Paper published in a book (Scientific congresses and symposiums)
On Projective Delineability
Michel, Lucas; Nalbach, Jasper; Mathonet, Pierre et al.
2024In Proceedings - 2024 26th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2024
Peer reviewed
 

Files


Full Text
SYNASC_2024___On_Projective_Delineability.pdf
Author postprint (991.52 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
(Projective) Delineability; Cylindrical Algebraic Decomposition; Non-linear Real Arithmetic; Real arithmetic; Computational Mathematics; Mathematics - Algebraic Geometry; Computer Science - Symbolic Computation
Abstract :
[en] We consider cylindrical algebraic decomposition (CAD) and the key concept of delineability which underpins CAD theory. We introduce the novel concept of projective delineability which is easier to guarantee computationally. We prove results about this which can allow reduced CAD computations.
Disciplines :
Mathematics
Computer science
Author, co-author :
Michel, Lucas  ;  Université de Liège - ULiège > Département de mathématique > Géométrie différentielle
Nalbach, Jasper;  RWTH Aachen University, Germany
Mathonet, Pierre ;  Université de Liège - ULiège > Département de mathématique > Géométrie différentielle
Zenaïdi, Naïm  ;  Université de Liège - ULiège > Département de mathématique
Brown, Christopher W.;  United States Naval Academy, United States
Abraham, Erika;  RWTH Aachen University, Germany
Davenport, James H.;  University of Bath, United Kingdom
England, Matthew;  Coventry University, United Kingdom
Language :
English
Title :
On Projective Delineability
Publication date :
2024
Event name :
2024 26th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)
Event place :
Timisoara, Rou
Event date :
16-09-2024 => 19-09-2024
By request :
Yes
Audience :
International
Main work title :
Proceedings - 2024 26th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2024
Publisher :
Institute of Electrical and Electronics Engineers Inc., United States
ISBN/EAN :
9798331532833
Peer review/Selection committee :
Peer reviewed
Funders :
DFG - Deutsche Forschungsgemeinschaft
COST - European Cooperation in Science and Technology
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
P.~Mathonet, L.~Michel and N.~Zenaïdi are supported by the FNRS-DFG PDR Weaves (SMT-ART) grant 40019202. E.~Ábrahám and J.~Nalbach are supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as part of AB 461/9-1 \emph{SMT-ART}. J.~Nalbach is supported by the DFG as part of RTG 2236 \emph{UnRAVeL}. M.~England and J.~Davenport are supported by the UKRI EPSRC DEWCAD Project (grant EP/T015748/1 and EP/T015713/1 respectively). J.~Davenport is funded by the DFG under Germany's Excellence Strategy (EXC-2047/1 – 390685813). This publication is based upon work from COST Action EuroProofNet, supported by COST (European Cooperation in Science and Technology, www.cost.eu)
Available on ORBi :
since 20 May 2025

Statistics


Number of views
47 (7 by ULiège)
Number of downloads
2 (2 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi