[en] [en] PURPOSE: Over 30 international studies are exploring newborn sequencing (NBSeq) to expand the range of genetic disorders included in newborn screening. Substantial variability in gene selection across programs exists, highlighting the need for a systematic approach to prioritize genes.
METHODS: We assembled a dataset comprising 25 characteristics about each of the 4,390 genes included in 27 NBSeq programs. We used regression analysis to identify several predictors of inclusion, and developed a machine learning model to rank genes for public health consideration.
RESULTS: Among 27 NBSeq programs, the number of genes analyzed ranged from 134 to 4,299, with only 74 (1.7%) genes included by over 80% of programs. The most significant associations with gene inclusion across programs were presence on the US Recommended Uniform Screening Panel (inclusion increase of 74.7%, CI: 71.0%-78.4%), robust evidence on the natural history (29.5%, CI: 24.6%-34.4%) and treatment efficacy (17.0%, CI: 12.3%-21.7%) of the associated genetic disease. A boosted trees machine learning model using 13 predictors achieved high accuracy in predicting gene inclusion across programs (AUC = 0.915, R2 = 84%).
CONCLUSION: The machine learning model developed here provides a ranked list of genes that can adapt to emerging evidence and regional needs, enabling more consistent and informed gene selection in NBSeq initiatives.
Disciplines :
Pediatrics
Author, co-author :
Minten, Thomas
Bick, Sarah
Adelson, Sophia
Gehlenborg, Nils
Amendola, Laura M
Boemer, François ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Coffey, Alison J
Encina, Nicolas
Ferlini, Alessandra
Kirschner, Janbernd
Russell, Bianca E
Servais, Laurent ; Université de Liège - ULiège > Département des sciences cliniques
Sund, Kristen L
Taft, Ryan J
Tsipouras, Petros
Zouk, Hana
ICoNS Gene List Contributors
Green, Robert C
Gold, Nina B
Bick, David
Gentile, Mattia
Orsini, Paola
Ficarella, Romina
Valente, Maria Luisa
Ponzi, Emanuela
Ververi, Athina
Koutsogianni, Maria
Xinwen, Huang
Rui, Xiao
Zhengyan, Zhao
Pelo, Matthew J
King, Jovanka
Siu, Carol
Kassahn, Karin
Sansen, Stefaan
Bertini, Enrico
Zygmunt, Aldona
International Consortium on Newborn Sequencing (ICoNS)
Nyegaard, Mette
Agolini, Emanuele
Giordano, Jessica
O'Sullivan, Justin
Al-Maraghi, Aljazi
Jensen, Ulrich Glumer
Ojodu, Jelili
Alex, Karla
Godler, David
Alkuraya, Fowzan
Oza, Andrea
Akil, Ammira Alshabeeb
Goldenberg, Aaron
Paleologos, Katrina
Alshehri, Munira
GoldenGrant, Katie
Parad, Richard
Ansel, Derek
Goldman, Cassie
Peay, Holly
Armstrong, Niki
González de Aledo-Castillo, José Manuel
Aujla, Matthew
Gottlieb, Daniel
Philstrom, Carolyn
Bailey, Don
Pichard, Dominique
Baker, Mei
Greene, Christopher
Pichini, Amanda
Balciuniene, Jorune
Greenstein, Brooke
Pickering, Holly
Barry, Andrew
Grosse, Scott
Pirreca, Michelle
Bennetts, Bruce
Grueters, Annette
Ponikowska, Malgorzata
Berenger, Melissa
Gumus, Gulcin
Ponte, Amy
Berg, Jonathan
Hagman, Kelly
Posch, Andreas
Bernstein, Donna
Hall, Kevin
Powell, Cynthia
Bhatatcharjee, Arindam
Harmant, Aymeric
Protopsaltis, Liana
Bhatt, Sucheta
Hartmanis, Sally
Quevedo, Yeyson
Hayeems, Robin
Raia, Marianna
Bishop, Tracey
Heald, Rose
Reimers, Rebecca
Bitton, Asaf
Hegde, Madhuri
Rohrwasser, Andy
Heiner-Fokkema, Rebecca
Rollier, Paul
Bonhomme, Natasha
Henneman, Lidewij
Rottensten, Lene
Bowley, George
Hernan, Becca
Rtskhiladze, Irakli
Boyd, Brenna
Hobbs, Charlotte
Sachedina, Nabihah
Brennenstuhl, Heiko
Holm, Ingrid
Sahyoun, George
Brenner, Steven
Horwitz, Layla
Satija, Aditi
Bresnahan, Mairead
Hu, Zhanzhi
Schaaf, Christian
Brewster, Thomas
Iascone, Maria
Schleit, Jennifer
Brooks, P J
Irvine, Ken
Scott, Richard
Broomberg, Katya
Jin, Guanjun
Scully, Lauren
Brower, Amy
Kalbfleisch, Kelsey
Seeloff, Stacey
Brown, Gemma
Kander, Ines
Buchanan, James
Kaplun, Lucy
Shah, Nidhi
Bupp, Caleb
Kasperaviciute, Dalia
Siitonen, Maija
Cameron, Candance
Singh, Sikha
Capacchione, Lauren
Kauko, Leni
Carli, Diana
Kaukonen, Riina
Smith, Hadley
Ceballo, Onassis Castillo
Kelly, Nicole
King, Lisa Sniderman
Chan, Kee
Khangsar, Dhayo
Sondheimer, Neal
Chance, Jillian
St George, Lourdes
Charalambidou, Georgia
Kingsley, Clare
Stark, Zornitza
Chen, Winnie
Kingsmore, Stephen
Steiner, Robert
Chen, Yun-Ru
Kirmse, Brian
Stoltze, Ulrik
Chung, Wendy
Klein, Rachel
Stray-Pedersen, Asbjørg
Chung, Brian
Koelker, Stefan
Clarke, Megan
Kousa, Youssef
Tafas, Paris
Clasper, Susan
Krupoderova, Elizaveta
Teekakirikul, Polakit
Cole, F Sessions
Kruszka, Paul
Thanos, Dimitrios
Cope, Heidi
Langley, Katherine
Thurm, Audrey
Coury, Stephanie
Leckie, Ciara
To, Meekai
Cox, Tony
Lecommandeur, Emmanuelle
Dangouloff, Tamara ; Université de Liège - ULiège > Département des sciences cliniques
Waisbren, S.E., Bäck, D.K., Liu, C., et al. Parents are interested in newborn genomic testing during the early postpartum period. Genet Med 17:6 (2015), 501–504, 10.1038/gim.2014.139.
Ceyhan-Birsoy, O., Machini, K., Lebo, M.S., et al. A curated gene list for reporting results of newborn genomic sequencing. Genet Med 19:7 (2017), 809–818, 10.1038/gim.2016.193.
Genetti, C.A., Schwartz, T.S., Robinson, J.O., et al. Parental interest in genomic sequencing of newborns: enrollment experience from the BabySeq Project. Genet Med 21:3 (2019), 622–630, 10.1038/s41436-018-0105-6.
Holm, I.A., Agrawal, P.B., Ceyhan-Birsoy, O., et al. The BabySeq project: implementing genomic sequencing in newborns. BMC Pediatr, 18(1), 2018, 225, 10.1186/s12887-018-1200-1.
Ceyhan-Birsoy, O., Murry, J.B., Machini, K., et al. Interpretation of genomic sequencing results in healthy and ill newborns: results from the BabySeq project. Am J Hum Genet 104:1 (2019), 76–93, 10.1016/j.ajhg.2018.11.016.
Pereira, S., Smith, H.S., Frankel, L.A., et al. Psychosocial effect of newborn genomic sequencing on families in the BabySeq project: a randomized clinical trial. JAMA Pediatr 175:11 (2021), 1132–1141, 10.1001/jamapediatrics.2021.2829.
Pereira, S., Robinson, J.O., Gutierrez, A.M., et al. Perceived benefits, risks, and utility of newborn genomic sequencing in the BabySeq project. Pediatrics 143:suppl 1 (2019), S6–S13, 10.1542/peds.2018-1099C.
Green, R.C., Shah, N., Genetti, C.A., et al. Actionability of unanticipated monogenic disease risks in newborn genomic screening: findings from the BabySeq Project. Am J Hum Genet 110:7 (2023), 1034–1045, 10.1016/j.ajhg.2023.05.007.
Smith, H.S., Zettler, B., Genetti, C.A., et al. A clinical trial of genome sequencing in a diverse cohort of infants. Am J Hum Genet, Forthcoming 2024.
Bick, D., Bick, S.L., Dimmock, D.P., Fowler, T.A., Caulfield, M.J., Scott, R.H., An online compendium of treatable genetic disorders. Am J Med Genet C Semin Med Genet 187:1 (2021), 48–54, 10.1002/ajmg.c.31874.
Gold, N.B., Adelson, S.M., Shah, N., et al. Perspectives of rare disease experts on newborn genome sequencing. JAMA Netw Open, 6(5), 2023, e2312231, 10.1001/jamanetworkopen.2023.12231.
Timmins, G.T., Wynn, J., Saami, A.M., Espinal, A., Chung, W.K., Diverse parental perspectives of the social and educational needs for expanding newborn screening through genomic sequencing. Public Health Genomics, Published online September 15, 2022, 10.1159/000526382.
Gold, N.B., Omorodion, J.O., Del Rosario, M.C., et al. Preferences of parents from diverse backgrounds on genomic screening of apparently healthy newborns. J Genet Couns, 34(2), 2025, e1994, 10.1002/jgc4.1994.
Cao, M., Notini, L., Ayres, S., Vears, D.F., Australian healthcare professionals’ perspectives on the ethical and practical issues associated with genomic newborn screening. J Genet Couns 32:2 (2023), 376–386, 10.1002/jgc4.1645.
del Rosario, M.C., Swenson, K.B., Coury, S., Schwab, J., Green, R.C., Gold, N.B., Genetic counselors’ perspectives on genomic screening of apparently healthy newborns in the United States. Genet Med Open, 2, 2024, 101885, 10.1016/j.gimo.2024.101885.
Bombard, Y., Miller, F.A., Hayeems, R.Z., et al. Public views on participating in newborn screening using genome sequencing. Eur J Hum Genet 22:11 (2014), 1248–1254, 10.1038/ejhg.2014.22.
Lynch, F., Best, S., Gaff, C., et al. Australian public perspectives on genomic newborn screening: risks, benefits, and preferences for implementation. Int J Neonatal Screen, 10(1), 2024, 6, 10.3390/ijns10010006.
International Consortium on Newborn Sequencing. Accessed December 16, 2024. https://www.iconseq.org/.
Wilson, J.M.G., Jungner, G., The Principles and Practice of Screening for Disease. Accessed December 16, 2024. https://iris.who.int/handle/10665/208882.
Bick, D., Ahmed, A., Deen, D., et al. Newborn screening by genomic sequencing: opportunities and challenges. Int J Neonatal Screen, 8(3), 2022, 40, 10.3390/ijns8030040.
Baple, E.L., Scott, R.H., Banka, S., et al. Exploring the benefits, harms and costs of genomic newborn screening for rare diseases. Nat Med 30:7 (2024), 1823–1825, 10.1038/s41591-024-03055-x.
DeCristo, D.M., Milko, L.V., O'Daniel, J.M., et al. Actionability of commercial laboratory sequencing panels for newborn screening and the importance of transparency for parental decision-making. Genome Med, 13(1), 2021, 50, 10.1186/s13073-021-00867-1.
Downie, L., Bouffler, S.E., Amor, D.J., et al. Gene selection for genomic newborn screening: moving towards consensus?. Genet Med, 26(5), 2024, 101077, 10.1016/j.gim.2024.101077.
Betzler, I.R., Hempel, M., Mütze, U., et al. Comparative analysis of gene and disease selection in genomic newborn screening studies. J Inherit Metab Dis 47:5 (2024), 945–970, 10.1002/jimd.12750.
Dangouloff, T., Hovhannesyan, K., Piazzon, F., et al. Baby detect: universal genomic newborn screening for early, treatable, and severe conditions. J Neurol Sci, 455(suppl), 2023, 121259, 10.1016/j.jns.2023.121259.
Kingsmore, S.F., Smith, L.D., Kunard, C.M., et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am J Hum Genet 109:9 (2022), 1605–1619, 10.1016/j.ajhg.2022.08.003.
Owen, M.J., Lefebvre, S., Hansen, C., et al. An automated 13.5 hour system for scalable diagnosis and acute management guidance for genetic diseases. Nat Commun, 13(1), 2022, 4057, 10.1038/s41467-022-31446-6.
Chen, T., Fan, C., Huang, Y., et al. Genomic sequencing as a first-tier screening test and outcomes of newborn screening. JAMA Netw Open, 6(9), 2023, e2331162, 10.1001/jamanetworkopen.2023.31162.
Bailey, D.B. Jr., Gehtland, L.M., Lewis, M.A., et al. Early Check: translational science at the intersection of public health and newborn screening. BMC Pediatr, 19(1), 2019, 238, 10.1186/s12887-019-1606-4.
Huang, X., Wu, D., Zhu, L., et al. Application of a next-generation sequencing (NGS) panel in newborn screening efficiently identifies inborn disorders of neonates. Orphanet J Rare Dis, 17(1), 2022, 66, 10.1186/s13023-022-02231-x.
Jian, M., Wang, X., Sui, Y., et al. A pilot study of assessing whole genome sequencing in newborn screening in unselected children in China. Clin Transl Med, 12(6), 2022, e843, 10.1002/ctm2.843.
Yang, R.L., Qian, G.L., Wu, D.W., et al. A multicenter prospective study of next-generation sequencing-based newborn screening for monogenic genetic diseases in China. World J Pediatr 19:7 (2023), 663–673, 10.1007/s12519-022-00670-x.
Wang, X., Sun, Y., Guan, X.W., et al. Newborn genetic screening is highly effective for high-risk infants: a single-centre study in China. J Glob Health, 13, 2023, 04128, 10.7189/jogh.13.04128.
Wang, H., Yang, Y., Zhou, L., Wang, Y., Long, W., Yu, B., NeoSeq: a new method of genomic sequencing for newborn screening. Orphanet J Rare Dis, 16(1), 2021, 481, 10.1186/s13023-021-02116-5.
Hao, C., Guo, R., Hu, X., et al. Newborn screening with targeted sequencing: a multicenter investigation and a pilot clinical study in China. J Genet Genomics 49:1 (2022), 13–19, 10.1016/j.jgg.2021.08.008.
Chung, W.K., Kanne, S.M., Hu, Z., An opportunity to fill a gap for newborn screening of neurodevelopmental disorders. Int J Neonatal Screen, 10(2), 2024, 33, 10.3390/ijns10020033.
Lee, H., Lim, J., Shin, J.E., et al. Implementation of a targeted next-generation sequencing panel for constitutional newborn screening in high-risk neonates. Yonsei Med J 60:11 (2019), 1061–1066, 10.3349/ymj.2019.60.11.1061.
Luo, X., Sun, Y., Xu, F., et al. A pilot study of expanded newborn screening for 573 genes related to severe inherited disorders in China: results from 1,127 newborns. Ann Transl Med, 8(17), 2020, 1058, 10.21037/atm-20-1147.
Ferlini, A., Gross, E.S., Garnier, N., Screen4Care consortium. Rare diseases’ genetic newborn screening as the gateway to future genomic medicine: the Screen4Care EU-IMI project. Orphanet J Rare Dis, 18(1), 2023, 310, 10.1186/s13023-023-02916-x.
Balciuniene, J., Liu, R., Bean, L., et al. At-risk genomic findings for pediatric-onset disorders from genome sequencing vs medically actionable gene panel in proactive screening of newborns and children. JAMA Netw Open, 6(7), 2023, e2326445, 10.1001/jamanetworkopen.2023.26445.
Cao, Z., He, X., Wang, D., et al. Targeted exome sequencing strategy (NeoEXOME) for Chinese newborns using a pilot study with 3423 neonates. Mol Genet Genomic Med, 12(1), 2024, e2357, 10.1002/mgg3.2357.
Boemer, F., Hovhannesyan, K., Piazzon, F., et al. Population-based, first-tier genomic newborn screening in the maternity ward. Nat Med 31 (2025), 1339–1350, 10.1038/s41591-024-03465-x.
Cope, H.L., Milko, L.V., Jalazo, E.R., et al. A systematic framework for selecting gene-condition pairs for inclusion in newborn sequencing panels: early Check implementation. Genet Med, 26(12), 2024, 101290, 10.1016/j.gim.2024.101290.
Chung, W., Ziegler, A., Koval-Burt, C., et al. O35: feasibility of expanded newborn screening using genome sequencing for early actionable conditions in a diverse city. Genet Med Open, 2, 2024, 101369, 10.1016/j.gimo.2024.101369.
Ziegler, A., Koval-Burt, C., Kay, D.M., et al. Expanded newborn screening using genome sequencing for early actionable conditions. JAMA 333:3 (2025), 232–240, 10.1001/jama.2024.19662.
Milko, L.V., O'Daniel, J.M., DeCristo, D.M., et al. An age-based framework for evaluating genome-scale sequencing results in newborn screening. J Pediatr 209 (2019), 68–76, 10.1016/j.jpeds.2018.12.027.
Berg, J.S., Foreman, A.K.M., O'Daniel, J.M., et al. A semiquantitative metric for evaluating clinical actionability of incidental or secondary findings from genome-scale sequencing. Genet Med 18:5 (2016), 467–475, 10.1038/gim.2015.104.
Rehm, H.L., Berg, J.S., Brooks, L.D., et al. ClinGen—the clinical genome resource. N Engl J Med 372:23 (2015), 2235–2242, 10.1056/NEJMsr1406261.
Spiekerkoetter, U., Bick, D., Scott, R., et al. Genomic newborn screening: are we entering a new era of screening?. J Inherit Metab Dis 46:5 (2023), 778–795, 10.1002/jimd.12650.
Amberger, J.S., Bocchini, C.A., Schiettecatte, F.J.M., Scott, A.F., Hamosh, A., OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43:database issue (2015), D789–D798, 10.1093/nar/gku1205.
Kwon, C., Farrell, P.M., The magnitude and challenge of false-positive newborn screening test results. Arch Pediatr Adolesc Med 154:7 (2000), 714–718, 10.1001/archpedi.154.7.714.
Wojcik, M.H., Zhang, T., Ceyhan-Birsoy, O., et al. Discordant results between conventional newborn screening and genomic sequencing in the BabySeq Project. Genet Med 23:7 (2021), 1372–1375, 10.1038/s41436-021-01146-5.
Adhikari, A.N., Gallagher, R.C., Wang, Y., et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat Med 26:9 (2020), 1392–1397, 10.1038/s41591-020-0966-5.
Cook, S., Dunn, E., Kornish, J., et al. Molecular testing in newborn screening: VUS burden among true positives and secondary reproductive limitations via expanded carrier screening panels. Genet Med, 26(4), 2024, 101055, 10.1016/j.gim.2023.101055.
Arnold, G.L., Koeberl, D.D., Matern, D., et al. A Delphi-based consensus clinical practice protocol for the diagnosis and management of 3-methylcrotonyl CoA carboxylase deficiency. Mol Genet Metab 93:4 (2008), 363–370, 10.1016/j.ymgme.2007.11.002.
Forsyth, R., Vockley, C.W., Edick, M.J., et al. Outcomes of cases with 3-methylcrotonyl-CoA carboxylase (3-MCC) deficiency – Report from the Inborn Errors of Metabolism Information System. Mol Genet Metab 118:1 (2016), 15–20, 10.1016/j.ymgme.2016.02.002.
Roberts, J.L., Buckley, R.H., Luo, B., et al. CD45-deficient severe combined immunodeficiency caused by uniparental disomy. Proc Natl Acad Sci U S A 109:26 (2012), 10456–10461, 10.1073/pnas.1202249109.
Karczewski, K.J., Francioli, L.C., Tiao, G., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:7809 (2020), 434–443, 10.1038/s41586-020-2308-7.
Amemiya, H.M., Kundaje, A., Boyle, A.P., The ENCODE blacklist: identification of problematic regions of the genome. Sci Rep, 9(1), 2019, 9354, 10.1038/s41598-019-45839-z.
Chandak, P., Huang, K., Zitnik, M., Building a knowledge graph to enable precision medicine. Sci Data, 10(1), 2023, 67, 10.1038/s41597-023-01960-3.