[en] Dryland ecosystems are particularly susceptible to the adverse effects of intensive agriculture, with intensive
tillage exerting a major impact on soil health and its biotic components. The implementation of less disturbing
soil management practices can be essential for preserving the soil environment and maintaining the diverse
communities of microorganisms, micro- and mesofauna, which are vital contributors to soil fertility. In this
study, we assessed soil chemical properties, soil biodiversity and functionality, and wheat crop growth across a
tillage gradient encompassing no-tillage (NT), minimum tillage (MT), and standard tillage (ST). Results showed
that reducing tillage intensity increased soil macronutrient levels and the abundance of soil biota. Overall, higher
levels of bacterial and fungal marker genes and higher abundance of predatory acari were observed in MT and NT
compared to ST. Also, nematode abundance increased by 25 % in MT and 50 % in NT, compared to ST. Similarly,
community structure analysis revealed that tillage strongly influenced bacterial, fungal and acari community
composition, reflecting a gradient of soil disturbance intensity. Corresponding to the increased abundance of soil
biota, reducing tillage intensity increased microbial activity and soil functionality along the disturbance gradient.
In addition, evidence of the formation of biocrust as a possible source of carbon input was found. Despite
enhanced soil biological indicators in less intensive tillage systems, wheat growth, nitrogen uptake and grain B
vitamin contents were higher in ST compared to NT. In addition, we observed a shift in technological grain
properties across tillage practices. The higher root:shoot ratio (an indicator of nitrogen deficiency) and median
root diameter (hormone-driven lateral expansion) in NT suggest that soil compaction could be a potential cause
of reduced wheat performance. These results suggest that despite improved soil biological indicators, other
factors such as low rates of N mineralization potential due to drought conditions during the study year and the
prevalence of soil compaction may limit wheat performance in NT systems.
Disciplines :
Agriculture & agronomy
Author, co-author :
Waibel, Matthias
Michel, Jennifer ; Université de Liège - ULiège > Département GxABT > Plant Sciences
Antoine, Maurine ; Université de Liège - ULiège > TERRA Research Centre
Balanzategui-Guijarro, Iñaki
Cao, Da
Delaplace, Pierre ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
Le Gouis, Jacques
Alvarez, David
Léon, Claire
Manfroy, Sandy ; Université de Liège - ULiège > Département GxABT > Plant Sciences
Moya-Laraño, Jordi
Perrochon, Sibille
Sanchez-Moreno, Sara
Santin-Montanya, Inés
Tenorio, José Luis
Thonar, Cécile ; Université de Liège - ULiège > Département GxABT > Plant Sciences
Vanderschuren, Hervé ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
This research is part of the BIOFAIR project (http://www.biofair. uliege.be) funded through the 2019–2020 BiodivERsA joint call for research proposals, under the BiodivClim ERA-Net COFUND programme, and with the funding organisations Agence Nationale de la Recherche (ANR, France; ANR-20-EBI5–0002), Agencia Estatal de Investigaci´on (AEI, Spain; PCI2020–120713–2), Deutsches Zentrum fuer Luft- und Raumfahrt Projekttr¨ager (DLR-PT, Germany), Fonds de la Recherche Scientifique (FNRS, Wallonia, Belgium; R.8001.20), Fonds voor Wetenschappelijk Onderzoek - Vlaanderen (FWO, Flanders, Belgium; FWO ERA-NET G0H7320N) & Schweizerischer Nationalfonds (SNF, Switzerland; 31BD30_193869).
Akalin, A., Computational Genomics with R. 2020, CRC Press.
Anderson, M.J., Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:1 (2006), 245–253.
Anderson, J.P., Domsch, K.H., A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10:3 (1978), 215–221.
Ara, I., Kudo, T., Luedemannella gen. nov., a new member of the family Micromonosporaceae and description of Luedemannella helvata sp. nov. and Luedemannella flava sp. nov. J. Gen. Appl. Microbiol. 53:1 (2007), 39–51.
Atwell, B.J., The effect of soil compaction on wheat during early tillering: I. Growth, development and root structure. New Phytol. 115:1 (1990), 29–35.
Auguie, B., 2017. gridExtra: Miscellaneous Functions forGrid" Graph. R. Package Version 2.3 〈https://CRAN.R-project.org/package=gridExtra〉.
Barker, K.R., Nematode extraction and bioassays. Barker, In.K.R., Carter, C.C., Sasser, J.N., (eds.) An Advanced Treatise on Meloidogyne, Methodology, 2, 1985, North Carolina State University Graphics, Raleigh, N.C., N.C., 19–35 19–35.
Bates, D., Maechler, M., Bolker, B., Walker, S., Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67:1 (2015), 1–48, 10.18637/jss.v067.i01.
Batifoulier, F., Verny, M.A., Chanliaud, E., Rémésy, C., Demigné, C., Variability of B vitamin concentrations in wheat grain, milling fractions and bread products. Eur. J. Agron. 25:2 (2006), 163–169.
Bender, S.F., Schulz, S., Martínez‐Cuesta, R., Laughlin, R.J., Kublik, S., Pfeiffer‐Zakharova, K., Vestergaard, G., Hartman, K., Parladé, E., Römbke, J., Simplification of soil biota communities impairs nutrient recycling and enhances above‐and belowground nitrogen losses. New Phytol. 240 (2023), 2020–2034.
Betancur-Corredor, B., Lang, B., Russell, D.J., Reducing tillage intensity benefits the soil micro-and mesofauna in a global meta-analysis. Eur. J. Soil Sci., 73(6), 2022, e13321.
Bongers, T., The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83 (1990), 14–19.
Bray, J.R., Curtis, J.T., An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27:4 (1957), 326–349.
Brévault, T., Bikay, S., Maldes, J.M., Naudin, K., Impact of a no-till with mulch soil management strategy on soil macrofauna communities in a cotton cropping system. Soil Tillage Res. 97:2 (2007), 140–149.
Brooks, M.E., Kristensen, K., van, Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Maechler, M., Bolker, B.M., glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9:2 (2017), 378–400, 10.32614/RJ-2017-066.
Büdel, B., Microorganisms of Biological Crusts on Soil Surfaces. Buscot, F., Varma, A., (eds.) Microorganisms in Soils: Roles in Genesis and Functions, 2005, Springer.
Campbell, C.D., Chapman, S.J., Cameron, C.M., Davidson, M.S., Potts, J.M., A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69:6 (2003), 3593–3599.
Cao, D., Heughebaert, L., Boffel, L., Stove, C., Van Der Straeten, D., Simultaneous quantification of seven B vitamins from wheat grains using UHPLC-MS/MS. Food Chem., 453, 2024, 139667.
Carro, L., Nouioui, I., Sangal, V., Meier-Kolthoff, J.P., Trujillo, M.E., Montero-Calasanz, M.D.C., Sahin, N., Smith, D.L., Kim, K.E., Peluso, P., Deshpande, S., Woyke, T., Shapiro, N., Kyrpides, N.C., Klenk, H.-P., Göker, M., Goodfellow, M., Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci. Rep., 8(1), 2018, 525.
Chen, H., Dai, Z., Veach, A.M., Zheng, J., Xu, J., Schadt, C.W., Global meta-analyses show that conservation tillage practices promote soil fungal and bacterial biomass. Agric. Ecosyst. Environ., 293, 2020, 106841.
Clarholm, M., Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol. Biochem. 17:2 (1985), 181–187.
Cooper, J., Baranski, M., Stewart, G., Nobel-de Lange, M., Bàrberi, P., Fließbach, A., Peigné, J., Berner, A., Brock, C., Casagrande, M., Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: a meta-analysis. Agron. Sustain. Dev. 36 (2016), 1–20.
Creamer, R.E., Stone, D., Berry, P., Kuiper, I., Measuring respiration profiles of soil microbial communities across Europe using MicroResp™ method. Appl. Soil Ecol. 97 (2016), 36–43.
Dai, Z.W., Plessis, A., Vincent, J., Duchateau, N., Besson, A., Dardevet, M., Prodhomme, D., Gibon, Y., Hilbert, G., Pailloux, M., Ravel, C., Martre, P., Transcriptional and metabolic alternations rebalance wheat grain storage protein accumulation under variable nitrogen and sulfur supply. Plant J. 83 (2015), 326–343.
de Graaff, M.-A., Hornslein, N., Throop, H.L., Kardol, P., van Diepen, L.T., Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: a meta-analysis. Adv. Agron. 155 (2019), 1–44.
Delaplace, P., Delory, B.M., Baudson, C., Mendaluk-Saunier de Cazenave, M., Spaepen, S., Varin, S., Brostaux, Y., du Jardin, P., Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv. BMC Plant Biol. 15 (2015), 1–15.
Delgado-Baquerizo, M., Guerra, C.A., Cano-Díaz, C., Egidi, E., Wang, J.T., Eisenhauer, N., Maestre, F.T., The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10:6 (2020), 550–554.
Delgado‐Baquerizo, M., Grinyer, J., Reich, P.B., Singh, B.K., Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment. Funct. Ecol. 30 (2016), 1862–1873.
Drinkwater, L.E., Snapp, S.S., Understanding and managing the rhizosphere in agroecosystems. Cardon, Z.G., Whitbeck, J.L., (eds.) The Rhizosphere: An Ecological Perspective, 2007, Academic Press, 127–153.
Edwards, M.A., Osborne, B.G., Henry, R.Jm, Effect of endosperm starch granule size distribution on milling yield in hard wheat. J. Cereal Sci. 48 (2008), 180–192.
Essel, E., Xie, J., Deng, C., Peng, Z., Wang, J., Shen, J., Xie, J., Coulter, J.A., Li, L., Bacterial and fungal diversity in rhizosphere and bulk soil under different long-term tillage and cereal/legume rotation. Soil Tillage Res., 194, 2019, 104302.
Ferris, H., Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 46:2 (2010), 97–104.
Ferris, H., Bongers, T., de Goede, R.G.M., A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl. Soil Ecol. 18 (2001), 13–29.
Fox J., Weisberg, S., 2019. An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. < 〈https://socialsciences.mcmaster.ca/jfox/Books/Companion/〉> .
Freschet, G.T., Roumet, C., Comas, L.H., Weemstra, M., Bengough, A.G., Rewald, B., Bardgett, R.D., De Deyn, G.B., Johnson, D., Klimesova, J., Lukac, M., McCormack, M.L., Meier, I.C., Pages, L., Poorter, H., Prieto, I., Wurzburger, N., Zadworny, M., Bagniewska-Zadworna, A., m, Blancaflor, E.B., Brunner, I., Gessler, A., Hobbie, S.E., Iversen, C.M., Mommer, L., Picon-Cochard, C., Postma, J.A., Rose, L., Ryser, P., Scherer-Lorenzen, M., Soudzilovskaia, N.A., Sun, T., Valverde-Barrantes, O.J., Weigelt, A., York, L.M., Stokes, A., Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. N. Phytol. 232:3 (2021), 1123–1158.
Frey, B., Rime, T., Phillips, M., Stierli, B., Hajdas, I., Widmer, F., Hartmann, M., Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol., 92(3), 2016, fiw018.
Gandía, M.L., Del Monte, J.P., Tenorio, J.L., Santín-Montanyá, M.I., The influence of rainfall and tillage on wheat yield parameters and weed population in monoculture versus rotation systems. Sci. Rep., 11(1), 2021, 22138.
Gause, G. F., 1934. Competitive exclusion principle.
Gloor, G.B., Macklaim, J.M., Pawlowsky-Glahn, V., Egozcue, J.J., Microbiome datasets are compositional: and this is not optional. Front. Microbiol., 8, 2017, 2224.
Grishkan, I., Lázaro, R., Kidron, G.J., Cultured microfungal communities in biological soil crusts and bare soils at the Tabernas Desert, Spain. Soil Syst., 3(2), 2019, 36.
Guardia, G., Tellez-Rio, A., García-Marco, S., Martin-Lammerding, D., Tenorio, J.L., Ibáñez, M.Á., Vallejo, A., Effect of tillage and crop (cereal versus legume) on greenhouse gas emissions and Global Warming Potential in a non-irrigated Mediterranean field. Agric. Ecosyst. Environ. 221 (2016), 187–197.
Guo, L., Chen, H., Zhang, Y., Yan, S., Chen, X., Gao, X., Starch granules and their size distribution in wheat: biosynthesis, physicochemical properties and their effect on flour-based food systems. Comput. Struct. Biotechnol. J., 2023.
Gupta, R.S., Patel, S., Saini, N., Chen, S., Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int. J. Syst. Evolut. Microbiol. 70:11 (2020), 5753–5798.
Haddaway, N.R., Hedlund, K., Jackson, L.E., Kätterer, T., Lugato, E., Thomsen, I.K., Jørgensen, H.B., Isberg, P.-E., How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid. 6 (2017), 1–48.
Hartig, F., 2022. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.4.6, < 〈https://CRAN.R-project.org/package=DHARMa〉> .
Hartman, K., van der Heijden, Wittwer, R.A., Banerjee, S., Walser, J.-C., Schlaeppi, K., Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6 (2018), 1–14.
Hartmann, M., Six, J., Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 4:1 (2023), 4–18.
Helgason, B.L., Walley, F.L., Germida, J.J., Fungal and bacterial abundance in long‐term no‐till and intensive‐till soils of the Northern Great Plains. Soil Sci. Soc. America J. 73 (2009), 120–127.
Hodge, A., Robinson, D., Fitter, A., Are microorganisms more effective than plants at competing for nitrogen?. Trends Plant Sci. 5:7 (2000), 304–308.
Hofmeijer, M.A., Krauss, M., Berner, A., Peigné, J., Mäder, P., Armengot, L., Effects of reduced tillage on weed pressure, nitrogen availability and winter wheat yields under organic management. Agronomy, 9, 2019, 180.
Horner-Devine, M.C., Carney, K.M., Bohannan, B.J., 2004, An Ecological Perspective on Bacterial Biodiversity. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1535), 113-122..
Hothorn, T., Bretz, F., Westfall, P., Simultaneous Inference in General Parametric Models. Biom. J. 50:3 (2008), 346–363.
Hu, Y.J., Satten, G.A., Compositional analysis of microbiome data using the linear decomposition model (LDM). Bioinformatics, 39(11), 2023, btad668.
Hutchinson, G.E., Homage to Santa Rosalia or why are there so many kinds of animals?. Am. Nat. 93:870 (1959), 145–159.
Jayasiri, S.C., Hyde, K.D., Jones, E.B.G., McKenzie, E.H.C., Jeewon, R., Phillips, A.J.L., Bhat, D.J., Wanasinghe, D.N., Liu, J.K., Lu, Y.Z., Kang, J.C., Xu, J., Karunarathna, S.C., Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 10 (2019), 1–186.
Jordana, R., Arbea, J.I., 1989. Clave de identificación de los géneros de colémbolos de España (Insecta: Collembola). Publicaciones de Biología de la Universidad de Navarra, Serie Zoológica, 19: 1-16 + 16 lám.
Khianngam, S., Tanasupawat, S., Akaracharanya, A., Kim, K.K., Lee, K.C., Lee, J.S., Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. Int. J. Syst. Evolut. Microbiol. 60:10 (2010), 2284–2287.
Kolde, R., pheatmap: pretty Heatmaps. R. Package Version, 1(0), 2019, 12 〈https://CRAN.R-project.org/package=pheatmap〉.
Krantz, G.W., Walter, D.E., A Manual of Acarology. 3rd Ed. 2009, Texas Tech University Press, Lubbock, 807.
Kraut-Cohen, J., Zolti, A., Shaltiel-Harpaz, L., Argaman, E., Rabinovich, R., Green, S.J., Minz, D., Effects of tillage practices on soil microbiome and agricultural parameters. Sci. Total Environ., 705, 2020, 135791.
Kuzyakov, Y., Blagodatskaya, E., Microbial hotspots and hot moments in soil: Concept & Review. Soil Biol. Biochem. 83 (2015), 184–199.
Lenth, R., emmeans: estimated marginal means, aka least-squares means. R. Package Version, 1(8), 2023, 9 〈https://CRAN.R-project.org/package=emmeans〉.
Li, J., Jia, L., Struik, P.C., An, Z., Wang, Z., Xu, Z., Ji, L., Yao, Y., Lv, J., Zhou, T., Jin, K., Plant and soil responses to tillage practices change arbuscular mycorrhizal fungi populations during crop growth. Front. Microbiol., 15, 2024, 1394104.
Li, Y., Li, Z., Cui, S., Jagadamma, S., Zhang, Q., Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil Tillage Res., 194, 2019, 104292.
Lombard, L., Van der Merwe, Groenewald, J.Z., Crous, P.W., Generic concepts in Nectriaceae. Stud. Mycol. 80:1 (2015), 189–245.
Lori, M., Symnaczik, S., Mäder, P., De Deyn, G., Gattinger, A., Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PloS one, 12, 2017, e0180442.
Love, M.I., Huber, W., Anders, S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:12 (2014), 1–21.
Lücking, R., Lawrey, J.D., Sikaroodi, M., Gillevet, P.M., Chaves, J.L., Sipman, H.J., Bungartz, F., Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. American J. Bot. 96:8 (2009), 1409–1418.
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K., Cluster: Cluster Analysis Basics and Extensions. R. Package Version, 2(1), 2022, 4.
Martin, C.A. (2017). ggConvexHull: Add a convex hull geom to ggplot2. R package version 0.1.0, < 〈http://github.com/cmartin/ggConvexHull〉> .
Martín-Lammerding, D., Hontoria, C., Tenorio, J.L., Walter, I., Mediterranean dryland farming: effect of tillage practices on selected soil properties. Agron. J. 103:2 (2011), 382–389.
Martín-Lammerding, D., Navas, M., del Mar Albarrán, M., Tenorio, J.L., Walter, I., Long term management systems under semiarid conditions: influence on labile organic matter, β-glucosidase activity and microbial efficiency. Appl. Soil Ecol. 96 (2015), 296–305.
Martín-Lammerding, D., Tenorio, J.L., Albarrán, M.M., Zambrana, E., Walter, I., Influence of tillage practices on soil biologically active organic matter content over a growing season under semiarid Mediterranean climate. Span. J. Agric. Res. 11:1 (2013), 232–243.
Martin-Rueda, I., Munoz-Guerra, L.M., Yunta, F., Esteban, E., Tenorio, J.L., Lucena, J.J., Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf. Soil Tillage Res. 92:1-2 (2007), 1–9.
Mathew, R.P., Feng, Y., Githinji, L., Ankumah, R., Balkcom, K.S., Impact of no-tillage and conventional tillage systems on soil microbial communities. Appl. Environ. Soil Sci., 2012, 2012.
Mazor, G., Kidron, G.J., Vonshak, A., Abeliovich, A., The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol. Ecol. 21:2 (1996), 121–130.
McCully, M.E., Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu. Rev. Plant Biol. 50:1 (1999), 695–718.
Mondal, S., Chakraborty, D., Soil nitrogen status can be improved through no-tillage adoption particularly in the surface soil layer: A global meta-analysis. J. Clean. Prod., 366, 2022, 132874.
Morugán-Coronado, A., Pérez-Rodríguez, P., Insolia, E., Soto-Gómez, D., Fernández-Calvino, D., Zornoza, R., The impact of crop diversification, tillage and fertilization type on soil total microbial, fungal and bacterial abundance: A worldwide meta-analysis of agricultural sites. Agric. Ecosyst. Environ., 329, 2022, 107867.
Moyne, O., Al-Bassam, M., Lieng, C., Thiruppathy, D., Norton, G.J., Kumar, M., Haddad, E., Zaramela, L.S., Zengler, K., 2023. Guild and Niche Determination Enable Targeted Alteration of the Microbiome. bioRxiv. Available under: 〈https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197622/〉.
Muñoz-Romero, V., Benítez-Vega, J., López-Bellido, L., López-Bellido, R.J., Monitoring wheat root development in a rainfed vertisol: tillage effect. Eur. J. Agron. 33:3 (2010), 182–187.
Murugan, R., Koch, H.J., Joergensen, R.G., Long-term influence of different tillage intensities on soil microbial biomass, residues and community structure at different depths. Biol. Fertil. Soils 50 (2014), 487–498.
Nakasaki, K., Saito, M., Suzuki, N., Coprinellus curtus (Hitoyo-take) prevents diseases of vegetables caused by pathogenic fungi. FEMS Microbiol. Lett. 275:2 (2007), 286–291.
Nguyen, C., Rhizodeposition of organic C by plant: mechanisms and controls. Sustain. Agric., 2009, 97–123.
Nicolas, Y., Martinant, J.P., Denery-Papini, S., Popineau, Y., Analysis of wheat storage proteins by exhaustive sequential extraction followed by RP-HPLC and nitrogen determination. J. Sci. Food Agric. 77 (1998), 96–102.
Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F.O., Tedersoo, L., Saar, I., The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47:D1 (2019), D259–D264.
Nunes, M.R., Karlen, D.L., Moorman, T.B., Tillage intensity effects on soil structure indicators—A US meta-analysis. Sustainability, 12(5), 2020, 2071.
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., de Caceres, M., Durand, S., Evangelista, H.B.A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., O. Hill, M., Lahti, L., McGlinn, D., Ouelette, M.-H., Cunha, E.R., Smith, T., Stier, A., Ter Braak, C.J.F., Weedon, J, 2022. Package ‘vegan’. Community ecology package, version, 2.6-4.
Orrù, L., Canfora, L., Trinchera, A., Migliore, M., Pennelli, B., Marcucci, A., Farina, R., Pinzari, F., How tillage and crop rotation change the distribution pattern of fungi. Front. Microbiol., 12, 2021, 634325.
Philippot, L., Chenu, C., Kappler, A., Rillig, M.C., Fierer, N., The interplay between microbial communities and soil properties. Nat. Rev. Microbiol. 22:4 (2024), 226–239.
Phookamsak, R., Liu, J.K., McKenzie, E.H., Manamgoda, D.S., Ariyawansa, H., Thambugala, K.M., Dai, D.Q., Camporesi, E., Chukeatirote, E., Wijayawardene, N.N., Bahkali, A.H., Mortimer, P.E., Xu, J.C., Hyde, K.D., Revision of Phaeosphaeriaceae. Fungal Divers. 68:1 (2014), 159–238.
Piazza, G., Ercoli, L., Nuti, M., Pellegrino, E., Interaction between conservation tillage and nitrogen fertilization shapes prokaryotic and fungal diversity at different soil depths: evidence from a 23-year field experiment in the Mediterranean area. Front. Microbiol., 10, 2019, 2047.
Pittelkow, C.M., Linquist, B.A., Lundy, M.E., Liang, X., Van Groenigen, K.J., Lee, J., Van Kessel, C., When does no-till yield more? A global meta-analysis. Field Crops Res. 183 (2015), 156–168.
Postma-Blaauw, M.B., de Goede, R.G.M., Bloem, J., Faber, J.H., Brussaard, L., Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91:2 (2010), 460–473.
Powell, J.T., Chatziefthimiou, A.D., Banack, S.A., Cox, P.A., Metcalf, J.S., Desert crust microorganisms, their environment, and human health. J. Arid Environ. 112 (2015), 127–133.
Puissant, J., Villenave, C., Chauvin, C., Plassard, C., Blanchart, E., Trap, J., Quantification of the global impact of agricultural practices on soil nematodes: a meta-analysis. Soil Biol. Biochem., 161, 2021, 108383.
Quaedvlieg, W., Kema, G.H.J., Groenewald, J.Z., Verkley, G.J.M., Seifbarghi, S., Razavi, M., Mirzadi Gohari, A., Mehrabi, R., Crous, P.W., Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species occurring on graminicolous hosts. Pers.-Mol. Phylogeny Evol. Fungi 26:1 (2011), 57–69.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:D1 (2012), D590–D596.
R Core Team, 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. < 〈https://www.R-project.org/〉> .
Ramírez, P.B., Fuentes-Alburquenque, S., Díez, B., Vargas, I., Bonilla, C.A., Soil microbial community responses to labile organic carbon fractions in relation to soil type and land use along a climate gradient. Soil Biol. Biochem., 141, 2020, 107692.
Roger-Estrade, J., Anger, C., Bertrand, M., Richard, G., Tillage and soil ecology: partners for sustainable agriculture. Soil Tillage Res. 111:1 (2010), 33–40.
Rousseeuw, P.J., Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20 (1987), 53–65.
Salgado-Salazar, C., Beirn, L.A., Ismaiel, A., Boehm, M.J., Carbone, I., Putman, A.I., Tredway, L.P., Clarke, B.B., Crouch, J.A., Clarireedia: A new fungal genus comprising four pathogenic species responsible for dollar spot disease of turfgrass. Fungal Biol. 122:8 (2018), 761–773.
Santín-Montanyá, M.I., Casanova Pena, C., Zambrana Quesada, E., Sánchez Jiménez, F.J., Tenorio Pasamón, J.L., Arable weed species associated with soil tillage systems under Mediterranean conditions. Land Degrad. Dev. 29:4 (2018), 865–874.
Santín-Montanyá, M.I., Fernández-Getino, A.P., Zambrana, E., Tenorio, J.L., Effects of tillage on winter wheat production in Mediterranean dryland fields. Arid Land Res. Manag. 31:3 (2017), 269–282.
Santín-Montanyá, M.I., Gandía-Toledano, M.L., Zambrana, E., Tenorio, J.L., Effects of tillage systems on wheat and weed water relationships over time when growing together, in semiarid conditions. Ann. Appl. Biol. 177:2 (2020), 256–265.
Santín-Montanyá, M.I., Martín-Lammerding, D., Walter, I., Zambrana, E., Tenorio, J.L., Effects of tillage, crop systems and fertilization on weed abundance and diversity in 4-year dry land winter wheat. Eur. J. Agron. 48 (2013), 43–49.
Santín-Montanyá, M.I., Martín-Lammerding, D., Zambrana, E., Tenorio, J.L., Management of weed emergence and weed seed bank in response to different tillage, cropping systems and selected soil properties. Soil Tillage Res. 161 (2016), 38–46.
Scherer, H.W., Weichmann, H., Die Bestimmung des pflanzenverfügbaren Phosphors und Kaliums in Böden mit der CAL-Methode. J. Plant Nutr. Soil Sci. 157:3 (1994), 227–232, 10.1002/jpln.19941570311).
Schloss, P.D., Rarefaction is currently the best approach to control for uneven sequencing effort in amplicon sequence analyses. Msphere, 2024, e00354-23.
Seethepalli, A., Dhakal, K., Griffiths, M., Guo, H., Freschet, G.T., York, L.M., RhizoVision Explorer: open-source software for root image analysis and measurement standardization. AoB Plants, 13(6), 2021, plab056.
Shewry, P.R., Van Schaik, F., Ravel, C., Charmet, G., Rakszegi, M., Bedo, Z., Ward, J.L., Genotype and environment effects on the contents of vitamins B1, B2, B3, and B6 in wheat grain. J. Agric. Food Chem. 59:19 (2011), 10564–10571.
Six, J., Frey, S.D., Thiet, R.K., Batten, K.M., Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70:2 (2006), 555–569.
Slowikowski, K., 2023. ggrepel: Automatically Position Non-Overlapping Text Labels with 'ggplot2'. R package version 0.9.4, < 〈https://CRAN.R-project.org/package=ggrepel〉> .
Strunecký, O., Ivanova, A.P., Mareš, J., An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J. Phycol. 59:1 (2023), 12–51.
Symanczik, S., Krauss, M., Bodenhausen, N., Declerck, S., Doubell, M., Faist, H., Kundel, D., Performance of different wheat varieties and their associated microbiome under contrasting tillage and fertilization intensities: Insights from a Swiss long-term field experiment. Soil Tillage Res., 246, 2025, 106328.
Tellez-Rio, A., Vallejo, A., Garcia-Marco, S., Martin-Lammerding, D., Tenorio, J.L., Rees, R.M., Guardia, G., Conservation agriculture practices reduce the global warming potential of rainfed low N input semi-arid agriculture. Eur. J. Agron. 84 (2017), 95–104.
Tibshirani, R., Walther, G., Hastie, T., Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B (Stat. Methodol. 63:2 (2001), 411–423.
Trachsel, S., Kaeppler, S.M., Brown, K.M., Lynch, J.P., Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:1–2 (2011), 75–87, 10.1007/s11104-010-0623-8.
van Capelle, C., Schrader, S., Brunotte, J., Tillage-induced changes in the functional diversity of soil biota–A review with a focus on German data. Eur. J. Soil Biol. 50 (2012), 165–181.
Van Groenigen, Bloem, J., Bååth, E., Boeckx, P., Rousk, J., Bodé, S., Jones, M.B., Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biol. Biochem. 42:1 (2010), 48–55.
VDLUFA, 1991. Bestimmung von Schwermetallen im Aufschluss mit Königswasser. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA) Methodenbuch Band I, A 2.4.3.1. VDLUFA-Verlag, Darmstadt, Germany, pp. 1-5..
VDLUFA, 2008. Bestimmung von Haupt- und Spurennährstoffen in Kultursubstraten im Calciumchlorid/DTPA-Auszug (CAT-Methode). Herstellung des Extraktes. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA) Methodenbuch Band II.2, 1. Ergänzung., Stickstoff, CaCl2-DTPA-Auszug 3.7.1.2, VDLUFA-Verlag, Darmstadt, Germany, pp. 1-6.
VDLUFA, 2012. Bestimmung von Gesamt-Stickstoff nach trockener Verbrennung (Elementaranalyse). Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA) Methodenbuch Band I, 6. Teillieferung, A 2.2.5, VDLUFA-Verlag, Darmstadt, Germany, pp. 1-6.
VDLUFA, 2016. Bestimmung von Phosphor und Kalium im Calcium-Acetat-Lactat-Auszug. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA). Methodenbuch Band I: Die Untersuchung von Böden, 7. Teillieferung. A 6.2.1.1. VDLUFA-Verlag, Darmstadt, Germany, pp. 1-8.
VDLUFA, 2019. Ionenchromatographische Bestimmung von Chlorid. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA), Methodenbuch Band II.2 3. Ergänzung 2.2-4.7.2.2, VDLUFA-Verlag, Darmstadt, Germany, pp. 1-4.
VDLUFA, 2021. Mikrowellenbeheizter Druckaufschluß 2021-03. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA) Methodenbuch Band VII, Umweltanalytik, 2.1.3. VDLUFA-Verlag, Darmstadt, Germany, pp. 1-5.
Wagg, C., Hautier, Y., Pellkofer, S., Banerjee, S., Schmid, B., van der Heijden, M.G., Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning. elife, 10, 2021, e62813.
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., van der Heijden, M.G., Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun., 10(1), 2019, 4841.
Wang, H., Wang, S., Wang, R., Wang, X., Li, J., Conservation tillage increased soil bacterial diversity and improved soil nutrient status on the Loess Plateau in China. Arch. Agron. Soil Sci. 66 (2020), 1509–1519.
Wardle, D.A., Ghani, A.A., A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol. Biochem. 27:12 (1995), 1601–1610.
Watt, M., Kirkegaard, J.A., Rebetzke, G.J., A wheat genotype developed for rapid leaf growth copes well with the physical and biological constraints of unploughed soil. Funct. Plant Biol. 32:8 (2005), 695–706.
Watt, M., Magee, L.J., McCully, M.E., Types, structure and potential for axial water flow in the deepest roots of field-grown cereals. N. Phytol. 178:1 (2008), 135–146.
Watt, M., Schneebeli, K., Dong, P., Wilson, I.W., The shoot and root growth of Brachypodium and its potential as a model for wheat and other cereal crops. Funct. Plant Biol. 36:11 (2009), 960–969.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, S.M., Müller, K., Ooms, J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., Yutani, H., Welcome to the tidyverse. J. Open Source Softw., 4(43), 2019, 1686, 10.21105/joss.01686 〈https://doi.org/10.21105/joss.01686〉.
Wieser, H., Antes, S., Seilmeier, W., Quantitative determination of gluten protein types in wheat flour by reversed-phase high-performance liquid chromatography. Cereal Chem. 75 (1998), 644–650.
Yang, L., Chen, J., A comprehensive evaluation of microbial differential abundance analysis methods: current status and potential solutions. Microbiome, 10(1), 2022, 130.
Yeates, G.W., 1994. Modification and Qualification of the Nematode Maturity index.
Young, M.D., Ros, G.H., de Vries, W., Impacts of agronomic measures on crop, soil, and environmental indicators: A review and synthesis of meta-analysis. Agric. Ecosyst. Environ., 319, 2021, 107551.
Zeileis, A., Hothorn, T., Diagnostic checking in regression relationships. R. N. 2:3 (2002), 7–10 〈https://CRAN.R-project.org/doc/Rnews/〉.
Zhang, H., Song, G., Shao, J., Xiang, X., Li, Q., Chen, Y., Yang, P., Yu, G., Dynamics and polyphasic characterization of odor-producing cyanobacterium Tychonema bourrellyi from Lake Erhai, China. Environ. Sci. Pollut. Res. 23 (2016), 5420–5430.
Zhou, H., He, K., Chen, J., Zhang, X., LinDA: linear models for differential abundance analysis of microbiome compositional data. Genome Biol. 23:1 (2022), 1–23.