[en] Microbial interactions may lead to major events in life and planetary
evolution, such as eukaryogenesis, the birth of complex nucleated cells.
In synergy with microbiology, cellular palaeobiology may shed some light
on this very ancient and debated affair and its circumstances. The 1.78–
1.73 Ga McDermott Formation, McArthur Basin (Australia), preserves a
microfossil assemblage that provides unique insights into the evolution
of early eukaryotes. The fossil cells display a level of morphological
complexity, disparity and plasticity requiring a complex cytoskeleton and
an endomembrane system, pushing back the minimum age of uncontested
eukaryotic fossils by more than 100 million years (Ma). They also document
an earlier appearance of reproduction by budding, simple multicellularity
and diverse programmed openings of cyst wall implying a life cycle,
as well as possible evidence for microbial symbiosis and behaviour,
including eukaryovory and ectosymbiosis. This microbial community that
also includes cyanobacterial cells preserving thylakoids, microbial mats and
other microfossils, thrived in supratidal to intertidal marine environments
with heterogeneous but mostly suboxic to anoxic redox conditions.
Taken together, these observations imply early eukaryogenesis, including
mitochondrial endosymbiosis in micro-/nano-oxic niches, and suggest a
>1.75 Ga minimum age for the Last Eukaryotic Common Ancestor (LECA),
preceded by a deeper history of the domain Eukarya, consistent with
several molecular clocks and the fossil record.
This article is part of the discussion meeting issue ‘Chance and purpose
in the evolution of biospheres’.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Javaux, Emmanuelle ; Université de Liège - ULiège > Astrobiology ; ULiège - Université de Liège > Early Life Traces & Evolution-Astrobiology
Language :
English
Title :
A diverse Paleoproterozoic microbial ecosystem implies early eukaryogenesis
Publication date :
2025
Journal title :
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
ISSN :
0962-8436
eISSN :
1471-2970
Publisher :
The Royal Society, London, United Kingdom
Special issue title :
special issue of the Royal Society workshop “chance and purpose in evolution of biospheres”
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
BELSPO - Belgian Federal Science Policy Office F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
The BELSPO BRAIN project B2/212/PI/PORTAL and the FRS-FNRS PDR T.0137.20 'Life in Archean coastal environments" and PDR T.0164.24 LIFEFORMS supported this project
Falkowski PG, Fenchel T, Delong EF. 2008 The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039. (doi:10.1126/science.1153213)
Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. 2021 Bacterial and archaeal symbioses with protists. Curr. Biol. 31, R862–R877. (doi:10.1016/j.cub.2021.05.049)
Cavalier-Smith T, Chao EEY. 2020 Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Protoplasma 257, 621–753. (doi: 10.1007/s00709-019-01442-7)
Parfrey LW, Lahr DJG, Knoll AH, Katz LA. 2011 Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629. (doi:10.1073/pnas.1110633108)
Baum DA, Baum B. 2014 An inside-out origin for the eukaryotic cell. BMCBiol. 12, 76. (doi:10.1186/s12915-014-0076-2)
Ettema TJ. 2016 Mitochondria in the second act. Nature 531, 39–40. (doi:10.1038/nature16876)
Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH. 2017 Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc. Natl Acad. Sci. USA 114, E7737–E7745. (doi:10. 1073/pnas.1620089114)
Betts HC, Puttick MN, Clark JW, Williams TA, Donoghue PC, Pisani D. 2018 Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562. (doi:10.1038/s41559-018-0644-x)
Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG. 2017 Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723. (doi:10.1038/nrmicro.2017.133)
Eme L et al. 2023 Inference and reconstruction of the heimdallarchaeal ancestry of eukaryotes. Nature 618, 992–999. (doi:10.1038/s41586-023-06186-2)
Spang A et al. 2015 Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179. (doi:10.1038/nature14447)
Spang A, Stairs CW, Dombrowski N, Eme L, Lombard J, Caceres EF, Greening C, Baker BJ, Ettema TJ. 2019 Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148. (doi:10.1038/s41564-019-0406-9)
Roger AJ, Susko E, Leger MM. 2021 Evolution: reconstructing the timeline of eukaryogenesis. Curr. Biol. 31, R193–R196. (doi:10.1016/j.cub.2020.12.035)
Lopez-Garcia P, Moreira D. 2023 The symbiotic origin of the eukaryotic cell. Comptes Rendus Biol. 346, 55–73. (doi:10.5802/crbiol.118)
Donoghue PCJ, Kay C, Spang A, Szöllősi G, Nenarokova A, Moody ERR, Pisani D, Williams TA. 2023 Defining eukaryotes to dissect eukaryogenesis. Curr. Biol. 33, R919–R929. (doi:10. 1016/j.cub.2023.07.048)
Vosseberg J, van Hooff JJ, Köstlbacher S, Panagiotou K, Tamarit D, Ettema TJ. 2024 The emerging view on the origin and early evolution of eukaryotic cells. Nature 633, 295–305. (doi:10.1038/s41586-024-07677-6)
Richards TA etal. 2024 Reconstructing the last common ancestor of all eukaryotes. PLoSBiol. 22, e3002917. (doi:10.1371/journal.pbio.3002917)
Strassert JF, Irisarri I, Williams TA, Burki F. 2021 A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 12, 1879. (doi:10.1038/s41467-021-22044-z)
Martin W, Müller M. 1998 The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41. (doi:10.1038/32096)
Pittis AA, Gabaldón T. 2016 Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature New Biol. 531, 101–104. (doi:10.1038/nature16941)
Moreira D, López-García P. 1998 Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 517–530.
Devos DP. 2021 Reconciling Asgardarchaeota phylogenetic proximity to eukaryotes and Planctomycetes cellular features in the evolution of life. Mol. Biol. Evol. 38, 3531–3542. (doi:10.1093/molbev/msab186)
Wan KY, Jékely G. 2021 Origins of eukaryotic excitability. Phil. Trans. R. Soc. B 376, 20190758. (doi:10.1098/rstb.2019.0758)
Keeling PJ. 2024 Horizontal gene transfer in eukaryotes: aligning theory with data. Nat. Rev. Genet. 25, 1–15. (doi:10.1038/s41576-023-00688-5)
Stairs CW, Ettema TJG. 2020 The archaeal roots of the eukaryotic dynamic actin cytoskeleton. Curr. Biol. 30, R521–R526. (doi:10.1016/j.cub.2020.02.074)
Vargová R et al. 2025 The Asgard archaeal origins of Arf family GTPases involved in eukaryotic organelle dynamics. Nat. Microbiol. 10, 495–508. (doi:10.1038/s41564-024-01904-6)
Imachi H et al. 2020 Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525. (doi:10.1038/s41586-019-1916-6)
Rodrigues-Oliveira T, Wollweber F, Ponce-Toledo RI, Xu J, Rittmann SKM, Klingl A, Pilhofer M, Schleper C. 2023 Actin cytoskeleton and complex cell architecture in an asgard archaeon.Nature613,332–339.(doi:10.1038/s41586-022-05550-y)
Avcı B, Panagiotou K, Albertsen M, Ettema TJG, Schramm A, Kjeldsen KU. 2025 Peculiar morphology of Asgard archaeal cells close to the prokaryote-eukaryote boundary. MBio 16, e0032725. (doi:10.1128/mbio.00327-25)
Imachi H etal. 2025 Eukaryotes’ closest relatives are internally simple syntrophic archaea. bioRxiv. (doi:10.1101/2025.02.26.640444)
Kempes CP, Dutkiewicz S, Follows MJ. 2012 Growth, metabolic partitioning, and the size of microorganisms. Proc. Natl Acad. Sci. USA 109, 495–500. (doi:10.1073/pnas. 1115585109)
Archibald JM. 2025 Mosaic evolution of eukaryotic carbon metabolism. Nat. Ecol. Evol. 9, 537–538. (doi:10.1038/s41559-025-02652-4)
Santana-Molina CS, Williams TA, Snel B, Spang A. 2025 Chimeric origins and dynamic evolution of central carbon metabolism in eukaryotes. Nat Ecol Evol 9, 613–627. (doi:10.1038/ s41559-025-02648-0)
Bernabeu M, Manzano-Morales S, Marcet-Houben M, Gabaldón T. 2024 Diverse ancestries reveal complex symbiotic interactions during eukaryogenesis. bioRxiv (doi:10.1101/ 2024.10.14.618062)
Stairs CW, Dharamshi JE, Tamarit D, Eme L, Jørgensen SL, Spang A, Ettema TJ. 2020 Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. Sci. Adv. 6, eabb7258. (doi:10.1126/sciadv.abb7258)
Stairs CW, Eme L, Muñoz-Gómez SA, Cohen A, Dellaire G, Shepherd JN, Fawcett JP, Roger AJ. 2018 Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. eLife 7, e34292. (doi:10.7554/elife.34292)
Desmond E, Gribaldo S. 2009 Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol. Evol. 1, 364–381. (doi:10. 1093/gbe/evp036)
Roger AJ, Muñoz-Gómez SA, Kamikawa R. 2017 The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192. (doi:10.1016/j.cub.2017.09.015)
López-García P, Moreira D. 2020 The syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667. (doi:10.1038/s41564-020-0710-4)
Speijer D. 2024 How mitochondrial cristae illuminate the important role of oxygen during eukaryogenesis. BioEssays 46, e2300193. (doi:10.1002/bies.202300193)
Hampl V, Roger AJ. 2024 The evolutionary origin of mitochondria and mitochondrion-related organelles. In Endosymbiotic organelle acquisition: solutions to the problem of protein localization and membrane passage. Schwartzbach, S.D., Kroth, P.G., Oborník, M.(eds), pp. 89–121. Cham, Switzerland: Springer International Publishing. (doi:10.1007/ 978-3-031-57446-7_3)
Mills DB, Boyle RA, Daines SJ, Sperling EA, Pisani D, Donoghue PCJ, Lenton TM. 2022 Eukaryogenesis and oxygen in Earth history. Nat. Ecol. Evol. 6, 520–532. (doi:10.1038/s41559-022-01733-y)
Burns JA, Pittis AA, Kim E. 2018 Gene-based predictive models of trophic modes suggest asgard archaea are not phagocytotic. Nat. Ecol. Evol. 2, 697–704. (doi:10.1038/s41559-018-0477-7)
Tikhonenkov DV et al. 2022 Microbial predators form a new supergroup of eukaryotes. Nature 612, 714–719. (doi:10.1038/s41586-022-05511-5)
Shiratori T, Suzuki S, Kakizawa Y, Ishida K. 2019 Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat. Commun. 10, 5529. (doi:10.1038/s41467-019-13499-2)
Gabaldón T. 2018 Relative timing of mitochondrial endosymbiosis and the ‘pre-mitochondrial symbioses’ hypothesis. IUBMB Life 70, 1188–1196. (doi:10.1002/iub.1950)
Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D. 2017 An early-branching freshwater cyanobacterium at the origin of plastids. Curr. Biol. 27, 386–391. (doi:10.1016/j.cub.2016.11.056)
Garcia PS, Barras F, Gribaldo S. 2023 Components of iron–sulfur cluster assembly machineries are robust phylogenetic markers to trace the origin of mitochondria and plastids. PLoS Biol. 21, e3002374. (doi:10.1371/journal.pbio.3002374)
Lhee D, Bhattacharya D, Yoon HS. 2024 The evolutionary origin of primary plastids. In Endosymbiotic organelle acquisition (eds SD Schwartzbach, PG Kroth, M Oborník). Cham, Switzerland: Springer. (doi:10.1007/978-3-031-57446-7_1)
Keeling PJ. 2013 The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 64, 583–607. (doi:10.1146/annurev-arplant-050312-120144)
Butterfield NJ. 2000 Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404. (doi:10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2)
Tang Q, Pang K, Yuan X, Xiao S. 2020 A one-billion-year-old multicellular chlorophyte. Nat. Ecol. Evol. 4, 543–549. (doi:10.1038/s41559-020-1122-9)
Sforna MC et al. 2022 Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae. Nat. Commun. 13, 146. (doi:10.1038/s41467-021-27810-7)
Bengtson S, Sallstedt T, Belivanova V, Whitehouse M. 2017 Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoSBiol. 15, e2000735. (doi:10.1371/journal.pbio.2000735)
Miao L, Yin Z, Knoll AH, Qu Y, Zhu M. 2024 1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China. Sci. Adv. 10, eadk3208. (doi:10.1126/ sciadv.adk3208)
Delaye L, Valadez-Cano C, Pérez-Zamorano B. 2016 How really ancient is Paulinella chromatophora? PLoS Curr. 8. (doi:10.1371/currents.tol.e68a099364bb1a1e129a17b4e06b0c6b)
Speijer D. 2017 Evolution of peroxisomes illustrates symbiogenesis. BioEssays 39, 1700050. (doi:10.1002/bies.201700050)
Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. 2015 Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594. (doi:10.1126/science.1257594)
Burki F, Roger AJ, Brown MW, Simpson AGB. 2020 The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55. (doi:10.1016/j.tree.2019.08.008)
Torruella G, Galindo LJ, Moreira D, López-García P. 2025 Phylogenomics of neglected flagellated protists supports a revised eukaryotic tree of life. Curr. Biol. 35, 198–207. (doi:10. 1016/j.cub.2024.10.075)
Williamson K et al. 2025 A robustly rooted tree of eukaryotes reveals their excavate ancestry. Nature 640, 974–981. (doi:10.1038/s41586-025-08709-5)
Al Jewari C, Baldauf SL. 2023 An excavate root for the eukaryote tree of life. Sci. Adv. 9, eade4973. (doi:10.1126/sciadv.ade4973)
Suzuki-Tellier S, Miano F, Asadzadeh SS, Simpson AGB, Kiørboe T. 2024 Foraging mechanisms in excavate flagellates shed light on the functional ecology of early eukaryotes. Proc. Natl Acad. Sci. USA 121, e2317264121. (doi:10.1073/pnas.2317264121)
Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Rohwer FL, Mylnikov AP, Keeling PJ. 2017 A new lineage of eukaryotes illuminates early mitochondrial genome reduction. Curr. Biol. 27, 3717–3724. (doi:10.1016/j.cub.2017.10.051)
Leander BS. 2023 Eukaryotic evolution: deep phylogeny does not imply morphological novelty. Curr. Biol. 33, R112–R114. (doi:10.1016/j.cub.2022.12.016)
Holland HD. 2002 Volcanic gases, black smokers, and the great oxidation event. Geochim. Et Cosmochim. Acta 66, 3811–3826. (doi:10.1016/s0016-7037(02)00950-x)
Poulton SW, Bekker A, Cumming VM, Zerkle AL, Canfield DE, Johnston DT. 2021 A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236. (doi:10. 1038/s41586-021-03393-7)
Lyons TW, Reinhard CT, Planavsky NJ. 2014 The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315. (doi:10.1038/nature13068)
Lyons TW, Diamond CW, Planavsky NJ, Reinhard CT, Li C. 2021 Oxygenation, life, and the planetary system during Earth’s middle history: an overview. Astrobiology 21, 906–923. (doi:10.1089/ast.2020.2418)
Planavsky NJ et al. 2014 Evidence for oxygenic photosynthesis half a billion years before the great oxidation event. Nat. Geosci. 7, 283–286. (doi:10.1038/ngeo2122)
Ostrander CM, Johnson AC, Anbar AD. 2021 Earth’s first redox revolution. Annu. Rev. EarthPlanet. Sci. 49, 337–366. (doi:10.1146/annurev-earth-072020-055249)
Olson SL, Kump LR, Kasting JF. 2013 Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35–43.
Albut G, Babechuk MG, Kleinhanns IC, Benger M, Beukes NJ, Steinhilber B, Smith AJB, Kruger SJ, Schoenberg R. 2018 Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95Ga old Ijzermijn iron formation (South Africa). Geochim. Cosmochim. Acta 228, 157–189. (doi:10.1016/j.gca.2018. 02.034)
Ward LM, Kirschvink JL, Fischer WW. 2016 Timescales of oxygenation following the evolution of oxygenic photosynthesis. Orig. Life Evol. Biospheres 46, 51–65. (doi:10.1007/ s11084-015-9460-3)
Jabłońska J, Tawfik DS. 2021 The evolution of oxygen-utilizing enzymes suggests early biosphere oxygenation. Nat. Ecol. Evol. 5, 442–448. (doi:10.1038/s41559-020-01386-9)
Berg JS, Ahmerkamp S, Pjevac P, Hausmann B, Milucka J, Kuypers MMM. 2022 How low can they go? Aerobic respiration by microorganisms under apparent anoxia. FEMS Microbiol. Rev. 46, fuac006. (doi:10.1093/femsre/fuac006)
Brochier-Armanet C, Talla E, Gribaldo S. 2009 The multiple evolutionary histories of dioxygen reductases: implications for the origin and evolution of aerobic respiration. Mol. Biol. Evol. 26, 285–297. (doi:10.1093/molbev/msn246)
Davín AA et al. 2025 A geological timescale for bacterial evolution and oxygen adaptation. Science 388, eadp1853. (doi:10.1126/science.adp1853)
Cardona T, Sánchez‐Baracaldo P, Rutherford AW, Larkum AWD. 2019 Early Archean origin of Photosystem II. Geobiology 17, 127–150. (doi:10.1111/gbi.12322)
Oliver T, Kim TD, Trinugroho JP, Cordón-Preciado V, Wijayatilake N, Bhatia A, Rutherford AW, Cardona T. 2023 The evolution and evolvability of photosystem II. Annu. Rev. Plant Biol. 74, 225–257. (doi:10.1146/annurev-arplant-070522-062509)
Sánchez‐Baracaldo P, Cardona T. 2020 On the origin of oxygenic photosynthesis and Cyanobacteria. New Phytol. 225, 1440–1446. (doi:10.1111/nph.16249)
Boden JS, Konhauser KO, Robbins LJ, Sánchez-Baracaldo P. 2021 Timing the evolution of antioxidant enzymes in cyanobacteria. Nat. Commun. 12, 4742. (doi:10.1038/s41467-021-24396-y)
Fournier GP, Moore KR, Rangel LT, Payette JG, Momper L, Bosak T. 2021 The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proc. R. Soc. B 288, 20210675. (doi:10.1098/rspb.2021.0675)
Nishihara A, Tsukatani Y, Azai C, Nobu MK. 2024 Illuminating the coevolution of photosynthesis and Bacteria. Proc. Natl Acad. Sci. USA 121, e2322120121. (doi:10.1073/pnas. 2322120121)
Waldbauer JR, Newman DK, Summons RE. 2011 Microaerobic steroid biosynthesis and the molecular fossil record of archean life. Proc. Natl Acad. Sci. USA 108, 13409–13414. (doi: 10.1073/pnas.1104160108)
Gold DA, Caron A, Fournier GP, Summons RE. 2017 Paleoproterozoic sterol biosynthesis and the rise of oxygen. Nature 543, 420–423. (doi:10.1038/nature21412)
Hoshino Y, Gaucher EA. 2021 Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proc. Natl Acad. Sci. USA 118, e2101276118. (doi:10.1073/pnas. 2101276118)
Allwood AC, Grotzinger JP, Knoll AH, Burch IW, Anderson MS, Coleman ML, Kanik I. 2009 Controls on development and diversity of early Archean stromatolites. Proc. Natl Acad. Sci. USA 106, 9548–9555. (doi:10.1073/pnas.0903323106)
Javaux EJ. 2019 Challenges in evidencing the earliest traces of life. Nature 572, 451–460. (doi:10.1038/s41586-019-1436-4)
Lepot K. 2020 Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth Sci. Rev. 209, 103296. (doi:10.1016/j.earscirev.2020.103296)
Stüeken EE, Buick R. 2018 Environmental control on microbial diversification and methane production in the Mesoarchean. Precambrian Res. 304, 64–72. (doi:10.1016/j.precamres. 2017.11.003)
Moody ER et al. 2024 The nature of the last universal common ancestor and its impact on the early Earth system. Nat. Ecol. Evol. 8, 1654–1666. (doi:10.1038/s41559-024-02461-1)
Mahendrarajah TA et al. 2023 ATP synthase evolution on a cross-braced dated tree of life. Nat. Commun. 14, 7456. (doi:10.1038/s41467-023-42924-w)
Johnson AC, Ostrander CM, Romaniello SJ, Reinhard CT, Greaney AT, Lyons TW, Anbar AD. 2021 Reconciling evidence of oxidative weathering and atmospheric anoxia on Archean Earth. Sci. Adv. 7, eabj0108. (doi:10.1126/sciadv.abj0108)
Beghin J, Guilbaud R, Poulton SW, Gueneli N, Brocks JJ, Storme JY, Blanpied C, Javaux EJ. 2017 A palaeoecological model for the late Mesoproterozoic – early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa. Precambrian Res. 299, 1–14. (doi:10.1016/j.precamres.2017.07.016)
Porter SM, Agić H, Riedman LA. 2018 Anoxic ecosystems and early eukaryotes. Emerg. Top. Life Sci. 2, 299–309. (doi:10.1042/ETLS20170162)
Miao L, Moczydłowska M, Zhu S, Zhu M. 2019 New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambrian Res. 321, 172–198. (doi:10.1016/j.precamres.2018.11.019)
Klatt JM, Al-Najjar MAA, Yilmaz P, Lavik G, de Beer D, Polerecky L. 2015 Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring. Appl. Environ. Microbiol. 81, 2025–2031. (doi:10.1128/aem.03579-14)
Fadel A, Lepot K, Bernard S, Addad A, Riboulleau A, Knoll AH. 2024 Ultrastructural perspectives on the biology and taphonomy of Tonian microfossils from the Draken formation, Spitsbergen. Geobiology 22, e70000. (doi:10.1111/gbi.70000)
Lyons TW, Tino CJ, Fournier GP, Anderson RE, Leavitt WD, Konhauser KO, Stüeken EE. 2024 Co-evolution of early Earth environments and microbial life. Nat. Rev. Microbiol. 22, 1–15. (doi:10.1038/s41579-024-01044-y)
Rasmussen B, Bekker A, Fletcher IR. 2013 Correlation of Paleoproterozoic glaciations based on U–Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups. Earth Planet. Sci. Lett. 382, 173–180. (doi:10.1016/j.epsl.2013.08.037)
Reddy SM, Evans DAD. 2009 Palaeoproterozoic supercontinents and global evolution: correlations from core to atmosphere, pp. 1–26, vol. 323. London, UK: The Geological Society of London. (doi:10.1144/SP323.1)
Evans DAD, Mitchell RN. 2011 Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna. Geology 39, 443–446. (doi:10.1130/g31654.1)
Anbar AD, Knoll AH. 2002 Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142. (doi:10.1126/science.1069651)
Yang X et al. 2024 Fluctuating oxygenation and dynamic iron cycling in the late Paleoproterozoic ocean. Earth Planet. Sci. Lett. 626, 118554. (doi:10.1016/j.epsl.2023.118554)
Hoffman PF et al. 2017 Snowball Earth climate dynamics and Cryogenian geology-geobiology. Sci. Adv. 3, e1600983. (doi:10.1126/sciadv.1600983)
Holland HD. 2006 The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B 361, 903–915. (doi:10.1098/rstb.2006.1838)
Mitchell RN, Kirscher U. 2023 Mid-Proterozoic day length stalled by tidal resonance. Nat. Geosci. 16, 567–569. (doi:10.1038/s41561-023-01202-6)
Buick R, Des Marais DJ, Knoll AH. 1995 Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia. Chem. Geol. 123, 153–171. (doi:10.1016/0009-2541(95)00049-r)
Brasier MD, Lindsay JF. 1998 A billion years of environmental stability and the emergence of eukaryotes: new data from northern Australia. Geology 26, 555–558. (doi:10.1130/ 0091-7613(1998)0262.3.co;2)
Mitchell R, Evans D. 2024 The balanced billion. GSA Today 34, 10–11. (doi:10.1130/gsatg423c.1)
Javaux EJ, Lepot K. 2018 The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth’s middle-age. Earth Sci. Rev. 176, 68–86. (doi:10.1016/j. earscirev.2017.10.001)
Mukherjee I, Large RR, Corkrey R, Danyushevsky LV. 2018 The boring billion, a slingshot for complex life on Earth. Sci. Rep. 8, 4432. (doi:10.1038/s41598-018-22695-x)
Javaux EJ, Knoll AH, Walter M. 2003 Recognizing and interpreting the fossils of early eukaryotes. Orig. Life Evol. Biosph. 33, 75–94. (doi:10.1023/A:1023992712071)
Javaux EJ. 2007 The early eukaryotic fossil record. In Eukaryotic membranes and cytoskeleton: origins and evolution (ed. G Jekely), pp. 1–19. Springer. (doi:10.1007/978-0-387-74021-8_1)
Javaux E. 2011 Early eukaryotes in Precambrian oceans. In Origins and evolution of life: an astrobiological perspective (eds M Gargaud, P López-Garcìa, H Martin), pp. 414–449. Cambridge University Press. (doi:10.1017/CBO9780511933875.028)
Yin L, Xunlai Y, Fanwei M, Jie H. 2005 Protists of the upper Mesoproterozoic Ruyang Group in Shanxi Province, China. Precambrian Res 141, 49–66. (doi:10.1016/j.precamres.2005. 08.001)
Knoll AH, Javaux EJ, Hewitt D, Cohen P. 2006 Eukaryotic organisms in Proterozoic oceans. Phil. Trans. R. Soc. B 361, 1023–1038. (doi:10.1098/rstb.2006.1843)
Riedman LA, Porter SM, Lechte MA, dos Santos A, Halverson GP. 2023 Early eukaryotic microfossils of the late Palaeoproterozoic Limbunya Group, Birrindudu Basin, northern Australia. Pap. Palaeontol. 9, e1538. (doi:10.1002/spp2.1538)
Tang Q et al. 2024 Quantifying the global biodiversity of Proterozoic eukaryotes. Science 386, eadm9137. (doi:10.1126/science.adm9137)
Miao L, Yin Z, Li G, Zhu M. 2024 First report of Tappania and associated microfossils from the late Paleoproterozoic Chuanlinggou Formation of the Yanliao Basin, North China. Precambrian Res. 400, 107268. (doi:10.1016/j.precamres.2023.107268)
Porter SM, Riedman LA, Woltz CR, Gold DA, Kellogg JB. 2025 Early eukaryote diversity: a review and a reinterpretation. Paleobiology 51, 132–149. (doi:10.1017/pab.2024.33)
Carlisle EM, Jobbins M, Pankhania V, Cunningham JA, Donoghue PC. 2021 Experimental taphonomy of organelles and the fossil record of early eukaryote evolution. Sci. Adv. 7, e9487. (doi:10.1126/sciadv.abe9487)
Gibson TM et al. 2018 Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138. (doi:10.1130/g39829.1)
Albani AE et al. 2010 Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466, 100–104. (doi:10.1038/nature09166)
Brocks JJ et al. 2023 Lost world of complex life and the late rise of the eukaryotic crown. Nature 618, 767–773. (doi:10.1038/s41586-023-06170-w)
Hoshino Y, Gaucher EA. 2024. Impact of steroid biosynthesis on the aerobic adaptation of eukaryotes. Geobiology 22, e12612. (doi:10.1111/gbi.12612)
Eme L, Sharpe SC, Brown MW, Roger AJ. 2014 On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6, a016139. (doi:10. 1101/cshperspect.a016139)
Butterfield NJ. 2015 Early evolution of the Eukaryota. Palaeontology 58, 5–17. (doi:10.1111/pala.12139)
Javaux EJ, Knoll AH. 2017 Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. J. Paleontol. 91, 199–229. (doi: 10.1017/jpa.2016.124)
Cohen PA, Kodner RB. 2022 The earliest history of eukaryotic life: uncovering an evolutionary story through the integration of biological and geological data. Trends Ecol. Evol. 37, 246–256. (doi:10.1016/j.tree.2021.11.005)
Buick R. 2010 Ancient acritarchs. Nature 463, 885–886. (doi:10.1038/463885a)
Javaux EJ, Marshall CP, Bekker A. 2010 Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463, 934–938. (doi:10.1038/nature08793)
Knoll AH. 2014 Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016121–a016121. (doi:10.1101/cshperspect.a016121)
Sugitani K, Kohama T, Mimura K, Takeuchi M, Senda R, Morimoto H. 2018 Speciation of paleoarchean life demonstrated by analysis of the morphological variation of lenticular microfossils from the Pilbara Craton, Australia. Astrobiology 18, 1057–1070. (doi:10.1089/ast.2017.1799)
Westall F, Xiao S. 2024 Precambrian Earth: co-evolution of life and geodynamics. Precambrian Res. 414, 107589. (doi:10.1016/j.precamres.2024.107589)
Mills DB. 2020 The origin of phagocytosis in Earth history. Interface Focus 10, 20200019. (doi:10.1098/rsfs.2020.0019)
Porter SM. 2020 Insights into eukaryogenesis from the fossil record. Interface Focus 10, 20190105. (doi:10.1098/rsfs.2019.0105)
Porter SM, Riedman LA. 2023 Frameworks for interpreting the early fossil record of eukaryotes. Annu. Rev. Microbiol. 77, 173–191. (doi:10.1146/annurev-micro-032421-113254)
Yin L, Meng F, Kong F, Niu C. 2020 Microfossils from the Paleoproterozoic Hutuo Group, Shanxi, North China: early evidence for eukaryotic metabolism. Precambrian Res. 342, 105650. (doi:10.1016/j.precamres.2020.105650)
El Albani A, Bengtson S, Canfield DE, Riboulleau A, Rollion Bard C, Macchiarelli R, Bekker A. 2014 The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity. PLoS ONE9, e99438.
Javaux E, Lepot K, Zuilen M, Melezhik V, Medvedev P. 2012 Palaeoproterozoic microfossils (chap 7.11. 2.). In Reading the archive of earth’s oxygenation (eds V Melezhik, AR Prave, EJ Hanski, AE Fallick, A Lepland, LR Kump, H Strauss), pp. 1352–1371. The Netherlands: Springer.
Yang Z et al. 2023 Phylotranscriptomics unveil a paleoproterozoic-mesoproterozoic origin and deep relationships of the Viridiplantae. Nat. Commun. 14, 5542. (doi:10.1038/s41467-023-41137-5)
Stüeken EE, Pellerin A, Thomazo C, Johnson BW, Duncanson S, Schoepfer SD. 2024 Marine biogeochemical nitrogen cycling through Earth’s history. Nat. Rev. EarthEnviron. 1–16.
Shi Q, Shi X, Tang D, Fan C, Wei B, Li Y. 2021 Heterogeneous oxygenation coupled with low phosphorus bio-availability delayed eukaryotic diversification in Mesoproterozoic oceans:evidencefromtheca1.46GaHongshuizhuangformationofNorthChina.PrecambrianRes.354,106050.(doi:10.1016/j.precamres.2020.106050)
Reinhard CT, Planavsky NJ, Ward BA, Love GD, Le Hir G, Ridgwell A. 2020 The impact of marine nutrient abundance on early eukaryotic ecosystems. Geobiology 18, 139–151. (doi: 10.1111/gbi.12384)
Brocks JJ, Jarrett AJM, Sirantoine E, Hallmann C, Hoshino Y, Liyanage T. 2017 The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581. (doi:10. 1038/nature23457)
Cohen PA, Macdonald FA. 2015 The Proterozoic record of eukaryotes. Paleobiology 41, 610–632. (doi:10.1017/pab.2015.25)
Butterfield NJ. 2007 Macroevolution and macroecology through deep time. Palaeontology 50, 41–55. (doi:10.1111/j.1475-4983.2006.00613.x)
Knoll AH, Nowak MA. 2017 The timetable of evolution. Sci. Adv. 3, e1603076. (doi:10.1126/sciadv.1603076)
Riedman A, Sadler PM. 2018 Global species richness record and biostratigraphic potential of early to middle Neoproterozoic eukaryote fossils. Precambrian Res. 319, 6–18. (doi:10. 1016/j.precamres.2017.10.008)
Loron CC, Halverson GP, Rainbird RH, Skulski T, Turner EC, Javaux EJ. 2021 Shale-hosted biota from the Dismal Lakes group in Arctic Canada supports an early Mesoproterozoic diversification of eukaryotes. J. Paleontol. 95, 1113–1137. (doi:10.1017/jpa.2021.45)
Eckford-Soper LK, Andersen KH, Hansen TF, Canfield DE. 2022 A case for an active eukaryotic marine biosphere during the Proterozoic era. Proc. Natl Acad. Sci. USA 119, e2122042119. (doi:10.1073/pnas.2122042119)
Loron CC, François C, Rainbird RH, Turner EC, Borensztajn S, Javaux EJ. 2019 Early fungi from the Proterozoic era in Arctic Canada. Nature 570, 232–235. (doi:10.1038/s41586-019-1217-0)
Porter SM, Meisterfeld R, Knoll AH. 2003 Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. J. Paleontol. 77, 409–429. (doi:10.1017/s0022336000044140)
Riedman LA, Porter SM, Calver CR. 2018 Vase-shaped microfossil biostratigraphy with new data from Tasmania, Svalbard, Greenland, Sweden and the Yukon. Precambrian Res. 319, 19–36. (doi:10.1016/j.precamres.2017.09.019)
Demoulin C. 2024 Biosignatures of modern and fossil cyanobacteria. PhD thesis, University of Liège.
Couté A. 1982 Ultrastructure d’une cyanophycée aérienne calcifiée cavernicole: Geitleria calcarea Friedmann: (Hormogonophycidae, Stigonematales, Stigonemataceae). Hydrobiologia97,255–274.
Volland JM et al. 2022 A centimeter-long bacterium with DNA contained in metabolically active, membrane-bound organelles. Science 376, 1453–1458. (doi:10.1126/science. abb3634)
Spinks SC, Schmid S, Pagès A. 2016 Delayed euxinia in Paleoproterozoic intracontinental seas: vital havens for the evolution of eukaryotes? Precambrian Res. 287, 108–114. (doi:10. 1016/j.precamres.2016.11.002)
Kunzmann M, Crombez V, Catuneanu O, Blaikie TN, Barth G, Collins AS. 2020 Sequence stratigraphy of the ca. 1730 Ma Wollogorang Formation, McArthur Basin, Australia. Mar. Pet. Geol. 116, 104297. (doi:10.1016/j.marpetgeo.2020.104297)
Rawlings D. 2002 Sedimentology, volcanology and geodynamics of the Redbank Package. Thesis, [McArthur Basin, northern Australia]: University of Tasmania. (doi:10.25959/ 23211350.v1)
Page RW, Jackson MJ, Krassay AA. 2000 Constraining sequence stratigraphy in north Australian basins: SHRIMP U–Pb zircon geochronology between Mt Isa and McArthur River. Aust. J. EarthSci. 47, 431–459. (doi:10.1046/j.1440-0952.2000.00797.x)
Rawlings DJ. 1999 Stratigraphic resolution of a multiphase intracratonic basin system: the McArthur Basin, northern Australia. Aust. J. Earth Sci. 46, 703–723. (doi:10.1046/j.1440-0952.1999.00739.x)
Spinks SC, Schmid S, Pagés A, Bluett J. 2016 Evidence for SEDEX-style mineralization in the 1.7 Ga Tawallah Group, McArthur basin, Australia. Ore Geol. Rev. 76, 122–139. (doi:10. 1016/j.oregeorev.2016.01.007)
Whelan M. 2022 The Paleoredox context of the McArthur and Birrindudu Basins, Northern Territory, Australia. MSc thesis, [Canada]: McGill University.
Poulton SW, Fralick PW, Canfield DE. 2004 The transition to a sulphidic ocean∼ 1.84 billion years ago. Nature 9, 173–177. (doi:10.1038/nature02912)
Poulton SW, Fralick PW, Canfield DE. 2010 Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 3, 486–490. (doi:10.1038/ngeo889)
Vinnichenko G, Jarrett AJM, Hope JM, Brocks JJ. 2020 Discovery of the oldest known biomarkers provides evidence for phototrophic bacteria in the 1.73 Ga Wollogorang Formation, Australia. Geobiology 18, 544–559. (doi:10.1111/gbi.12390)
Butterfield NJ, Knoll AH, Swett K. 1994 Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen, pp. 1–84. Fossil and Strata, Scandinavian University Press. (doi:10. 18261/8200376494-1994-01)
Demoulin CF, Lara YJ, Cornet L, François C, Baurain D, Wilmotte A, Javaux EJ. 2019 Cyanobacteria evolution: insight from the fossil record. Free Radic. Biol. Med. 140, 206–223. (doi: 10.1016/j.freeradbiomed.2019.05.007)
Lara YJ et al. 2022 Characterization of the halochromic gloeocapsin pigment, a cyanobacterial biosignature for paleobiology and astrobiology. Astrobiology 22, 735–754. (doi:10. 1089/ast.2021.0061)
Johnston DT, Wolfe-Simon F, Pearson A, Knoll AH. 2009 Anoxygenic photosynthesis modulated proterozoic oxygen and sustained Earth’s middle age. Proc. Natl Acad. Sci. USA 106, 16925–16929. (doi:10.1073/pnas.0909248106)
Komárek J, Anagnostidis K. 2008 Süßwasserflora von mitteleuropa, bd. 19/1: cyanoprokaryota, part 1: chroococcales, p. 548. Germany: Elseviere GmbH.Spektrum.
Javaux EJ, Knoll AH, Walter MR. 2001 Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412, 66–69. (doi:10.1038/35083562)
Agić H, Moczydłowska M, Yin L. 2017 Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton – a window into the early eukaryoteevolution.PrecambrianRes.297,101–130.(doi:10.1016/j.precamres.2017.04.042)
Javaux EJ, Knoll AH, Walter MR. 2004 TEM evidence for eukaryotic diversity in mid‐Proterozoic oceans. Geobiology 2, 121–132. (doi:10.1111/j.1472-4677.2004.00027.x)
Riedman LA, Porter S. 2016 Organic-walled microfossils of the mid-Neoproterozoic Alinya formation, officer basin, Australia. J. Paleontol. 90, 854–887. (doi:10.1017/jpa.2016.49)
Strother PK, Taylor WA, van de Schootbrugge B, Leander BS, Wellman CH. 2020 Pellicle ultrastructure demonstrates that Moyeria is a fossil euglenid. Palynology 44, 461–471. (doi: 10.1080/01916122.2019.1625457)
Beghin J, Storme JY, Blanpied C, Gueneli N, Brocks JJ, Poulton SW, Javaux EJ. 2017 Microfossils from the late Mesoproterozoic – early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa. Precambrian Res. 291, 63–82. (doi:10.1016/j.precamres.2017.01.009)
Waterbury JB, Stanier RY. 1978 Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol. Rev. 42, 2–44. (doi:10.1128/mmbr.42.1.2-44.1978)
Komárek J, Anagnostidis K. 2008 Süßwasserflora von mitteleuropa, bd. 19/2: cyanoprokaryota, part 2: oscillatoriales. Germany: Elseviere GmbH.Spektrum.
Nagovitsin K. 2009 Tappania-bearing association of the Siberian platform: biodiversity, stratigraphic position and geochronological constraints. Precambrian Res. 173, 137–145. (doi:10.1016/j.precamres.2009.02.005)
Adam ZR, Skidmore ML, Mogk DW, Butterfield NJ. 2017 A Laurentian record of the earliest fossil eukaryotes. Geology 45, 387–390. (doi:10.1130/G38749.1)
Mitra A et al. 2014 The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11, 995–1005. (doi:10.5194/bg-11-995-2014)
Busch A, Hess S. 2017 The cytoskeleton architecture of algivorous protoplast feeders (Viridiraptoridae, Rhizaria) indicates actin-guided perforation of prey cell walls. Protist 168, 12–31. (doi:10.1016/j.protis.2016.10.004)
Gerbracht JV, Harding T, Simpson AG, Roger AJ, Hess S. 2022 Comparative transcriptomics reveals the molecular toolkit used by an algivorous protist for cell wall perforation. Curr. Biol. 32, 3374–3384. (doi:10.1016/j.cub.2022.05.049)
Baludikay BK, Storme JY, François C, Baudet D, Javaux EJ. 2016 A diverse and exquisitely preserved organic-walled microfossil assemblage from the Meso–Neoproterozoic Mbuji-Mayi Supergroup (Democratic Republic of Congo) and implications for proterozoic biostratigraphy. Precambrian Res. 281, 166–184. (doi:10.1016/j.precamres.2016.05.017)
Loron CC, Rainbird RH, Turner EC, Greenman JW, Javaux EJ. 2018 Implications of selective predation on the macroevolution of eukaryotes: evidence from Arctic Canada. Emerg. Top. Life Sci. 2, 247–255. (doi:10.1042/etls20170153)
Grey K, Willman S. 2009 Taphonomy of Ediacaran acritarchs from Australia: significance for taxonomy and biostratigraphy. Palaios 24, 239–256. (doi:10.2110/palo.2008.p08-020r)
Manning‐Berg A, Selly T, Bartley JK. 2022 Actualistic approaches to interpreting the role of biological decomposition in microbial preservation. Geobiology 20, 216–232. (doi:10. 1111/gbi.12475)
Agić H, Cohen PA. 2021 Non-pollen palynomorphs in deep time: unravelling the evolution of early eukaryotes. Geol. Soc. Lond. Spec. Publ. 511, 321–342. (doi:10.1144/sp511-2020-223)
Rizos I, Frada MJ, Bittner L, Not F. 2024 Life cycle strategies in free-living unicellular eukaryotes: diversity, evolution, and current molecular tools to unravel the private life of microorganisms. J. Eukaryot. Microbiol. 71, e13052. (doi:10.1111/jeu.13052)
Tang Q, Pang K, Li G, Chen L, Yuan X, Xiao S. 2021 One-billion-year-old epibionts highlight symbiotic ecological interactions in early eukaryote evolution. Gondwana Res. 97, 22–33. (doi:10.1016/j.gr.2021.05.008)
Soong L, Golubic S, Verrecchia E. 1999 Epibiotic relationships in Mesoproterozoic fossil record: Gaoyuzhuang Formation, China. Geology 27, 1059–1062. (doi:10.1130/0091-7613(1999)0272.3.co;2)
Moreira D, Zivanovic Y, López-Archilla AI, Iniesto M, López-García P. 2021 Reductive evolution and unique predatory mode in the CPR bacterium Vampirococcus lugosii. Nat. Commun. 12, 2454. (doi:10.1038/s41467-021-22762-4)
Monteil CL et al. 2019 Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nat. Microbiol. 4, 1088–1095. (doi:10.1038/s41564-019-0432-7)
Decelle J, Colin S, Foster RA. 2015 Photosymbiosis in marine planktonic protists. In Marine protists: diversity and dynamics, pp. 465–500. Tokyo, Japan: Springer. (doi:10.1007/978-4-431-55130-0_19)
Porter SM. 2016 Tiny vampires in ancient seas: evidence for predation via perforation in fossils from the 780–740 million-year-old Chuar Group, Grand Canyon, USA. Proc. R. Soc. B 283, 20160221. (doi:10.1098/rspb.2016.0221)
Knoll AH, Lahr DJ. 2016 Fossils, feeding, and the evolution of complex multicellularity. In Multicellularity: origins and evolution, vienna series in theoretical biology (eds KJ Niklas, SA Newman), pp. 3–16, vol. 18. Cambridge, MA: MIT Press. (doi:10.7551/mitpress/10525.003.0006)
Cohen PA, Riedman LA. 2018 It’s a protist-eat-protist world: recalcitrance, predation, and evolution in the Tonian–Cryogenian ocean. Emerg. Top. Life Sci. 2, 173–180. (doi:10.1042/ etls20170145)
Pang K, Tang Q, Yuan XL, Wan B, Xiao S. 2015 A biomechanical analysis of the early eukaryotic fossil Valeria and new occurrence of organic-walled microfossils from the Paleo-Mesoproterozoic Ruyang Group. Palaeoworld24, 251–262. (doi:10.1016/j.palwor.2015.04.002)
Anderson TR, Patrick ZA. 1978 Mycophagous amoeboid organisms from soil that perforate spores of Thielaviopsis basicola and Cochliobolus sativus. Phytopathology 68, 1618–1626. (doi:10.1094/Phyto-68-1618)
Hess S, Suthaus A. 2022 The Vampyrellid amoebae (Vampyrellida, Rhizaria). Protist 173, 125854. (doi:10.1016/j.protis.2021.125854)
Santin YG, Sogues A, Bourigault Y, Remaut HK, Laloux G. 2024 Lifecycle of a predatory bacterium vampirizing its prey through the cell envelope and S-layer. Nat. Commun. 15, 3590. (doi:10.1038/s41467-024-48042-5)
Rendulic S et al. 2004 A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303, 689–692. (doi:10.1126/science.1093027)
Kaplan M et al. 2023 Bdellovibrio predation cycle characterized at nanometre-scale resolution with cryo-electron tomography. Nat. Microbiol. 8, 1267–1279. (doi:10.1038/s41564-023-01401-2)
Zhang SH, Kamo SL, Ernst RE, Hu GH, Zhang QQ, El Bilali H, Zhao Y. 2024 First high‐precision U–Pb CA–ID–TIMS age of the Chuanlinggou Formation, North China craton: implicationsforglobalcorrelationsofblackshalesandtheStatherian/Calymmianboundary.Geophys.Res.Lett51,e2024GL109457.(doi:%2010.1029/2024GL109457)
Yan Y. 1989 Shale-facies algal filaments from Chuanlinggou Formation in Jixian county. Bull. Tianjin Inst. Geol. Miner. Resour. 21, 149–165.
Lamb DM, Awramik SM, Chapman DJ, Zhu SX. 2009 Evidence for eukaryotic diversification in the ∼1800 million-year-old Changzhougou Formation, North China. Precambrian Res. 173, 93–104. (doi:10.1016/j.precamres.2009.05.005)
Peng Y, Bao H, Yuan X. 2009 New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Res. 168, 223–232. (doi: 10.1016/j.precamres.2008.10.005)
Xing Y, Liu G. 1973 On Sinian micro-flora in Yenliao region of China and its geological significance. Acta Geol. Sin 1, 1–64.
Hu Y, Fu J. 1982 Micropalaeoflora from the Gaoshanhe formation of late precambrian of Luonan. In Shaanxi and its stratigraphic significance: Bulletin of the Xi’an Institute of Geology and Mineral Resources, Chinese Academy of Geological Science, vol. 4, pp. 102–113, China: Chinese Academy of Geological Science.
Yan Y, Zhu H. 1992 Discovery of acanthomorphic acritarchs from the Baicaoping Formation in Yongji, Shanxi and its geological significance. Acta Mircopaleontologica Sin. 9, 267.
Yin L. 1997 Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China. Rev. Palaeobot. Palynol. 98, 15–25. (doi:10.1016/s0034-6667(97)00022-5)
Lyu D et al. 2022 New chronological and paleontological evidence for Paleoproterozoic eukaryote distribution and stratigraphic correlation between the Yanliao and Xiong’er basins, North China Craton. Precambrian Res. 371, 106577. (doi:10.1016/j.precamres.2022.106577)
Munson TJ. 2019 Detrital zircon geochronology investigations of the Glyde and Favenc packages: implications for the geological framework of the greater McArthur Basin, Northern Territory. In Annual Geoscience Exploration Seminar (AGES) Proceedings. Alice Springs, Australia: Northern Territory Government.
Subarkah D, Collins AS, Farkaš J, Blades ML, Gilbert SE, Jarrett AJM, Bullen MM, Giuliano W. 2023 Characterising the economic proterozoic glyde package of the greater McArthur Basin, northern Australia. Ore Geol. Rev. 158, 105499. (doi:10.1016/j.oregeorev.2023.105499)
Prasad B, Uniyal SN, Asher R. 2005 Organic-walled microfossils from the Proterozoic Vindhyan Supergroup of Son Valley, Madhya Pradesh, India. Palaeobot. 54, 13–60. (doi:10. 54991/jop.2005.68)
Moreira D, López-García P. 2002 The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol. 10, 31–38. (doi:10.1016/s0966-842x(01)02257-0)
van Wolferen M, Pulschen AA, Baum B, Gribaldo S, Albers SV. 2022 The cell biology of archaea. Nat. Microbiol. 7, 1744–1755. (doi:10.1038/s41564-022-01215-8)
Lee KC, Webb RI, Janssen PH, Sangwan P, Romeo T, Staley JT, Fuerst JA. 2009 Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterialphylumPlanctomycetes.BMCMicrobiol.9,1–10.(doi:10.1186/1471-2180-9-5)
Caccamo PD, Brun YV. 2018 The molecular basis of noncanonical bacterial morphology. Trends Microbiol. 26, 191–208. (doi:10.1016/j.tim.2017.09.012)
Yang DC, Blair KM, Salama NR. 2016 Staying in shape: the impact of cell shape on bacterial survival in diverse environments. Microbiol. Mol. Biol. Rev. 80, 187–203. (doi:10.1128/ mmbr.00031-15)
Boedeker C et al. 2017 Determining the bacterial cell biology of Planctomycetes. Nat. Commun. 8, 14853. (doi:10.1038/ncomms14853)
Greening C, Lithgow T. 2020 Formation and function of bacterial organelles. Nat. Rev. Microbiol. 18, 677–689. (doi:10.1038/s41579-020-0413-0)
Demoulin CF et al. 2024 Polysphaeroides filiformis, a proterozoic cyanobacterial microfossil and implications for cyanobacteria evolution. iScience 27, 108865. (doi:10.1016/j.isci. 2024.108865)
Cezanne A, Foo S, Kuo YW, Baum B. 2024 The archaeal cell cycle. Annu. Rev. CellDev. Biol. 40, 1–23. (doi:10.1146/annurev-cellbio-111822-120242)
Orange F, Westall F, Disnar J R., Prieur D, Bienvenu N, Le romancer M, Défarge CH. 2009 Experimental silicification of the extremophilic Archaea Pyroccus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks. Geobiology 7, 403–418. (doi:10.1111/j.1472-4669.2009. 00212.x)
O’Malley MA, Leger MM, Wideman JG, Ruiz-Trillo I. 2019 Concepts of the last eukaryotic common ancestor. Nat. Ecol. Evol. 3, 338–344. (doi:10.1038/s41559-019-0796-3)
Katayama T, Nobu MK, Kusada H, Meng XY, Hosogi N, Uematsu K, Yoshioka H, Kamagata Y, Tamaki H. 2020 Isolation of a member of the candidate phylum ‘Atribacteria’ reveals a unique cell membrane structure. Nat. Commun. 11, 6381. (doi:10.1038/s41467-020-20149-5)
Budd GE, Mann RP. 2020 The dynamics of stem and crown groups. Sci. Adv. 6, eaaz1626. (doi:10.1126/sciadv.aaz1626)
Beavan AJS, Pisani D, Donoghue PCJ. 2021 Diversification dynamics of total-, stem-, and crown-groups are compatible with molecular clock estimates of divergence times. Sci. Adv. 7, eabf2257. (doi:10.1126/sciadv.abf2257)
Bowles AM, Williamson CJ, Williams TA, Donoghue PC. 2024 Cryogenian origins of multicellularity in Archaeplastida. Genome Biol. Evol. 16, e026. (doi:10.1093/gbe/evae026)
French KL et al. 2015 Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920. (doi:10.1073/pnas.1419563112)
Love GD, Zumberge JA. 2021 Emerging patterns in Proterozoic lipid biomarker records. Cambridge, UK: Cambridge University Press, Series: Elements in Geochemical Tracers in Earth System Science.
Summons RE, Welander PV, Gold DA. 2022 Lipid biomarkers: molecular tools for illuminating the history of microbial life. Nat. Rev. Microbiol. 20, 174–185. (doi:10.1038/s41579-021-00636-2)
Pawlowska MM, Butterfield NJ, Brocks JJ. 2013 Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 41, 103–106. (doi:10. 1130/g33525.1)
Bobrovskiy I, Poulton SW, Hope JM, Brocks JJ. 2024 Impact of aerobic reworking of biomass on steroid and hopanoid biomarker parameters recording ecological conditions and thermal maturity. Geochim. Et Cosmochim. Acta 364, 114–128. (doi:10.1016/j.gca.2023.11.024)
Lombard J, López-García P, Moreira D. 2012 The early evolution of lipid membranes and the three domains of life. Nat. Rev. Microbiol. 10, 507–515. (doi:10.1038/nrmicro2815)
Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA. 2005 Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 866–870. (doi:10.1038/nature04068)
Agić H, Moczydłowska M, Yin LM. 2015 Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China. J. Paleontol. 89, 28–50. (doi:10.1017/jpa.2014.4)
Xiao S. 2013 Written in stone: the fossil record of early eukaryotes. In Evolution from the Galapagos: two centuries after Darwin, pp. 107–124. New York, NY: Springer New York. (doi: 10.1007/978-1-4614-6732-8_8)
Huntley JW, Xiao S, Kowalewski M. 2006 1.3 Billion years of acritarch history: an empirical morphospace approach. Precambrian Res. 144, 52–68. (doi:10.1016/j.precamres.2005. 11.003)
Knoll AH, Golubic S. 1992 Proterozoic and living cyanobacteria. In Early organic evolution: implications for mineral and energy resources, pp. 450–462. Berlin, Heidelberg, Germany: Springer Berlin Heidelberg. (doi:10.1007/978-3-642-76884-2_35)
Igisu M, Ueno Y, Komiya T, Awramik SM, Ikemoto Y, Takai K. 2022 Spatial distribution of organic functional groups in ediacaran acritarchs from the Doushantuo formation in South China as revealed by micro-FTIR spectroscopy. Precambrian Res. 373, 106628. (doi:10.1016/j.precamres.2022.106628)
Willman S, Moczydłowska M. 2007 Wall ultrastructure of an Ediacaran acritarch from the officer basin, Australia. Lethaia 40, 111–123. (doi:10.1111/j.1502-3931.2007.00023.x)
Cohen PA, Knoll AH, Kodner RB. 2009 Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proc. Natl Acad. Sci. USA 106, 6519–6524. (doi:10.1073/pnas. 0902322106)
Anderson RP, Mughal S, Wedlake GO. 2024 Proterozoic microfossils continue to provide new insights into the rise of complex eukaryotic life. R. Soc. Open Sci. 11, 240154. (doi:10. 1098/rsos.240154)
Pang K, Tang Q, Schiffbauer JD, Yao J, Yuan X, Wan B, Chen L, Ou Z, Xiao S. 2013 The nature and origin of nucleus‐like intracellular inclusions in Paleoproterozoic eukaryote microfossils.Geobiology11,499–510.(doi:10.1111/gbi.12053)
Javaux EJ, Marshal CP. 2006 A new approach in deciphering early protist paleobiology and evolution: combined microscopy and microchemistry of single Proterozoic acritarchs. Rev. Palaeobot. Palynol. 139, 1–15. (doi:10.1016/j.revpalbo.2006.01.005)