Guidance for the Management of Patients with Vascular Disease or Cardiovascular Risk Factors and COVID-19: Position Paper from VAS-European Independent Foundation in Angiology/Vascular Medicine.
[en] COVID-19 is also manifested with hypercoagulability, pulmonary intravascular coagulation, microangiopathy, and venous thromboembolism (VTE) or arterial thrombosis. Predisposing risk factors to severe COVID-19 are male sex, underlying cardiovascular disease, or cardiovascular risk factors including noncontrolled diabetes mellitus or arterial hypertension, obesity, and advanced age. The VAS-European Independent Foundation in Angiology/Vascular Medicine draws attention to patients with vascular disease (VD) and presents an integral strategy for the management of patients with VD or cardiovascular risk factors (VD-CVR) and COVID-19. VAS recommends (1) a COVID-19-oriented primary health care network for patients with VD-CVR for identification of patients with VD-CVR in the community and patients' education for disease symptoms, use of eHealth technology, adherence to the antithrombotic and vascular regulating treatments, and (2) close medical follow-up for efficacious control of VD progression and prompt application of physical and social distancing measures in case of new epidemic waves. For patients with VD-CVR who receive home treatment for COVID-19, VAS recommends assessment for (1) disease worsening risk and prioritized hospitalization of those at high risk and (2) VTE risk assessment and thromboprophylaxis with rivaroxaban, betrixaban, or low-molecular-weight heparin (LMWH) for those at high risk. For hospitalized patients with VD-CVR and COVID-19, VAS recommends (1) routine thromboprophylaxis with weight-adjusted intermediate doses of LMWH (unless contraindication); (2) LMWH as the drug of choice over unfractionated heparin or direct oral anticoagulants for the treatment of VTE or hypercoagulability; (3) careful evaluation of the risk for disease worsening and prompt application of targeted antiviral or convalescence treatments; (4) monitoring of D-dimer for optimization of the antithrombotic treatment; and (5) evaluation of the risk of VTE before hospital discharge using the IMPROVE-D-dimer score and prolonged post-discharge thromboprophylaxis with rivaroxaban, betrixaban, or LMWH.
Disciplines :
Cardiovascular & respiratory systems
Author, co-author :
Gerotziafas, Grigoris T ; Hematology and Thrombosis Center, Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Faculté de Médecine, Sorbonne Université, Paris, France ; Research Group Cancer, Haemostasis and Angiogenesis," INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Faculty of Medicine, Sorbonne University, Paris, France
Catalano, Mariella; Research Center on Vascular Disease & Angiology Unit, Department of Biomedical Science, L Sacco Hospital, University of Milan, Milan, Italy
Colgan, Mary-Paula; Department of Vascular Surgery, St. James's Hospital/Trinity College Dublin, Dublin, Ireland
Pecsvarady, Zsolt; Department of Vascular Medicine, Flor Ferenc Teaching Hospital, Kistarcsa, Hungary
Wautrecht, Jean Claude; Service de Pathologie Vasculaire, Hôpital ERASME, Université Libre de Bruxelle, Brussels, Belgium
Fazeli, Bahare; Immunology Department, Avicenna (Bu-Ali) Research Institute, Mashhad University of Medical Sciences, Iran
Olinic, Dan-Mircea; Medical Clinic No. 1, University of Medicine and Pharmacy, Cluj-Napoca, Romania
Farkas, Katalin; Department of Angiology, St. Imre University Teaching Hospital, Budapest, Hungary
Elalamy, Ismail; Hematology and Thrombosis Center, Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Faculté de Médecine, Sorbonne Université, Paris, France ; Research Group Cancer, Haemostasis and Angiogenesis," INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Faculty of Medicine, Sorbonne University, Paris, France ; Department of Obstetrics and Gynecology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
Falanga, Anna; Department of Immunohematology and Transfusion Medicine, & the Thrombosis and Hemostasis Center, Hospital Papa Giovanni XXIII, Bergamo, Italy
Fareed, Jawed; Department of Pathology, Loyola University Medical Center, Maywood, Illinois, United States
Papageorgiou, Chryssa; Service Anesthésie, Réanimation et Médecine Périopératoire, Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Faculté de médecine, Sorbonne Université, Paris, France
Arellano, Rosella S; Philippine Society of Vascular Medicine, Manila, Philippine
Agathagelou, Petros; Department of Inrterventional Cardiology, American Heart Institute of Cyprus, Nicosia, Cyprus
Antic, Darco; Clinic for Hematology, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
Auad, Luciana; Medicina Vascular, Sanatorio Allende Córdoba, Ciencias Médicas, Universidad Católica de Córdoba, Argentina
Banfic, Ljiljana; University Hospital Center, School of Medicine University of Zagreb, Croatia
Bartolomew, John R; Cleveland Clinic, Cleveland, Ohio, United States
Benczur, Bela; Balassa Janos County Hospital, University Medical School, Szeged, Hungary
Bernardo, Melissa B; Philippine Society of Vascular Medicine, Manila, Philippine
Boccardo, Francesco; Department of Cardio-Thoracic-Vascular and Endovascular Surgery, Unit of Lymphatic Surgery, IRCCS S. Martino Hospital, University of Genoa, Italy
Cifkova, Renate; Department of Preventive Cardiology, Thomayer Teaching Hospital, Prague, Czech Republic
Cosmi, Benilde; Angiology and Blood Coagulation, Department of Specialty, Diagnostic and Experimental Medicine, S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
De Marchi, Sergio; Angiology Unit, Cardiovascular and Thoracic and Medicine Department, Verona University Hospital, Verona, Italy
Dimakakos, Evangelos; Vascular Unit of 3rd Department of Internal Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece
Dimopoulos, Meletios A; Hellenic Society of Hematology, Athens, Greece ; Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
Dimitrov, Gabriel; Research Center on Vascular Disease & Angiology Unit, Department of Biomedical Science, L Sacco Hospital, University of Milan, Milan, Italy
Durand-Zaleski, Isabelle; Université de Paris, CRESS, INSERM, INRA, URCEco, AP-HP, Hôpital de l'Hôtel Dieu, Paris, France
Edmonds, Michael; Diabetic Foot Clinic, King's College Hospital, London, United Kingdom
El Nazar, Essam Abo; Departement of Surgery, Ministry of Health, Saudi Arabia
Erer, Dilek; Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Besevler/Ankara, Turkey
Esponda, Omar L; Internal Medicine Department, Hospital Perea, Mayaguez, Puerto Rico, United States
Gresele, Paolo; Section of Internal and Cardiovascular Medicine, Department of Medicine, -University of Perugia, Perugia, Italy
Gschwandtner, Michael; MedizinischeUniverstiät Wien, Universitätsklinik für Innere Medizin II, Klinische Abteilung für Angiologie, Vienna, Austria
Gu, Yongquan; Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing China
Heinzmann, Mónica; Medicina Vascular, Sanatorio Allende Córdoba, Ciencias Médicas, Universidad Católica de Córdoba, Argentina
Hamburg, Naomi M; The Whitaker Cardiovascular Institute Department of Medicine Boston University School of Medicine, Boston, Massachusetts, United States
Hamadé, Amer; Vascular Medicine Unit, Internal Medicine Department, King Fahad University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
Jatoi, Noor-Ahmed; Department Vascular Medicine, Mulhouse Hospital Center, Mulhouse, France
Karahan, Oguz; Department of Cardiovascular Surgery, Medical School of Alaaddin Keykubat University, Alanya/Antalya, Turkey
Karetova, Debora; Second Department of Medicine, Department of Cardiovascular Medicine, Charles University in Prague, Prague, Czech Republic
Karplus, Thomas; Department of Vascular Medicine, Concord Repatriation General Hospital, Sydney, Australia
Klein-Weigel, Peter; Klinik für Angiologie, Zentrum für Innere Medizin II, Ernst von Bergmann Klinikum, Potsdam, Germany
Kolossvary, Endre; Department of Angiology, St. Imre University Teaching Hospital, Budapest, Hungary
Kozak, Matija; Department for Vascular Diseases, Medical Faculty of Ljubljana, University Medical Center Ljubljana, Ljubljana, Slovenia
Lefkou, Eleftheria; Board member of the Institute for the Study and Education on Thrombosis and Antithrombotic Therapy, Athens, Greece
Lessiani, Gianfranco; Angiology Unit, Internal Medicine Department., Città Sant' Angelo Hospital, AUSL 03, Pescara, Italy
Liew, Aaron; Portiuncula University Hospital, Soalta University Health Care Group, National University of Ireland Galway (NUIG), Galway, Ireland
Marcoccia, Antonella; Unità di Medicina Vascolare e Autoimmunità, CRIIS-Centro di riferimento interdisciplinare per la Sclerosi Sistemica, Rome, Italy
Marshang, Peter; Department of Internal Medicine, Central Hospital of Bolzano, Bolzano, Italy
Marakomichelakis, George; Angiology Unit, Evangelismos General Hospital, Athens, Greece
Moraglia, Luc; Angiologie Centre Cours du Médoc, Médecine Vasculaire Travail, Bordeaux, France
Pillon, Sergio; UOSD Angiology, San Camillo-Forlanini Hospital, National Health Institute ISS, Rome, Italy
Poredos, Pavel; Medical Association of Slovenia and SMA, Slovenia Academic Research Centre, Slovenian Medical Academy, Ljubljana, Slovenia
Prior, Manlio; Angiology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
Salvador, David Raymund K; Philippine Society of Vascular Medicine, Manila, Philippine
Schlager, Oliver; Division of Angiology, Department of Internal Medicine 2, Medical University of Vienna, Vienna, Austria
Schernthaner, Gerit; Division of Angiology, Department of Internal Medicine 2, Medical University of Vienna, Vienna, Austria
Sieron, Alexander; Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia, Katowice, Poland ; Specialist Hospital, Bytom, Jan Długosz University in Częstochowa, Częstochowa, Poland
Spaak, Jonas; Department of Clinical Sciences, Danderyd Hospital, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Stockholm County, Sweden
Spyropoulos, Alex; Department of Medicine, Anticoagulation and Clinical Thrombosis Services, Northwell Health at Lenox Hill Hospital, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, The Feinstein Institute for Medical Research, New York, New York, United States
Sprynger, Muriel ; Université de Liège - ULiège > Département des sciences cliniques
Suput, Dusan; Center for Clinical Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
Stanek, Agata; Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Bytom, Poland
Stvrtinova, Viera; Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
Szuba, Andrzej; Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, Wroclaw, Poland
Tafur, Alfonso; Vascular Medicine University of Chicago, Northshore Cardiovascular Institute, Skokie, Illinois, US Army
Vandreden, Patrick; Research Group Cancer, Haemostasis and Angiogenesis," INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Faculty of Medicine, Sorbonne University, Paris, France
Vardas, Panagiotis E; Medical School of Crete, University of Crete and Heart Sector, Hellenic Healthcare Group, Athens, Greece
Vasic, Dragan; Department of Noninvasive vascular laboratory, Clinic of Vascular and Endovascular Surgery, Clinical Centre of Serbia, Belgrade, Serbia
Vikkula, Miikka; Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
Wennberg, Paul; Department of Cardiovascular Medicine, Gonda Vascular Center, Mayo Clinic, Rochester, Minnesota, United States
Zhai, Zhenguo; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Peking University Health Science Center, Capital Medical University, Beijing, China ; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
Guidance for the Management of Patients with Vascular Disease or Cardiovascular Risk Factors and COVID-19: Position Paper from VAS-European Independent Foundation in Angiology/Vascular Medicine.
Cui J. Li F. Shi Z. L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol: 2019; 17 03 181 192
Wu F. Zhao S. Yu B. et al. A new coronavirus associated with human respiratory disease in China. Nature: 2020; 579 (7798): 265 269
Lu R. Zhao X. Li J. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet: 2020; 395 (10224): 565 574
Wan Y. Shang J. Graham R. Baric R. S. Li F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virol: 2020; 94 07 e00127-20
World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected-mdash;interim guidance, March 13, 2020 Accessed July 26, 2020 at: https://www.who.int/publications/i/item/clinical-management-of-covid-19
Chen N. Zhou M. Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet: 2020; 395 (10223): 507 513
Terpos E. Ntanasis-Stathopoulos I. Elalamy I. et al. Hematological findings and complications of COVID-19. Am J Hematol: 2020; 95 07 834 847
Maglakelidze N. Manto K. M. Craig T. JA. A review: does complement or the contact system have a role in protection or pathogenesis of COVID-19? Pulm Ther: 2020; 6 02 169 176
Bikdeli B. Madhavan M. V. Jimenez D. et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol: 2020; 75 23 2950 2973
Huang C. Wang Y. Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet: 2020; 395 (10223): 497 506
Richardson S. Hirsch J. S. Narasimhan M. et al and the Northwell COVID-19 Research Consortium Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA: 2020; 323 20 2052 2059
Auld S. C. Caridi-Scheible M. Blum J. M. et al. ICU and ventilator mortality among critically ill adults with coronavirus disease 2019. Crit Care Med: 2020; 10.1097/CCM.0000000000004457
Driggin E. Madhavan M. V. Bikdeli B. et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol: 2020; 75 18 2352 2371
Bangash M. N. Patel J. Parekh D. COVID-19 and the liver: little cause for concern. Lancet Gastroenterol Hepatol: 2020; 5 06 529 530
Mehta P. McAuley D. F. Brown M. Sanchez E. Tattersall R. S. Manson J. J. HLH Across Speciality Collaboration, UK COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet: 2020; 395 (10229): 1033 1034
Gimbrone M. A. Jr. García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res: 2016; 118 04 620 636
Roth G. A. Johnson C. Abajobir A. et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol: 2017; 70 01 1 25
Hamming I. Timens W. Bulthuis M. L. Lely A. T. Navis G. van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol: 2004; 203 02 631 637
Hoffmann M. Kleine-Weber H. Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell: 2020; 181 02 271.e8 280.e8
Vaarala M. H. Porvari K. S. Kellokumpu S. Kyllönen A. P. Vihko P. T. Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues. J Pathol: 2001; 193 01 134 140
Song W. C. FitzGerald G. A. COVID-19, microangiopathy, hemostatic activation, and complement. J Clin Invest: 2020; 140183 140183
Aimes R. T. Zijlstra A. Hooper J. D. et al. Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis. Thromb Haemost: 2003; 89 03 561 572
Du L. Kao R. Y. Zhou Y. et al. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity. Biochem Biophys Res Commun: 2007; 359 01 174 179
Yang H. Xie W. Xue X. et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol: 2005; 3 10 e324
Biembengut ÍV. de Souza T. ACB. Coagulation modifiers targeting SARS-CoV-2 main protease Mpro for COVID-19 treatment: an in silico approach. Mem Inst Oswaldo Cruz: 2020; 115 e200179
Eleftheriou P. Amanatidou D. Petrou A. Geronikaki A. In silico evaluation of the effectivity of approved protease inhibitors against the main protease of the novel SARS-CoV-2 virus. Molecules: 2020; 25 11 E2529
Liu J. Li J. Arnold K. Pawlinski R. Key N. S. Using heparin molecules to manage COVID-2019. Res Pract Thromb Haemost: 2020; 4 04 518 523
Partridge L. J. Green L. R. Monk P. N. Unfractionated heparin potently inhibits the binding of SARS-CoV-2 spike protein to a human cell line. bioRxiv: 2020; 10.1101/2020.05.21.107870
Mezger M. Nording H. Sauter R. et al. Platelets and immune responses during thromboinflammation. Front Immunol: 2019; 10 1731
Colman R. W. Schmaier A. H. Contact system: a vascular biology modulator with anticoagulant, profibrinolytic, antiadhesive, and proinflammatory attributes. Blood: 1997; 90 10 3819 3843
Maas C. Renné T. Coagulation factor XII in thrombosis and inflammation. Blood: 2018; 131 17 1903 1909
Baker C. J. Smith S. A. Morrissey J. H. Polyphosphate in thrombosis, hemostasis, and inflammation. Res Pract Thromb Haemost: 2018; 3 01 18 25
Zuo Y. Yalavarthi S. Shi H. Neutrophil extracellular traps in COVID-19. JCI Insight: 2020; 5 11 e138999
Zuo Y. Zuo M. Yalavarthi S. et al. Neutrophil extracellular traps and thrombosis in COVID-19. medRxiv: 2020; 48 09 1358 1364
Iba T. Levy J. H. Levi M. Connors J. M. Thachil J. Coagulopathy of coronavirus disease 2019. Crit Care Med: 2020; 48 09 1358 1364
Zhang Y. Xiao M. Zhang S. et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med: 2020; 382 17 e38
Galeano-Valle F. Oblitas C. M. Ferreiro-Mazón M. M. et al. Antiphospholipid antibodies are not elevated in patients with severe COVID-19 pneumonia and venous thromboembolism. Thromb Res: 2020; 192 113 115
Pons S. Fodil S. Azoulay E. Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Care: 2020; 24 01 353
Khider L. Gendron N. Goudot G. et al. Curative anticoagulation prevents endothelial lesion in COVID-19 patients. J Thromb Haemost: 2020; 10.1111/jth.14968
Nunes Duarte-Neto A. de Almeida Monteiro R. A. da Silva L. FF. et al. Pulmonary and systemic involvement of COVID-19 assessed by ultrasound-guided minimally invasive autopsy. Histopathology: 2020; 77 02 186 197
Ackermann M. Verleden S. E. Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med: 2020; 383 02 120 128
Fox S. E. Akmatbekov A. Harbert J. L. et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med: 2020; 8 07 681 686
Wu J. H. Li X. Huang B. et al. Pathological changes of fatal coronavirus disease 2019 (COVID-19) in the lungs: report of 10 cases by postmortem needle autopsy [in Chinese]. Zhonghua Bing Li Xue Za Zhi: 2020; 49 06 568 575
Carsana L. Sonzogni A. Nasr A. et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis: 2020; 10.1016/S1473-3099(20)30434-5
Varga Z. Flammer A. J. Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet: 2020; 395 (10234): 1417 1418
Fogarty H. Townsend L. Ni Cheallaigh C. et al. More on COVID-19 coagulopathy in Caucasian patients. Br J Haematol: 2020; 189 06 1060 1061
van Dam L. F. Kroft L. JM. van der Wal L. I. et al. Clinical and computed tomography characteristics of COVID-19 associated acute pulmonary embolism: a different phenotype of thrombotic disease? Thromb Res: 2020; 193 86 89
Danzi G. B. Loffi M. Galeazzi G. Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur Heart J: 2020; 41 19 1858
Du Y. Tu L. Zhu P. et al. Clinical features of 85 fatal cases of COVID-19 from Wuhan. A retrospective observational study. Am J Respir Crit Care Med: 2020; 201 11 1372 1379
Menter T. Haslbauer J. D. Nienhold R. et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology: 2020; 77 02 198 209
Lang M. Som A. Mendoza D. P. et al. Hypoxaemia related to COVID-19: vascular and perfusion abnormalities on dual-energy CT. Lancet Infect Dis: 2020; 20 12 1365 1366
Sharma P. Uppal N. N. Wanchoo R. et al. COVID-19-associated kidney injury: a case series of kidney biopsy findings. J Am Soc Nephrol: 2020; 31 09 1948 1958
Edler C. Schröder A. S. Aepfelbacher M. et al. Dying with SARS-CoV-2 infection-an autopsy study of the first consecutive 80 cases in Hamburg, Germany. Int J Legal Med: 2020; 10.1007/s00414-020-02317-w
Calabrese F. Pezzuto F. Fortarezza F. et al. Pulmonary pathology and COVID-19: lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Arch: 2020; 10.1007/s00428-020-02886-6
Fried J. A. Ramasubbu K. Bhatt R. et al. The variety of cardiovascular presentations of COVID-19. Circulation: 2020; 141 23 1930 1936
Xu Z. Shi L. Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med: 2020; 8 04 420 422
Liu Y. Yang Y. Zhang C. et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci: 2020; 63 03 364 374
Long B. Brady W. J. Koyfman A. Gottlieb M. Cardiovascular complications in COVID-19. Am J Emerg Med: 2020; 38 07 1504 1507
Zheng Z. Peng F. Xu B. et al. Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis. J Infect: 2020; 81 02 e16 e25
Ruan Q. Yang K. Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med: 2020; 46 05 846 848
Khurshid S. Choi S. H. Weng L. C. et al. Frequency of cardiac rhythm abnormalities in a half million adults. Circ Arrhythm Electrophysiol: 2018; 11 07 e006273
Li B. Yang J. Zhao F. et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol: 2020; 109 05 531 538
Wu Z. McGoogan J. M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA: 2020; 323 13 1239 1242
Zheng Z. Peng F. Xu B. et al. Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis. J Infect: 2020; 81 02 e16 e25
Roncon L. Zuin M. Rigatelli G. Zuliani G. Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome. J Clin Virol: 2020; 127 104354
Cohen G. Riahi Y. Alpert E. Gruzman A. Sasson S. The roles of hyperglycaemia and oxidative stress in the rise and collapse of the natural protective mechanism against vascular endothelial cell dysfunction in diabetes. Arch Physiol Biochem: 2007; 113 (4-5): 259 267
Zhu L. She Z. G. Cheng X. et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing Type 2 diabetes. Cell Metab: 2020; 31 06 1068 1077
Olinic D. M. Spinu M. Olinic M. et al. Epidemiology of peripheral artery disease in Europe: VAS educational paper. Int Angiol: 2018; 37 04 327 334
Zierfuss B. Catalano M. Schernthaner G. H. Finally, the big picture of morbidity and mortality in peripheral arterial disease? Atherosclerosis: 2020; 293 92 93
Bellosta R. Luzzani L. Natalini G. et al. Acute limb ischemia in patients with COVID-19 pneumonia. J Vasc Surg: 2020; 72 06 1864 1872
Perini P. Nabulsi B. Massoni C. B. Azzarone M. Freyrie A. Acute limb ischaemia in two young, non-atherosclerotic patients with COVID-19. Lancet: 2020; 395 (10236): 1546
Cantador E. Núñez A. Sobrino P. et al. Incidence and consequences of systemic arterial thrombotic events in COVID-19 patients. J Thromb Thrombolysis: 2020; 50 03 543 547
Klok F. A. Kruip M. JHA. van der Meer N. JM. et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res: 2020; 191 148 150
Lodigiani C. Iapichino G. Carenzo L. et al; Humanitas COVID-19 Task Force Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res: 2020; 191 9 14
Suchonwanit P. Leerunyakul K. Kositkuljorn C. Cutaneous manifestations in COVID-19: lessons learned from current evidence. J Am Acad Dermatol: 2020; 83 01 e57 e60
Recalcati S. Cutaneous manifestations in COVID-19: a first perspective. J Eur Acad Dermatol Venereol: 2020; 34 05 e212 e213
Estébanez A. Pérez-Santiago L. Silva E. Guillen-Climent S. García-Vázquez A. Ramón M. D. Cutaneous manifestations in COVID-19: a new contribution. J Eur Acad Dermatol Venereol: 2020; 34 06 e250 e251
Su C. J. Lee C. H. Viral exanthem in COVID-19, a clinical enigma with biological significance. J Eur Acad Dermatol Venereol: 2020; 34 06 e251 e252
Mahé A. Birckel E. Krieger S. Merklen C. Bottlaender L. A distinctive skin rash associated with coronavirus disease 2019? J Eur Acad Dermatol Venereol: 2020; 34 06 e246 e247
Henry D. Ackerman M. Sancelme E. Finon A. Esteve E. Urticarial eruption in COVID-19 infection. J Eur Acad Dermatol Venereol: 2020; 34 06 e244 e245
Zulfiqar A. A. Lorenzo-Villalba N. Hassler P. Andrès E. Immune thrombocytopenic purpura in a patient with Covid-19. N Engl J Med 382 18 e43
Alramthan A. Aldaraji W. Two cases of COVID-19 presenting with a clinical picture resembling chilblains: first report from the Middle East. Clin Exp Dermatol: 2020; 45 06 746 748
Kolivras A. Dehavay F. Delplace D. et al. Coronavirus (COVID-19) infection-induced chilblains: a case report with histopathologic findings. JAAD Case Rep: 2020; 6 06 489 492
Manalo I. F. Smith M. K. Cheeley J. Jacobs R. A dermatologic manifestation of COVID-19: transient livedo reticularis. J Am Acad Dermatol: 2020; 83 02 700
Nyssen A. Benhadou F. Magnée M. André J. Koopmansch C. Wautrecht J. C. Chilblains. Vasa: 2020; 49 02 133 140
Colmenero I. Santonja C. Alonso-Riaño M. et al. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultraestructural study of 7 paediatric cases. Br J Dermatol: 2020; 183 04 729 737
Bae Y. S. Kim K. H. Choi S. W. et al. Information technology-based management of clinically healthy COVID-19 patients: lessons from a living and treatment support center operated by seoul national university hospital. J Med Internet Res: 2020; 22 06 e19938
Fareed J. Hoppensteadt D. A. Bick R. L. An update on heparins at the beginning of the new millennium. Semin Thromb Hemost: 2000; 26 01 5 21
Darien B. J. Fareed J. Centgraf K. S. et al. Low molecular weight heparin prevents the pulmonary hemodynamic and pathomorphologic effects of endotoxin in a porcine acute lung injury model. Shock: 1998; 9 04 274 281
Wang L. Brown J. R. Varki A. Esko J. D. Heparin's anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L-and P-selectins. J Clin Invest: 2002; 110 01 127 136
Manfredi A. A. Rovere-Querini P. D'Angelo A. Maugeri N. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps. Pharmacol Res: 2017; 123 146 156
Wan M. X. Zhang X. W. Törkvist L. Thorlacius H. Low molecular weight heparin inhibits tumor necrosis factor alpha-induced leukocyte rolling. Inflamm Res: 2001; 50 12 581 584
Mulloy B. Hogwood J. Gray E. Lever R. Page C. P. Pharmacology of heparin and related drugs. Pharmacol Rev: 2016; 68 01 76 141
Beun R. Kusadasi N. Sikma M. Westerink J. Huisman A. Thromboembolic events and apparent heparin resistance in patients infected with SARS-CoV-2. Int J Lab Hematol: 2020; 42 01 19 20
Mousa S. A. Heparin and low molecular weight heparin in thrombosis and inflammation: emerging link. In: Garg H. G. Linhardt R. J. Hales C. A. eds. Chemistry and Biology of Heparin and Heparan Sulfate. New York, NY Elsevier Ltd: 2005; 571 581
Fareed J. Jeske W. Fareed D. et al. Are all low molecular weight heparins equivalent in the management of venous thromboembolism? Clin Appl Thromb Hemost: 2008; 14 04 385 392
Gerotziafas G. T. Petropoulou A. D. Verdy E. Samama M. M. Elalamy I. Effect of the anti-factor Xa and anti-factor IIa activities of low-molecular-weight heparins upon the phases of thrombin generation. J Thromb Haemost: 2007; 5 05 955 962
Salta S. Papageorgiou L. Larsen A. K. et al. Comparison of antithrombin-dependent and direct inhibitors of factor Xa or thrombin on the kinetics and qualitative characteristics of blood clots. Res Pract Thromb Haemost: 2018; 2 04 696 707
Panigada M. Bottino N. Tagliabue P. et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost: 2020; 18 07 1738 1742
Hohlfelder B. Kelly D. Hoang M. et al. Activated clotting times demonstrate weak correlation with heparin dosing in adult extracorporeal membrane oxygenation. Am J Ther: 2019; 10.1097/MJT.0000000000001113
McLaughlin K. Rimsans J. Sylvester K. W. et al. Evaluation of antifactor-Xa heparin assay and activated partial thromboplastin time values in patients on therapeutic continuous infusion unfractionated heparin therapy. Clin Appl Thromb Hemost: 2019; 10.1177/1076029619876030
Projean D. Lalonde S. Morin J. et al. Study of the bioaccumulation of tinzaparin in renally impaired patients when given at prophylactic doses-the STRIP study. Thromb Res: 2019; 174 48 50
Olie R. H. Meertens N. EL. Henskens Y. MC. Ten Cate H. Empirically reduced dosages of tinzaparin in patients with moderate-to-severe renal insufficiency lead to inadequate anti-Xa levels. Nephron: 2017; 137 02 113 123
Atiq F. van den Bemt P. M. Leebeek F. W. van Gelder T. Versmissen J. A systematic review on the accumulation of prophylactic dosages of low-molecular-weight heparins (LMWHs) in patients with renal insufficiency. Eur J Clin Pharmacol: 2015; 71 08 921 929
Spyropoulos A. C. Ageno W. Albers G. W. et al MARINER Investigators Rivaroxaban for thromboprophylaxis after hospitalization for medical illness. N Engl J Med: 2018; 379 12 1118 1127
Cohen A. T. Spiro T. E. Büller H. R. et al MAGELLAN Investigators Rivaroxaban for thromboprophylaxis in acutely ill medical patients. N Engl J Med: 2013; 368 06 513 523
Cohen A. T. Harrington R. A. Goldhaber S. Z. et al APEX Investigators Extended thromboprophylaxis with betrixaban in acutely ill medical patients. N Engl J Med: 2016; 375 06 534 544
Ufer M. Comparative efficacy and safety of the novel oral anticoagulants dabigatran, rivaroxaban and apixaban in preclinical and clinical development. Thromb Haemost: 2010; 103 03 572 585
Glatthaar-Saalmüller B. Mair K. H. Saalmüller A. Antiviral activity of aspirin against RNA viruses of the respiratory tract-an in vitro study. Influenza Other Respir Viruses: 2017; 11 01 85 92
Wang Y. Zhong M. Wang Z. Song J. Wu W. Zhu D. The preventive effect of antiplatelet therapy in acute respiratory distress syndrome: a meta-analysis. Crit Care: 2018; 22 01 60
Jin W. Chuang C. C. Jin H. Ye J. Kandaswamy E. Wang L. Zuo L. Effects of pre-hospital antiplatelet therapy on the incidence of ARDS. Respir Care: 2020; 65 07 1039 1045
Viecca M. Radovanovic D. Forleo G. B. Santus P. Enhanced platelet inhibition treatment improves hypoxemia in patients with severe Covid-19 and hypercoagulability. A case control, proof of concept study. Pharmacol Res: 2020; 158 104950
de Vries A. AF. Renin-angiotensin system inhibition in COVID-19 patients. Neth Heart J: 2020; 28 (7-8): 396 405
Zhang X. Li S. Niu S. ACE2 and COVID-19 and the resulting ARDS. Postgrad Med J: 2020; 96 (1137): 403 407
Khera R. Clark C. Lu Y. et al. Association of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers with the risk of hospitalization and death in hypertensive patients with coronavirus disease-19. medRxiv 10.1101/2020.05.17.20104943
Felice C. Nardin C. Di Tanna G. L. et al. Use of RAAS inhibitors and risk of clinical deterioration in COVID-19: results from an Italian cohort of 133 hypertensives. Am J Hypertens: 2020; 33 10 944 948
Cromwell W. C. Otvos J. D. Low-density lipoprotein particle number and risk for cardiovascular disease. Curr Atheroscler Rep: 2004; 6 05 381 387
Pirillo A. Bonacina F. Norata G. D. Catapano A. L. The interplay of lipids, lipoproteins, and immunity in atherosclerosis. Curr Atheroscler Rep: 2018; 20 03 12
Milos S. Hiansen J. Q. Banaschewski B. et al. The effect of diet-induced serum hypercholesterolemia on the surfactant system and the development of lung injury. Biochem Biophys Rep: 2016; 7 180 187
Wang H. Yuan Z. Pavel M. A. Hansen S. B. The role of high cholesterol in age-related COVID19 lethality, Version 3. bioRxiv 10.1101/2020.05.09.086249
Cao X. Yin R. Albrecht H. Fan D. Tan W. Cholesterol: A new game player accelerating vasculopathy caused by SARS-CoV-2? Am J Physiol Endocrinol Metab: 2020; 319 01 E197 E202
Reiner Ž. Hatamipour M. Banach M. et al. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch Med Sci: 2020; 16 03 490 496
Lee K. CH. Sewa D. W. Phua G. C. Potential role of statins in COVID-19. Int J Infect Dis: 2020; 96 615 617
Horby P. Lim W. S. Emberson J. R. et al RECOVERY Collaborative Group Dexamethasone in hospitalized patients with Covid-19-preliminary report. N Engl J Med: 2020; 10.1056/NEJMoa2021436
Itkonen M. K. Tornio A. Lapatto-Reiniluoto O. et al. Clopidogrel increases dasabuvir exposure with or without ritonavir, and ritonavir inhibits the bioactivation of clopidogrel. Clin Pharmacol Ther: 2019; 105 01 219 228
Marsousi N. Daali Y. Fontana P. et al. Impact of boosted antiretroviral therapy on the pharmacokinetics and efficacy of clopidogrel and prasugrel active metabolites. Clin Pharmacokinet: 2018; 57 10 1347 1354
Testa S. Prandoni P. Paoletti O. et al. Direct oral anticoagulant plasma levels' striking increase in severe COVID-19 respiratory syndrome patients treated with antiviral agents: the Cremona experience. J Thromb Haemost: 2020; 18 06 1320 1323
Langer F. Kluge S. Klamroth R. Oldenburg J. Coagulopathy in COVID-19 and its implication for safe and efficacious thromboprophylaxis. Hamostaseologie: 2020; 40 03 264 269
Al-Ani F. Chehade S. Lazo-Langner A. Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb Res: 2020; 192 152 160
Liu X. Zhang R. He G. Hematological findings in coronavirus disease 2019: indications of progression of disease. Ann Hematol: 2020; 99 07 1421 1428
Zhang L. Yan X. Fan Q. et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost: 2020; 18 06 1324 1329
Gris J. C. Quéré I. Pérez-Martin A. Lefrant J. Y. Sotto A. Uncertainties on the prognostic value of D-dimers in COVID-19 patients. J Thromb Haemost: 2020; 18 08 2066 2067
Zhang L. Response to uncertainties on the prognostic value of D-dimers in COVID-19 patients J Thromb Haemost: 2020; 18 08 2067 2068
Zhou F. Yu T. Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet: 2020; 395 (10229): 1054 1062
Wang D. Hu B. Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA: 2020; 323 11 1061 1069
Krupinski J. Catena E. Miguel M. et al. D-dimer local expression is increased in symptomatic patients undergoing carotid endarterectomy. Int J Cardiol: 2007; 116 02 174 179
Di Castelnuovo A. Agnoli C. de Curtis A. et al. Elevated levels of D-dimers increase the risk of ischaemic and haemorrhagic stroke. Findings from the EPICOR Study. Thromb Haemost: 2014; 112 05 941 946
Wada H. Trachil J. Di Nisio M. et al The Scientific Standardization Committee on DIC of the International Society on Thrombosis Haemostasis Guidance for diagnosis and treatment of DIC from harmonization of the recommendations from three guidelines. J Thromb Haemost: 2013; 11 761 767
Tang N. Li D. Wang X. Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost: 2020; 18 04 844 847
Papageorgiou C. Jourdi G. Adjambri E. et al. Disseminated intravascular coagulation: an update on pathogenesis, diagnosis, and therapeutic strategies. Clin Appl Thromb Hemost: 2018; 24 (9_suppl): 8S 28S
Levy J. H. Sniecinski R. M. Welsby I. J. Levi M. Antithrombin: anti-inflammatory properties and clinical applications. Thromb Haemost: 2016; 115 04 712 728
Taylor F. B. Jr. Toh C. H. Hoots W. K. Wada H. Levi M. Scientific Subcommittee on Disseminated Intravascular Coagulation (DIC) of the International Society on Thrombosis and Haemostasis (ISTH) Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost: 2001; 86 05 1327 1330
Wu C. Chen X. Cai Y. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med: 2020; 180 07 1 11
Fogarty H. Townsend L. Ni Cheallaigh C. et al. COVID19 coagulopathy in Caucasian patients. Br J Haematol: 2020; 189 06 1044 1049
Deng Y. Liu W. Liu K. et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 in Wuhan, China: a retrospective study. Chin Med J (Engl): 2020; 133 11 1261 1267
Gerotziafas G. T. Sergentanis T. N. Voiriot G. et al. Derivation and validation of a predictive score for disease worsening in patients with COVID-19. Thromb Haemost: 2020; 120 12 1680 1690
Levi M. Thachil J. Iba T. Levy J. H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol: 2020; 7 06 e438 e440
Thachil J. Tang N. Gando S. et al. Laboratory haemostasis monitoring in COVID-19. J Thromb Haemost: 2020; 18 08 2058 2060
Tang N. Bai H. Chen X. et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost: 2020; 18 844 847
Paranjpe I. Fuster V. Lala A. et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol: 2020; 76 01 122 124
Ayerbe L. Risco C. Ayis S. The association between treatment with heparin and survival in patients with Covid-19. J Thromb Thrombolysis: 2020; 50 02 298 301
Harenberg J. Favaloro E. COVID-19: progression of disease and intravascular coagulation-present status and future perspectives. Clin Chem Lab Med: 2020; 58 07 1029 1036
Connors J. M. Levy J. H. COVID-19 and its implications for thrombosis and anticoagulation. Blood: 2020; 135 23 2033 2040
Warren B. L. Eid A. Singer P. et al; KyberSept Trial Study Group Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA: 2001; 286 15 1869 1878
Ranucci M. Ballotta A. Di Dedda U. et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost: 2020; 18 07 1747 1751
White D. MacDonald S. Bull T. et al. Heparin resistance in COVID-19 patients in the intensive care unit. J Thromb Thrombolysis: 2020; 50 02 287 291
Wang J. Hajizadeh N. Moore E. E. et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J Thromb Haemost: 2020; 18 07 1752 1755
Barrett C. D. Oren-Grinberg A. Chao E. et al. Rescue therapy for severe COVID-19 associated acute respiratory distress syndrome (ARDS) with tissue plasminogen activator (tPA): a case series. J Trauma Acute Care Surg: 2020; 89 03 453 457
Christie D. B. III. Nemec H. M. Scott A. M. et al. Early outcomes with utilization of tissue plasminogen activator in COVID-19 associated respiratory distress: a series of five cases. J Trauma Acute Care Surg: 2020; 89 03 448 452
WHO. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020 Accessed July 26, 2020 at: https://apps.who.int/iris/handle/10665/331446?locale-attribute=fr
Zhai Z. Li C. Chen Y. et al; Prevention Treatment of VTE Associated with COVID-19 Infection Consensus Statement Group Prevention and treatment of venous thromboembolism associated with coronavirus disease 2019 infection: a consensus statement before guidelines. Thromb Haemost: 2020; 120 06 937 948
Spyropoulos A. C. Levy J. H. Ageno W. et al; Subcommittee on Perioperative, Critical Care Thrombosis, Haemostasis of the Scientific, Standardization Committee of the International Society on Thrombosis, Haemostasis+ Scientific and Standardization Committee Communication: clinical guidance on the diagnosis, prevention and treatment of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost: 2020; 18 08 1859 1865
Moores L. K. Tritschler T. Brosnahan S. et al. Prevention, diagnosis, and treatment of VTE in patients with coronavirus disease 2019: CHEST guideline and expert panel report. Chest: 2020; 158 03 1143 1163
Thachil J. Tang N. Gando S. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost: 2020; 18 05 1023 1026
Barnes G. D. Burnett A. Allen A. et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum. J Thromb Thrombolysis: 2020; 50 01 72 81
Watson R. A. Johnson D. M. Dharia R. N. Merli G. J. Doherty J. U. Anti-coagulant and anti-platelet therapy in the COVID-19 patient: a best practices quality initiative across a large health system. Hosp Pract (1995): 2020; 48 04 169 179
Kollias A. Kyriakoulis K. G. Dimakakos E. Poulakou G. Stergiou G. S. Syrigos K. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action. Br J Haematol: 2020; 189 05 846 847
Kahn S. R. Lim W. Dunn A. S. et al. Prevention of VTE in nonsurgical patients: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest: 2012; 14 (2 Suppl): e195S e226S
Nicolaides A. N. Fareed J. Kakkar A. K. et al. Prevention and treatment of venous thromboembolism - international consensus statement. Int Angiol: 2013; 32 02 111 260
Llitjos J. F. Leclerc M. Chochois C. et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost: 2020; 18 07 1743 1746
Helms J. Tacquard C. Severac F. et al; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis) High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med: 2020; 46 06 1089 1098
Leonard-Lorant I. Delabranche X. Severac F. et al. Acute pulmonary embolism in COVID-19 patients on CT angiography and relationship to D-dimer levels. Radiology: 2020; 296 03 E189 E191
Grillet F. Behr J. Calame P. Aubry S. Delabrousse E. Acute pulmonary embolism associated with COVID-19 pneumonia detected by pulmonary CT angiography. Radiology: 2020; 296 03 E186 E188
Middeldorp S. Coppens M. van Haaps T. F. et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost: 2020; 18 08 1995 2002
Artifoni M. Danic G. Gautier G. et al. Systematic assessment of venous thromboembolism in COVID-19 patients receiving thromboprophylaxis: incidence and role of D-dimer as predictive factors. J Thromb Thrombolysis: 2020; 50 01 211 216
Al-Samkari H. Karp Leaf R. S. Dzik W. H. et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood: 2020; 136 04 489 500
Samama M. M. Cohen A. T. Darmon J. Y. et al; Prophylaxis in Medical Patients with Enoxaparin Study Group A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients. N Engl J Med: 1999; 341 11 793 800
Leizorovicz A. Cohen A. T. Turpie A. GG. Olsson C. G. Vaitkus P. T. Goldhaber S. Z. PREVENT Medical Thromboprophylaxis Study Group Randomized, placebo-controlled trial of dalteparin for the prevention of venous thromboembolism in acutely ill medical patients. Circulation: 2004; 110 07 874 879
Cohen A. T. Davidson B. L. Gallus A. S. et al; ARTEMIS Investigators Efficacy and safety of fondaparinux for the prevention of venous thromboembolism in older acute medical patients: randomised placebo controlled trial. BMJ: 2006; 332 (7537): 325 329
Violi F. Pastori D. Cangemi R. Pignatelli P. Loffredo L. Hypercoagulation and antithrombotic treatment in coronavirus 2019: a new challenge. Thromb Haemost: 2020; 120 06 949 956
ClinicalTrials.org. Accessed July 26, 2020 at: https://clinicaltrials.gov/ct2/results?cond=Covid19&term=LMWH&cntry=&state=&city=&dist=
Gerotziafas G. T. Papageorgiou L. Salta S. Nikolopoulou K. Elalamy I. Updated clinical models for VTE prediction in hospitalized medical patients. Thromb Res: 2018; 164 01 S62 S69
Hull R. D. Schellong S. M. Tapson V. F. et al; EXCLAIM (Extended Prophylaxis for Venous ThromboEmbolism in Acutely Ill Medical Patients With Prolonged Immobilization) study Extended-duration venous thromboembolism prophylaxis in acutely ill medical patients with recently reduced mobility: a randomized trial. Ann Intern Med: 2010; 153 01 8 18
Laskier V. Guy H. Fisher M. et al. Effectiveness and safety of betrixaban extended prophylaxis for venous thromboembolism compared with standard-duration prophylaxis intervention in acute medically ill patients: a systematic literature review and network meta-analysis. J Med Econ: 2019; 22 10 1063 1072
Spyropoulos A. C. Anderson F. A. Jr. FitzGerald G. et al IMPROVE Investigators Predictive and associative models to identify hospitalized medical patients at risk for VTE. Chest: 2011; 140 03 706 714
Spyropoulos A. C. Lipardi C. Xu J. et al. Modified IMPROVE VTE risk score and elevated D-dimer identify a high venous thromboembolism risk in acutely ill medical population for extended thromboprophylaxis. TH Open: 2020; 4 01 e59 e65
Rosenberg D. Eichorn A. Alarcon M. McCullagh L. McGinn T. Spyropoulos A. C. External validation of the risk assessment model of the International Medical Prevention Registry on Venous Thromboembolism (IMPROVE) for medical patients in a tertiary health system. J Am Heart Assoc: 2014; 3 06 e001152
Cohoon K. P. De Sanctis Y. Haskell L. McBane R. D. Spiro T. E. Rivaroxaban for thromboprophylaxis among patients recently hospitalized for acute infectious diseases: a subgroup analysis of the MAGELLAN study. J Thromb Haemost: 2018; 16 07 1278 1287
Schünemann H. J. Cushman M. Burnett A. E. et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv: 2018; 2 22 3198 3225
Bikdeli B. Madhavan M. V. Gupta A. et al; Global COVID-19 Thrombosis Collaborative Group Pharmacological agents targeting thromboinflammation in COVID-19: review and implications for future research. Thromb Haemost: 2020; 120 07 1004 1024
Guan W. J. Ni Z. Y. Hu Y. et al; China Medical Treatment Expert Group for Covid-19 Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med: 2020; 382 18 1708 1720