Parkinson’s disease. A double-blind, placebo-controlled, crossover study with long-term follow-up. Neurology. 1975;25(7):603–606. doi: 10.1212/WNL.25.7.603
Pahwa R, Tanner CM, Hauser RA, et al. ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson disease (EASE LID study): a randomized clinical trial. JAMA Neurol. 2017;74(8):941–949. doi: 10.1001/jamaneurol.2017.0943
Mata-Bermudez A, Trejo-Chávez R, Martínez-Vargas M, et al. Dysregulation of the dopaminergic system secondary to traumatic brain injury: implications for mood and anxiety disorders. Front Neurosci. 2024;18:1447688. doi: 10.3389/fnins.2024.1447688
Giacino JT, Katz DI, Schiff ND, et al. Practice guideline update recommendations summary: disorders of consciousness: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation research. Neurology. 2018;91(10):450–460. doi: 10.1212/WNL.0000000000005926
Horiguchi J, Inami Y, Shoda T. Effects of long-term amantadine treatment on clinical symptoms and EEG of a patient in a vegetative state. Clin Neuropharmacol. 1990;13(1):84–88. doi: 10.1097/00002826-199002000-00009
Zafonte RD, Watanabe T, Mann NR. Amantadine: a potential treatment for the minimally conscious state. Brain Inj. 1998;12(7):617–621. doi: 10.1080/026990598122386
Ghalaenovi H, Fattahi A, Koohpayehzadeh J, et al. The effects of amantadine on traumatic brain injury outcome: a double-blind, randomized, controlled, clinical trial. Brain Inj. 2018;32(8):1050–1055. doi: 10.1080/02699052.2018.1476733
Meythaler JM, Brunner RC, Johnson A, et al. Amantadine to improve neurorecovery in traumatic brain injury–associated diffuse axonal injury. J Head Trauma Rehabil. 2002;17(4):300–313. doi: 10.1097/00001199-200208000-00004
Giacino JT, Whyte J, Bagiella E, et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med. 2012;366(9):819–826. doi: 10.1056/NEJMoa1102609
Chen X, Tang C, Zhou H, et al. Effect of amantadine on vegetative state after traumatic brain injury: a functional magnetic resonance imaging study. J Int Med Res. 2019;47(2):1015–1024. doi: 10.1177/0300060518814127
Schnakers C, Hustinx R, Vandewalle G, et al. Measuring the effect of amantadine in chronic anoxic minimally conscious state. J Neurol Neurosurg Psychiatry. 2008;79(2):225–227. doi: 10.1136/jnnp.2007.124099
Estraneo A, Pascarella A, Moretta P, et al. Clinical and electroencephalographic on–off effect of amantadine in chronic non-traumatic minimally conscious state. J Neurol. 2015;262(6):1584–1586. doi: 10.1007/s00415-015-7771-y
Lehnerer SM, Scheibe F, Buchert R, et al. Awakening with amantadine from a persistent vegetative state after subarachnoid haemorrhage. BMJ Case Rep. 2017;2017:bcr-2017–220305. doi: 10.1136/bcr-2017-220305
Gao Y, Zhang Y, Li Z, et al. Persistent vegetative state after severe cerebral hemorrhage treated with amantadine: a retrospective controlled study. Medicine (Baltimore). 2020;99(33):e21822. doi: 10.1097/MD.0000000000021822
Siy HFC, Gimenez MLA. Amantadine for functional improvement in patients with traumatic brain injury: a systematic review with meta-analysis and trial sequential analysis. Brain Spine. 2024;4:102773. doi: 10.1016/j.bas.2024.102773
Hintze TD, Small CE, Montgomery J, et al. Comparison of amantadine, modafinil, and standard of care in the acute treatment of disorders of consciousness after severe traumatic brain injury. Clin Neuropharmacol. 2022;45(1):1–6. doi: 10.1097/WNF.0000000000000487
Gatto LAM, Demartini Z, Jr., Telles JPM, et al. Does amantadine improve cognitive recovery in severe disorders of consciousness after aneurysmal subarachnoid hemorrhage? A double-blind placebo-controlled study. Clin Neurol Neurosurg. 2024;237:108135. doi: 10.1016/j.clineuro.2024.108135
McMahon MA, Vargus-Adams JN, Michaud LJ, et al. Effects of amantadine in children with impaired consciousness caused by acquired brain injury: a pilot study. Am J Phys Med Rehabil. 2009;88(7):525–532. doi: 10.1097/PHM.0b013e3181a5ade3
Aldred J, Nutt JG. Levodopa. In: Kompoliti K, Metman L, editors. Encyclopedia of movement disorders. Oxford: Academic Press; 2010. p. 132–137.
Soileau MJ, Aldred J, Budur K, et al. Safety and efficacy of continuous subcutaneous foslevodopa-foscarbidopa in patients with advanced Parkinson’s disease: a randomised, double-blind, active-controlled, phase 3 trial. Lancet Neurol. 2022;21(12):1099–1109. doi: 10.1016/S1474-4422(22)00400-8
Matsuda W, Matsumura A, Komatsu Y, et al. Awakenings from persistent vegetative state: report of three cases with parkinsonism and brain stem lesions on MRI. J Neurol Neurosurg Psychiatry. 2003;74(11):1571–1573. doi: 10.1136/jnnp.74.11.1571
Haig AJ, Ruess JM. Recovery from vegetative state of six months’ duration associated with sinemet (levodopa/carbidopa). Arch Phys Med Rehabil. 1990;71(13):1081–1083.
Ugoya SO, Akinyemi RO. The place of L-dopa/carbidopa in persistent vegetative state. Clin Neuropharmacol. 2010;33(6):279–284. doi: 10.1097/WNF.0b013e3182011070
Higashi K, Hatano M, Abiko S, et al. Clinical analysis of patients recovered from persistent vegetative state, with special emphasis on the therapeutic and prophylactic effects of L-DOPA (author’s transl). No To Shinkei. 1978;30(1):27–35.
Berlot G, Tomasini A, Cociancich N, et al. Drug-induced hyperthermia in a patient with persistent vegetative state. Case report and review of the literature. J Neurosurg Sci. 1995;39(3):199–202.
Matsuda W, Sugimoto K, Sato N, et al. A case of primary brain-stem injury recovered from persistent vegetative state after L-dopa administration. No To Shinkei. 1999;51(12):1071–1074.
Krimchansky BZ, Keren O, Sazbon L, et al. Differential time and related appearance of signs, indicating improvement in the state of consciousness in vegetative state traumatic brain injury (VS-TBI) patients after initiation of dopamine treatment. Brain Inj. 2004;18(11):1099–1105. doi: 10.1080/02699050310001646206
Bancalari E, Rabinstein A, Machiavello F, et al. Accelerated emergence from a nontraumatic minimally conscious state with levodopa/carbidopa. Neurol Clin Pract. 2018;8(6):541–542. doi: 10.1212/CPJ.0000000000000508
Marino MH. Pharmacology in treatment of patients with disorders of consciousness. Phys Med Rehabil Clin N Am. 2024;35(1):155–165. doi: 10.1016/j.pmr.2023.06.023
Fridman EA, Calvar J, Bonetto M, et al. Fast awakening from minimally conscious state with apomorphine. Brain Inj. 2009;23(2):172–177. doi: 10.1080/02699050802649662
Fridman EA, Krimchansky BZ, Bonetto M, et al. Continuous subcutaneous apomorphine for severe disorders of consciousness after traumatic brain injury. Brain Inj. 2010;24(4):636–641. doi: 10.3109/02699051003610433
Sanz LRD, Lejeune N, Szymkowicz E, et al. Apomorphine for prolonged disorders of consciousness: a multimodal open-label study. EClinicalMedicine. 2024;78:102925. doi: 10.1016/j.eclinm.2024.102925
Sanz LRD, Lejeune N, Blandiaux S, et al. Treating disorders of consciousness with apomorphine: protocol for a double-blind randomized controlled trial using multimodal assessments. Front Neurol. 2019;10:248. doi: 10.3389/fneur.2019.00248
Othman MH, Møller K, Kjaergaard J, et al. Detecting signatures of consciousness in acute brain injury after stimulation with apomorphine and methylphenidate: protocol for a placebo-controlled, randomized, cross-over study. BMJ Neurol Open. 2024;6(1):e000584. doi: 10.1136/bmjno-2023-000584
Natishyn M, Trevino LA, Lorduy K, et al. Catecholamines and Behavior. In: Ramachandran VS, editor. Encyclopedia of human behavior. 2nd ed. Elsevier; 2012. p. 434–440. doi: 10.1016/B978-0-12-375000-6.00081-1
Pitzianti MB, Spiridigliozzi S, Bartolucci E, et al. New insights on the effects of methylphenidate in attention deficit hyperactivity disorder. Front Psychiatry. 2020;11:531092. doi: 10.3389/fpsyt.2020.531092
Adams J, Alipio-Jocson V, Inoyama K, et al. Methylphenidate, cognition, and epilepsy: a double-blind, placebo-controlled, single-dose study. Neurology. 2017;88(5):470–476. doi: 10.1212/WNL.0000000000003564
Piguet O, King AC, Harrison DP. Assessment of minimally responsive patients: clinical difficulties of single-case design. Brain Inj. 1999;13(10):829–837. doi: 10.1080/026990599121223
Wroblewski BA, Gtenn MB. Pharmacological treatment of arousal and cognitive deficits. J Head Trauma Rehabil. 1994;9(3):19–42. doi: 10.1097/00001199-199409000-00004
Martin RT, Whyte J. The effects of methylphenidate on command following and yes/no communication in persons with severe disorders of consciousness: a meta-analysis of n-of-1 studies. Am J Phys Med Rehabil. 2007;86(8):613–620. doi: 10.1097/PHM.0b013e3181154a84
Haddadi K, Shafizad M, Elyasi F, et al. Neuroprotective effects of methylphenidate on diffuse axonal injury in acute traumatic brain injury patients. Trauma Mon. 2022;27(6):616–625.
Boerwinkle VL, Sussman BL, Broman-Fulks J, et al. Treatable brain network biomarkers in children in coma using task and resting-state functional MRI: a case series. Front Neurol. 2023;14:1227195. doi: 10.3389/fneur.2023.1227195
Levin H, Troyanskaya M, Petrie J, et al. Methylphenidate treatment of cognitive dysfunction in adults after mild to moderate traumatic brain injury: rationale, efficacy, and neural mechanisms. Front Neurol. 2019;10:925. doi: 10.3389/fneur.2019.00925
Edlow BL, Barra ME, Zhou DW, et al. Personalized connectome mapping to guide targeted therapy and promote recovery of consciousness in the intensive care unit. Neurocrit Care. 2020;33(2):364–375. doi: 10.1007/s12028-020-01062-7
O’Malley MB, Gleeson SK, Weir ID. Chapter 45 - wake-promoting medications: efficacy and adverse effects. In: Kryger M, Roth T, Dement W, editors. Principles and practice of sleep medicine. Fifth ed. Philadelphia: W.B. Saunders; 2011. p. 527–541.
Dhamapurkar SK, Wilson BA, Rose A, et al. Does modafinil improve the level of consciousness for people with a prolonged disorder of consciousness? a retrospective pilot study. Disabil Rehabil. 2017;39(26):2633–2639. doi: 10.1080/09638288.2016.1236414
Formica F, Pozzi M, Avantaggiato P, et al. Disordered consciousness or disordered wakefulness? The importance of prolonged polysomnography for the diagnosis, Drug therapy, and rehabilitation of an unresponsive patient with brain injury. J Clin Sleep Med. 2017;13(12):1477–1481. doi: 10.5664/jcsm.6854
Passler MA, Riggs RV. Positive outcomes in traumatic brain injury–vegetative state: patients treated with bromocriptine. Arch Phys Med Rehabil. 2001;82(3):311–315. doi: 10.1053/apmr.2001.20831
Munakomi S, Bhattarai B, Mohan Kumar B. Role of bromocriptine in multi-spectral manifestations of traumatic brain injury. Chin J Traumatol. 2017;20(2):84–86. doi: 10.1016/j.cjtee.2016.04.009
Otero Villaverde S, Martin Mourelle R, Crespo Lopez C, et al. Uso de bromocriptina en pacientes con alteración de conciencia secundaria a traumatismo craneoencefálico. Rehabilitación. 2019;53(3):155–161. doi: 10.1016/j.rh.2019.03.001
Masotta O, Trojano L, Loreto V, et al. Selegiline in patients with disorder of consciousness: an open Pilot study. Can J Neurol Sci. 2018;45(6):688–691. doi: 10.1017/cjn.2018.315
USFaDA. ELDEPRYL®(SELEGILINE HYDROCHLORIDE). 2008 [2025 Feb5]. Available from:https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/020647s006s007lbl.pdf
Edlow BL, Sanz LRD, Polizzotto L, et al. Therapies to restore consciousness in patients with severe brain injuries: a gap analysis and future directions. Neurocrit Care. 2021;35(Suppl S1):68–85. doi: 10.1007/s12028-021-01227-y
Clauss RP, Güldenpfennig WM, Nel HW, et al. Extraordinary arousal from semi-comatose state on zolpidem. A case report. S Afr Med J. 2000;90(1):68–72.
Thonnard M, Gosseries O, Demertzi A, et al. Effect of zolpidem in chronic disorders of consciousness: a prospective open-label study. Funct Neurol. 2013;28(4):259–264.
Du B, Shan A, Zhang Y, et al. Zolpidem arouses patients in vegetative state after brain injury: quantitative evaluation and indications. Am J Med Sci. 2014;347(3):178–182. doi: 10.1097/MAJ.0b013e318287c79c
Machado C, Estévez M, Rodríguez R, et al. Zolpidem arousing effect in persistent vegetative state patients: autonomic, EEG and behavioral assessment. Curr Pharm Des. 2014;20(26):4185–4202.
Whyte J, Rajan R, Rosenbaum A, et al. Zolpidem and restoration of consciousness. Am J Phys Med Rehabil. 2014;93(2):101–113. doi: 10.1097/PHM.0000000000000069
Zhang B, O’Brien K, Won W, et al. A retrospective analysis on clinical practice-based approaches using Zolpidem and lorazepam in disorders of consciousness. Brain Sci. 2021;11(6):726. doi: 10.3390/brainsci11060726
Shafiee S, Ehteshami S, Moosazadeh M, et al. Placebo-controlled trial of oral amantadine and zolpidem efficacy on the outcome of patients with acute severe traumatic brain injury and diffuse axonal injury. Caspian J Intern Med. 2022;13(1):113–121. doi: 10.22088/cjim.13.1.113
Appu M, Noetzel M. Clinically significant response to zolpidem in disorders of consciousness secondary to anti-N-methyl-D-aspartate receptor encephalitis in a teenager: a case report. Pediatr Neurol. 2014;50(3):262–264. doi: 10.1016/j.pediatrneurol.2013.11.001
Bomalaski MN, Smith SR. Improved arousal and motor function using zolpidem in a patient with space-occupying intracranial lesions: a case report. Pm R. 2017;9(8):831–833. doi: 10.1016/j.pmrj.2016.12.011
Delargy M, O’Connor R, McCann A, et al. An analysis of the effects of using Zolpidem and an innovative multimodal interdisciplinary team approach in prolonged disorders of consciousness (PDOC). Brain Inj. 2019;33(2):242–248. doi: 10.1080/02699052.2018.1537008
Desmarais LM, Milleville KA, Wagner AK. Postoperative treatment of intracranial hypotension venous congestion–associated brain injury with zolpidem. Am J Phys Med Rehabil. 2021;100(6):e89–e92. doi: 10.1097/PHM.0000000000001595
Zhou Y, Altonji KA, Kakkanatt A, et al. Speech recovery after single-dose zolpidem in two minimally conscious patients with severe traumatic brain injuries: a case report. Brain Inj. 2024;38(5):337–340. doi: 10.1080/02699052.2024.2311342
Arnts H, Tewarie P, van Erp W, et al. Deep brain stimulation of the central thalamus restores arousal and motivation in a zolpidem-responsive patient with akinetic mutism after severe brain injury. Sci Rep. 2024;14(1):2950. doi: 10.1038/s41598-024-52267-1
Whyte J, Myers R. Incidence of clinically significant responses to zolpidem among patients with disorders of consciousness: a preliminary placebo controlled trial. Am J Phys Med Rehabil. 2009;88(5):410–418. doi: 10.1097/PHM.0b013e3181a0e3a0
Khalili H, Rakhsha A, Ghaedian T, et al. Application of brain perfusion SPECT in the evaluation of response to zolpidem therapy in consciousness disorder due to traumatic brain injury. Indian J Nucl Med. 2020;35(4):315–320. doi: 10.4103/ijnm.IJNM_97_20
Gao Q, Hao J, Kang X, et al. EEG dynamics induced by zolpidem forecast consciousness evolution in prolonged disorders of consciousness. Clin Neurophysiol. 2023;153:46–56. doi: 10.1016/j.clinph.2023.06.012
Greenblatt DJ, Roth T. Zolpidem for insomnia. Expert Opin Pharmacother. 2012;13(6):879–893. doi: 10.1517/14656566.2012.667074
Lombardi F, Taricco M, De Tanti A, et al. Sensory stimulation of brain-injured individuals in coma or vegetative state: results of a Cochrane systematic review. Clin Rehabil. 2002;16(5):464–472. doi: 10.1191/0269215502cr519oa
Sripad P, Rosenberg J, Boers F, et al. Effect of zolpidem in the aftermath of traumatic brain injury: an MEG study. Case Rep Neurol Med. 2020;2020:1–8. doi: 10.1155/2020/8597062
Arnts H, van Erp WS, Boon LI, et al. Awakening after a sleeping pill: restoring functional brain networks after severe brain injury. Cortex. 2020;132:135–146. doi: 10.1016/j.cortex.2020.08.011
Nardone R, Sebastianelli L, Brigo F, et al. Effects of intrathecal baclofen therapy in subjects with disorders of consciousness: a reappraisal. J Neural Transm (Vienna). 2020;127(9):1209–1215. doi: 10.1007/s00702-020-02233-8
Laureys S, Faymonville ME, Luxen A, et al. Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet. 2000;355(9217):1790–1791. doi: 10.1016/S0140-6736(00)02271-6
Sarà M, Pistoia F, Mura E, et al. Intrathecal baclofen in patients with persistent vegetative state: 2 hypotheses. Arch Phys Med Rehabil. 2009;90(7):1245–1249. doi: 10.1016/j.apmr.2009.01.012
Halbmayer LM, Kofler M, Hitzenberger G, et al. On the recovery of disorders of consciousness under intrathecal baclofen administration for severe spasticity—an observational study. Brain Behav. 2022;12(5):e2566. doi: 10.1002/brb3.2566
Hoarau X, Richer E, Dehail P, et al. Comparison of long-term outcomes of patients with severe traumatic or hypoxic brain injuries treated with intrathecal baclofen therapy for dysautonomia. Brain Inj. 2012;26(12):1451–1463. doi: 10.3109/02699052.2012.694564
Romito JW, Turner ER, Rosener JA, et al. Baclofen therapeutics, toxicity, and withdrawal: a narrative review. SAGE Open Med. 2021;9:20503121211022197. doi: 10.1177/20503121211022197
Mancuso CE, Tanzi MG, Gabay M. Paradoxical reactions to benzodiazepines: literature review and treatment options. Pharmacotherapy. 2004;24(9):1177–1185. doi: 10.1592/phco.24.13.1177.38089
Carboncini MC, Piarulli A, Virgillito A, et al. A case of post-traumatic minimally conscious state reversed by midazolam: clinical aspects and neurophysiological correlates. Restor Neurol Neurosci. 2014;32(6):767–787. doi: 10.3233/RNN-140426
Nordt SP, Clark RF. Midazolam: a review of therapeutic uses and toxicity. J Emerg Med. 1997;15(3):357–365. doi: 10.1016/S0736-4679(97)00022-X
Serretti A, Calati R, Goracci A, et al. Antidepressants in healthy subjects: what are the psychotropic/psychological effects?Eur Neuropsychopharmacol. 2010;20(7):433–453. doi: 10.1016/j.euroneuro.2009.11.009
Yue JK, Burke JF, Upadhyayula PS, et al. Selective serotonin reuptake inhibitors for treating neurocognitive and neuropsychiatric disorders following traumatic brain injury: an evaluation of current evidence. Brain Sci. 2017;7(8):93. doi: 10.3390/brainsci7080093
Routledge PA, Hutchings AD. Chapter 9.22 - therapeutic drug monitoring (TDM). In: Wild D, editor. The immunoassay handbook. 4th ed. Oxford: Elsevier; 2013. p. 945–962.
Feldman A, Weaver J. Pharmacologic and nonpharmacologic management of neuropathic pain. Semin Neurol. 2025;45(1):145–156. doi: 10.1055/s-0044-1791770
Wroblewski B, Glenn MB, Cornblatt R, et al. Protriptyline as an alternative stimulant medication in patients with brain injury: a series of case reports. Brain Inj. 1993;7(4):353–362. doi: 10.3109/02699059309034962
Reinhard DL, Whyte J, Sandel E. Improved arousal and initiation following tricyclic antidepressant use in severe brain injury. Arch Phys Med Rehabil. 1996;77(1):80–83. doi: 10.1016/S0003-9993(96)90225-7
Babu S, Li Y. Statin induced necrotizing autoimmune myopathy. J Neurol Sci. 2015;351(1–2):13–17. doi: 10.1016/j.jns.2015.02.042
Naghibi T, Madani S, Mazloomzadeh S, et al. Simvastatin’s effects on survival and outcome in traumatic braininjury patients: a comparative study. Turk J Med Sci. 2016;46(1):1–5. doi: 10.3906/sag-1404-125
Shafiee S, Zali A, Shafizad M, et al. The effect of oral simvastatin on the clinical outcome of patients with severe traumatic brain injury: a randomized clinical trial. Ethiop J Health Sci. 2021;31(4):807–816. doi: 10.4314/ejhs.v31i4.15
Zhou X, Chen J, Wang C, et al. Anti‑inflammatory effects of simvastatin in patients with acute intracerebral hemorrhage in an intensive care unit. Exp Ther Med. 2017;14(6):6193–6200. doi: 10.3892/etm.2017.5309
Susanto M, Pangihutan Siahaan AM, Wirjomartani BA, et al. The neuroprotective effect of statin in traumatic brain injury: a systematic review. World Neurosurg: X. 2023;19:100211. doi: 10.1016/j.wnsx.2023.100211
Polatin PB, Dersh J. Psychotropic medication in chronic spinal disorders. The Spine J. 2004;4(4):436–450. doi: 10.1016/j.spinee.2004.01.012
Tisserand R, Young R. 10 - the nervous system. In: Tisserand R, Young R, editors. Essential oil safety. 2nd ed. St. Louis: Churchill Livingstone; 2014. p. 131–146.
Briand MM, Lejeune N, Zasler N, et al. Management of epileptic seizures in disorders of consciousness: an International survey. Front Neurol. 2021;12:799579. doi: 10.3389/fneur.2021.799579
Showalter PE, Kimmel DN. Stimulating consciousness and cognition following severe brain injury: a new potential clinical use for lamotrigine. Brain Inj. 2000;14(11):997–1001. doi: 10.1080/02699050050191931
Ng M, Ali S, Sue J, et al. Beneficial cognitive effect of lamotrigine in severe acquired brain injury: a case report. Interdiscip Neurosurg. 2021;25:101186. doi: 10.1016/j.inat.2021.101186
Hérault C, André-Obadia N, Naccache L, et al. Potential therapeutic effect of Lamotrigine in disorders of consciousness after severe traumatic brain injury: a series of 4 cases. Ann Phys Rehabil Med. 2024;67(8):101868. doi: 10.1016/j.rehab.2024.101868
Cho SM, Robba C, Diringer MN, et al. Optimal design of clinical trials involving persons with disorders of consciousness. Neurocrit Care. 2024;40(1):74–80. doi: 10.1007/s12028-023-01813-2
Das MK. Multicenter studies: relevance, design and implementation. Indian Pediatr. 2022;59(7):571–579. doi: 10.1007/s13312-022-2561-y
Neurocritical care society. Curing coma campaign. 2019 [2025 Feb5]. Available from:https://www.curingcoma.org/
Pignat JM, Jöhr J, Diserens K. From disorders of consciousness to early neurorehabilitation using assistive technologies in patients with severe brain damage. Curr Opin Neurol. 2015;28(6):587–594. doi: 10.1097/WCO.0000000000000264
Driessen DMF, Utens CMA, Ribbers PGM, et al. Short-term outcomes of early intensive neurorehabilitation for prolonged disorders of consciousness: a prospective cohort study. Ann Phys Rehabil Med. 2024;67(5):101838. doi: 10.1016/j.rehab.2024.101838
Alkhachroum A, Eliseyev A, Der-Nigoghossian CA, et al. EEG to detect early recovery of consciousness in amantadine-treated acute brain injury patients. J Neurol Neurosurg Psychiatry. 2020;91(6):675–676. doi: 10.1136/jnnp-2019-322645
De Koninck BP, Brazeau D, Deshaies AA, et al. Modulation of brain activity in brain-injured patients with a disorder of consciousness in intensive care with repeated 10-Hz transcranial alternating current stimulation (tACS): a randomised controlled trial protocol. BMJ Open. 2024;14(7):e078281. doi: 10.1136/bmjopen-2023-078281
Duclos C, Maschke C, Mahdid Y, et al. Brain responses to propofol in advance of recovery from coma and disorders of consciousness: a preliminary study. Am J Respir Crit Care Med. 2022;205(2):171–182. doi: 10.1164/rccm.202105-1223OC
Nichol AD, Higgins AM, Gabbe BJ, et al. Measuring functional and quality of life outcomes following major head injury: common scales and checklists. Injury. 2011;42(3):281–287. doi: 10.1016/j.injury.2010.11.047
Mat B, Sanz LRD, Arzi A, et al. New behavioral signs of consciousness in patients with severe brain injuries. Semin Neurol. 2022;42(3):259–272. doi: 10.1055/a-1883-0861
van Ommen HJ, Thibaut A, Vanhaudenhuyse A, et al. Resistance to eye opening in patients with disorders of consciousness. J Neurol. 2018;265(6): 1376–1380. doi: 10.1007/s00415-018-8849-0
Magliacano A, Rosenfelder M, Hieber N, et al. Spontaneous eye blinking as a diagnostic marker in prolonged disorders of consciousness. Sci Rep. 2021;11(1):22393. doi: 10.1038/s41598-021-01858-3
Hermann B, Goudard G, Courcoux K, et al. Wisdom of the caregivers: pooling individual subjective reports to diagnose states of consciousness in brain-injured patients, a monocentric prospective study. BMJ Open. 2019;9(2):e026211. doi: 10.1136/bmjopen-2018-026211
Arzi A, Rozenkrantz L, Gorodisky L, et al. Olfactory sniffing signals consciousness in unresponsive patients with brain injuries. Nature. 2020;581(7809):428–433. doi: 10.1038/s41586-020-2245-5
Blain-Moraes S, Racine E, Mashour GA. Consciousness and personhood in medical care. Front Hum Neurosci. 2018;12:306. doi: 10.3389/fnhum.2018.00306
Graham M, Naci L. Well-being after severe brain injury: what counts as good recovery?Camb Q Healthc Ethics. 2021;30(4):613–622. doi: 10.1017/S0963180121000086
Kitzinger C, Kitzinger J. Withdrawing artificial nutrition and hydration from minimally conscious and vegetative patients: family perspectives. J Med Ethics. 2015;41(2):157–160. doi: 10.1136/medethics-2013-101799
von Steinbüchel N, Wilson L, Gibbons H, et al. Quality of life after brain injury (QOLIBRI): scale validity and correlates of quality of life. J Neurotrauma. 2010;27(7):1157–1165. doi: 10.1089/neu.2009.1077
Al Tannir AH, Pokrzywa CJ, Sparapani R, et al. Can we actually predict long-term patient satisfaction after traumatic brain injury?J Surg Res. 2024;301:269–279. doi: 10.1016/j.jss.2024.06.006
Jacobsson L, Lexell J. Life satisfaction after traumatic brain injury: comparison of ratings with the life satisfaction questionnaire (LiSat-11) and the satisfaction with life scale (SWLS). Health Qual Life Outcomes. 2016;14(1):10. doi: 10.1186/s12955-016-0405-y
Rodríguez-Hernández M, Criado-Álvarez JJ, Corregidor-Sánchez AI, et al. Effects of virtual reality-based therapy on quality of life of patients with subacute stroke: a three-month follow-up randomized controlled trial. Int J Environ Res Public Health. 2021;18(6):2810. doi: 10.3390/ijerph18062810
Tung J, Speechley KN, Gofton T, et al. Towards the assessment of quality of life in patients with disorders of consciousness. Qual Life Res. 2020;29(5):1217–1227. doi: 10.1007/s11136-019-02390-8
Davidson RJ. Well–being and affective style: neural substrates and biobehavioural correlates. Philos Trans R Soc Lond B Biol Sci. 2004;359(1449):1395–1411. doi: 10.1098/rstb.2004.1510
Seel RT, Douglas J, Dennison AC, et al. Specialized early treatment for persons with disorders of consciousness: program components and outcomes. Arch Phys Med Rehabil. 2013;94(10):1908–1923. doi: 10.1016/j.apmr.2012.11.052
Balkan S, Spigel P, Quartano J, et al. The use of assisted technologies in early aggressive mobilization with an individual in a minimally conscious state: a case report. Disabil Rehabil Assist Technol. 2023;18(8):1303–1309. doi: 10.1080/17483107.2021.2002443
Russell ME, Hammond FM, Murtaugh B, et al. Prognosis and enhancement of recovery in disorders of consciousness. NeuroRehabilitation. 2024;54(1):43–59. doi: 10.3233/NRE-230148
Campbell JM, Huang Z, Zhang J, et al. Pharmacologically informed machine learning approach for identifying pathological states of unconsciousness via resting-state fMRI. Neuroimage. 2020;206:116316. doi: 10.1016/j.neuroimage.2019.116316
Stender J, Gosseries O, Bruno MA, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet. 2014;384(9942):514–522. doi: 10.1016/S0140-6736(14)60042-8
Chennu S, Annen J, Wannez S, et al. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness. Brain. 2017;140(8):2120–2132. doi: 10.1093/brain/awx163
Bai Y, Lin Y, Ziemann U. Managing disorders of consciousness: the role of electroencephalography. J Neurol. 2021;268(11):4033–4065. doi: 10.1007/s00415-020-10095-z
Toker D, Pappas I, Lendner JD, et al. Consciousness is supported by near-critical slow cortical electrodynamics. Proc Natl Acad Sci U S A. 2022;119(7). doi: 10.1073/pnas.2024455119
Toker D, Müller E, Miyamoto H, et al. Criticality supports cross-frequency cortical-thalamic information transfer during conscious states. Elife. 2024;13. doi: 10.7554/eLife.86547
Gervais C, Boucher LP, Villar GM, et al. A scoping review for building a criticality-based conceptual framework of altered states of consciousness. Front Syst Neurosci. 2023;17:1085902. doi: 10.3389/fnsys.2023.1085902
Cardone P, Alnagger N, Annen J, et al. Psychedelics and disorders of consciousness: the current landscape and the path forward. Neurosci Conscious. 2024;2024(1):niae025. doi: 10.1093/nc/niae025
Sarasso S, Casali AG, Casarotto S, et al. Consciousness and complexity: a consilience of evidence. Neurosci Conscious. 2021;2021(2):niab023. doi: 10.1093/nc/niab023
Tononi G, Boly M, Massimini M, et al. Integrated information theory: from consciousness to its physical substrate. Nat Rev Neurosci. 2016;17(7):450–461. doi: 10.1038/nrn.2016.44
Tononi G. Consciousness as integrated information: a provisional manifesto. Biol Bull. 2008;215(3):216–242. doi: 10.2307/25470707
Carhart-Harris RL, Friston KJ. REBUS and the anarchic brain: toward a unified model of the brain action of psychedelics. Pharmacol Rev. 2019;71(3):316–344. doi: 10.1124/pr.118.017160
Massimini M, Ferrarelli F, Huber R, et al. Breakdown of cortical effective connectivity during sleep. Science. 2005;309(5744):2228–2232. doi: 10.1126/science.1117256
Demertzi A, Tagliazucchi E, Dehaene S, et al. Human consciousness is supported by dynamic complex patterns of brain signal coordination. Sci Adv. 2019;5(2):eaat7603. doi: 10.1126/sciadv.aat7603
Schartner MM, Carhart-Harris RL, Barrett AB, et al. Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin. Sci Rep. 2017;7(1):46421. doi: 10.1038/srep46421
Viol A, Palhano-Fontes F, Onias H, et al. Shannon entropy of brain functional complex networks under the influence of the psychedelic Ayahuasca. Sci Rep. 2017;7(1):7388. doi: 10.1038/s41598-017-06854-0
Schartner MM, Pigorini A, Gibbs SA, et al. Global and local complexity of intracranial EEG decreases during NREM sleep. Neurosci Conscious. 2017;2017(1):niw022. doi: 10.1093/nc/niw022
Sarasso S, Boly M, Napolitani M, et al. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr Biol. 2015;25(23):3099–3105. doi: 10.1016/j.cub.2015.10.014
Scott G, Carhart-Harris RL. Psychedelics as a treatment for disorders of consciousness. Neurosci Conscious. 2019;2019(1):niz003. doi: 10.1093/nc/niz003
Sportiello L, Capuano A. Sex and gender differences and pharmacovigilance: a knot still to be untied. Front Pharmacol. 2024;15:1397291. doi: 10.3389/fphar.2024.1397291
Sulhan S, Lyon KA, Shapiro LA, et al. Neuroinflammation and blood–brain barrier disruption following traumatic brain injury: pathophysiology and potential therapeutic targets. J Neurosci Res. 2020;98(1):19–28. doi: 10.1002/jnr.24331
Guerriero RM, Giza CC, Rotenberg A. Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep. 2015;15(5):27. doi: 10.1007/s11910-015-0545-1
Candelario-Jalil E, Dijkhuizen RM, Magnus T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke. 2022;53(5):1473–1486. doi: 10.1161/STROKEAHA.122.036946
Coppola L, Smaldone G, Grimaldi AM, et al. Peripheral blood BDNF and soluble CAM proteins as possible markers of prolonged disorders of consciousness: a pilot study. Sci Rep. 2024;14(1):341. doi: 10.1038/s41598-023-50581-8
Musso N, Bivona D, Bonomo C, et al. Investigating microRNAs as biomarkers in disorders of consciousness: a longitudinal multicenter study. Sci Rep. 2023;13(1):18415. doi: 10.1038/s41598-023-45719-7
Wang WT, Chen YY, Wu SL, et al. Zolpidem dramatically improved motor and speech function in a patient with central pontine myelinolysis. Eur J Neurol. 2007;14(10):e9–10. doi: 10.1111/j.1468-1331.2007.01921.x
Echizenya M, Iwaki S, Suda H, et al. Paradoxical reactions to hypnotic agents in adolescents with free-running disorder. Psychiatry Clin Neurosci. 2009;63(3):428. doi: 10.1111/j.1440-1819.2009.01958.x
Hall SD, Yamawaki N, Fisher AE, et al. GABA(A) alpha-1 subunit mediated desynchronization of elevated low frequency oscillations alleviates specific dysfunction in stroke–a case report. Clin Neurophysiol. 2010;121(4):549–555. doi: 10.1016/j.clinph.2009.11.084
Daniele A, Panza F, Greco A, et al. Can a positive allosteric modulation of GABAergic receptors improve motor symptoms in patients with Parkinson’s disease? The potential role of zolpidem in the treatment of Parkinson’s disease. Parkinson's Dis. 2016;2016:1–14. doi: 10.1155/2016/2531812
Lyu X, Hu Y, Zhao Y, et al. Euphoric effect induced by zolpidem: a case study of magnetoencephalography. Gen Psychiatr. 2022;35(1):e100729. doi: 10.1136/gpsych-2021-100729
Boisgontier J, Beccaria K, Saitovitch A, et al. Case report: Zolpidem’s paradoxical restorative action: a case report of functional brain imaging. Front Neurosci. 2023;17:1127542. doi: 10.3389/fnins.2023.1127542
Sabe M, Kashef H, Gironi C, et al. Zolpidem stimulant effect: induced mania case report and systematic review of cases. Prog Neuropsychopharmacol Biol Psychiatry. 2019;94:109643. doi: 10.1016/j.pnpbp.2019.109643
Chattopadhyay AC, Shukla L, Kandasamy A, et al. High-dose zolpidem dependence - psychostimulant effects? A case report and literature review. Ind Psychiatry J. 2016;25(2):222–224. doi: 10.4103/ipj.ipj_80_14
Ohshima H, Kotorii N, Takii M, et al. Polysomnographic sleep disturbances due to high-dose Zolpidem use: a case report. J Clin Sleep Med. 2018;14(11):1949–1952. doi: 10.5664/jcsm.7500
Lee M, Laureys S. Artificial intelligence and machine learning in disorders of consciousness. Curr Opin Neurol. 2024;37(6):614–620. doi: 10.1097/WCO.0000000000001322
Luppi AI, Cabral J, Cofre R, et al. Computational modelling in disorders of consciousness: closing the gap towards personalised models for restoring consciousness. Neuroimage. 2023;275:120162. doi: 10.1016/j.neuroimage.2023.120162
Mindlin I, Herzog R, Belloli L, et al. Whole brain modelling for simulating pharmacological interventions on patients with disorders of consciousness. Commun Biol. 2024;7(1):1176. doi: 10.1038/s42003-024-06852-9
O’Donnell JC, Browne KD, Kilbaugh TJ, et al. Challenges and demand for modeling disorders of consciousness following traumatic brain injury. Neurosci Biobehav Rev. 2019;98:336–346. doi: 10.1016/j.neubiorev.2018.12.015
Maschke C, O’Byrne J, Colombo MA, et al. Critical dynamics in spontaneous EEG predict anesthetic-induced loss of consciousness and perturbational complexity. Commun Biol. 2024;7(1):946. doi: 10.1038/s42003-024-06613-8
van der Lande GJM, Casas-Torremocha D, Manasanch A, et al. Brain state identification and neuromodulation to promote recovery of consciousness. Brain Commun. 2024;6(5):fcae362. doi: 10.1093/braincomms/fcae362
Lahaie L, Girard Pepin R, Bazregarzadeh H, et al. Brief propofol sedation seems to improve EEG power spectral dynamics in unresponsive patients: a pilot study using the ABCD mesocircuit model. J Neurosurg Anesthesiol. 2024;31(1):e41. doi: 10.1097/ANA.0000000000001013
Girard Pepin R, Lahaie L, Bazregarzadeh H, et al. Changes in spectral characteristics of hd-EEG showcase the potentially beneficial effects of propofol in unresponsive patients. J Neurosurg Anesthesiol. 2024;37(1):e31. doi: 10.1097/ANA.0000000000001013
Toker D, Chiang J, Vespa PM, et al. The dipeptidyl peptidase-4 inhibitor saxagliptin as a candidate treatment for disorders of consciousness: a deep learning and retrospective clinical analysis. Neurocritical Care. 2025. doi: 10.1007/s12028-025-02217-0
Cardone P, Núñez P, Alnagger N, et al. Psilocybin for disorders of consciousness: a case-report study. Clin Neurophysiol. 2025;173:181–189. doi: 10.1016/j.clinph.2025.02.264
Cardone P, Bonhomme A, Bonhomme V, et al. A pilot human study using ketamine to treat disorders of consciousness. iScience. 2025;28(1):111639. doi: 10.1016/j.isci.2024.111639
Saleh C, Andrykiewicz A, Hund-Georgiadis M. Does madopar have a role in the treatment of prolonged disorders of consciousness? A call for randomized controlled trials. Case Rep Neurol. 2021;13(3):781–788. doi: 10.1159/000520435
Ge Q, Wang Y, Zhuang Y, et al. Opioid-induced short-term consciousness improvement in patients with disorders of consciousness. Front Neurosci. 2023;17:1117655. doi: 10.3389/fnins.2023.1117655
Maschke C, Duclos C, Owen AM, et al. Aperiodic brain activity and response to anesthesia vary in disorders of consciousness. Neuroimage. 2023;275:120154. doi: 10.1016/j.neuroimage.2023.120154
Maschke C, Duclos C, Blain-Moraes S. Paradoxical markers of conscious levels: effects of propofol on patients in disorders of consciousness. Front Hum Neurosci. 2022;16:992649. doi: 10.3389/fnhum.2022.992649
Calabrò RS, Aricò I, De Salvo S, et al. Transient awakening from vegetative state: is high-dose zolpidem more effective?Psychiatry Clin Neurosci. 2015;69(2):122–123. doi: 10.1111/pcn.12215
Zheng ZL, Wang XP, Hu YF, et al. Propofol suppresses ferroptosis via modulating eNOS/NO signaling pathway to improve traumatic brain injury. Brain Behav. 2024;14(12):e70187. doi: 10.1002/brb3.70187
Berkovitch L, Roméo B, Karila L, et al. Efficacité des psychédéliques en psychiatrie, une revue systématique. Encephale. 2021;47(4):376–387. doi: 10.1016/j.encep.2020.12.002
Timmermann C, Roseman L, Haridas S, et al. Human brain effects of DMT assessed via EEG-fMRI. Proc Natl Acad Sci U S A. 2023;120(13):e2218949120. doi: 10.1073/pnas.2218949120
Farnes N, Juel BE, Nilsen AS, et al. Increased signal diversity/complexity of spontaneous EEG, but not evoked EEG responses, in ketamine-induced psychedelic state in humans. PLOS ONE. 2020;15(11):e0242056. doi: 10.1371/journal.pone.0242056
Cano GH, Dean J, Abreu SP, et al. Key characteristics and development of psychoceuticals: a review. Int J Mol Sci. 2022;23(24):15777. doi: 10.3390/ijms232415777
Peterson A, Tagliazucchi E, Weijer C. The ethics of psychedelic research in disorders of consciousness. Neurosci Conscious. 2019;2019(1):niz013. doi: 10.1093/nc/niz013
Nutt DJ, King LA, Phillips LD. Drug harms in the UK: a multicriteria decision analysis. Lancet. 2010;376(9752):1558–1565. doi: 10.1016/S0140-6736(10)61462-6
Rankaduwa S, Owen AM. Psychedelics, entropic brain theory, and the taxonomy of conscious states: a summary of debates and perspectives. Neurosci Conscious. 2023;2023(1):niad001. doi: 10.1093/nc/niad001
Lee S, Lee HH, Lee Y, et al. Additive effect of cerebrolysin and amantadine on disorders of consciousness secondary to acquired brain injury: a retrospective case-control study. J Rehabil Med. 2020;52(2):jrm00025. doi: 10.2340/16501977-2654
Bender Pape TL, Herrold AA, Livengood SL, et al. A Pilot trial examining the merits of combining amantadine and repetitive transcranial magnetic stimulation as an intervention for persons with disordered consciousness after TBI. J Head Trauma Rehabil. 2020;35(6):371–387. doi: 10.1097/HTR.0000000000000634