Abstract :
[en] This study explores how contemporary text-to-image models interpret and generate Classical and Baroque styles under Wölfflin’s framework—two categories that are atemporal and transversal across media. Our goal is to see whether generative AI can replicate the nuanced stylistic cues that art historians attribute to them. We prompted two popular models (DALL•E and Midjourney) using explicit style labels (e.g., “baroque” and “classical”) as well as more implicit cues (e.g., “dynamic”, “static”, or reworked Wölfflin descriptors). We then collected expert ratings and conducted broader qualitative reviews to assess how each output aligned with Wölfflin’s characteristics. Our findings suggest that the term “baroque” usually evokes features recognizable in typically historical Baroque artworks, while “classical” often yields less distinct results, particularly when a specified genre (portrait, still life) imposes a centered, closed-form composition. Removing explicit style labels may produce highly abstract images, revealing that Wölfflin’s descriptors alone may be insufficient to convey Classical or Baroque styles efficiently. Interestingly, the term “dynamic” gives rather chaotic images, yet this chaos is somehow ordered, centered, and has an almost Classical feel. Altogether, these observations highlight the complexity of bridging canonical stylistic frameworks and contemporary AI training biases, underscoring the need to update or refine Wölfflin’s atemporal categories to accommodate how generative models—and modern visual culture—reinterpret Classical and Baroque.
Name of the research project :
ULiège research project “DESTINA: Déceler les stéréotypes dans les intelligences artificielles génératives: traduction automatique mots-images et leurs effets sur les pratiques artistiques et les études visuelles—Detecting Stereotypes in Generative Artificial Intelligences: Automatic Text-to-Image Translation and their Effects on Artistic Practices and Visual Studies”
Scopus citations®
without self-citations
0